
SLAQ: Quality-Driven Scheduling for Distributed Machine Learning∗

Haoyu Zhang, Logan Stafman, Andrew Or, Michael J. Freedman
Princeton University

1 Background and Motivation
Machine learning (ML) is an increasingly important tool for
large-scale data analytics. A key challenge in analyzing mas-
sive amounts of data with ML arises from the fact that model
complexity and data volume are growing much faster than hard-
ware speed improvements. Thus, time-sensitive ML on large
datasets necessitates the use and efficient management of clus-
ter resources. Three key features of ML are particularly rele-
vant to resource management.
ML algorithms are intrinsically approximate. ML models
are approximate functions for input-output mapping. We use
quality to measure how well the model maps input to the cor-
rect output. Training ML models is a process of optimizing the
model parameters to maximize the quality on a dataset.
ML training is typically iterative with diminishing returns.
Algorithms such as Gradient Descent, L-BFGS and Expecta-
tion Maximization (EM) are widely used to iteratively solve
the numerical optimization problem. The quality improvement
diminishes as more iterations are completed (Figure 1).
Training ML is an exploratory process. ML practitioners
retrain their models repeatedly to explore feature validity [2],
tune hyperparameters [3, 4, 5, 6], and adjust model struc-
tures [7], in order to operationalize the final model with the
best quality. Practitioners in experimental environments often
prefer to work with more approximate models (e.g., 95% loss
reduction) trained within a short period of time for preliminary
testing, rather than wait a significant amount of time for a per-
fectly converged model with poorly tuned configurations.

Existing schedulers primarily focus on resource fairness [8,
9, 10, 11, 12, 13], but are agnostic to model quality and resource
efficiency. With this policy, equal resources will be allocated to
jobs that are in their early stages and could benefit significantly
from extra resources as those that have nearly converged and
cannot improve much further. This is not efficient. The key
intuition behind our system is that in the context of approximate
ML training, more resources should be allocated to jobs that
have the most potential for quality improvement.

2 Design
We present SLAQ, a cluster scheduling system for ML training
jobs that aims to maximize the overall job quality. To achieve
this, SLAQ needs to (1) normalize the quality metrics in order
to trades off resources and quality across multiple jobs; (2) pre-
dict how much progress the job would achieve if it was granted
a certain amount of resources; (3) efficiently allocate cluster
CPUs to maximize the system-wide quality improvement.
Normalizing Quality Metrics. While metrics like accuracy
and F1 score [14] are intuitively understandable, they are not

∗This work has been previously published in ACM SoCC ’17 [1].

applicable to non-classification algorithms. In contrast, loss
functions are internally calculated by almost all algorithms in
each iteration, but each loss function has a different real-world
interpretation, and its range, convexity, and monotonicity of de-
pend on both the models and the optimization algorithms. Di-
rectly normalizing loss values requires a priori knowledge of
the loss range, which is impractical in an online setting.

We choose to normalize the change in loss values between it-
erations, with respect to the largest change we have seen so far.
Figure 2 shows the normalized changes of loss values for com-
mon ML algorithms. Even though the algorithms have diverse
loss ranges, we observe that the changes generally follow sim-
ilar convergence properties, and can be normalized to decrease
from 1 to 0. This helps SLAQ track and compare the progress
of different jobs, and, for each job, correctly project the time to
reach a certain loss reduction with a given resource allocation.
Note that this approach currently does not support some non-
convex algorithms (such as training Deep Neural Networks)
due to the lack of convergence of these analytical models.

Predicting Quality Improvement. Previous work [15, 16]
estimates general-purpose big-data job runtime by analyzing
the job computation and communication structure, using offline
analysis or code profiling. As the computation and communica-
tion pattern changes during ML model configuration tuning, the
process of offline analysis needs to be performed every time,
thus incurring significant overhead.

We use online quality prediction by leveraging the conver-
gence properties of the loss functions. Based on the optimizers
used for minimizing the loss function, we can broadly catego-
rize the algorithms by their convergence rate.

I. Algorithms with sublinear convergence rate. First-order
algorithms1 (e.g., gradient descent) have a convergence rate of
O(1/k), where k is the number of iterations [17]. The conver-
gence rate could be improved to O(1/k2) with optimization.

II. Algorithms with linear or superlinear convergence rates.
Algorithms in this category2 have a convergence rate of
O(µk), |µ| < 1. For example, L-BFGS, which is a widely
used Quasi-Newton Method, has a superlinear convergence rate
which is between linear and quadratic.

With the assumptions of loss convergence rate, we use expo-
nentially weighted history loss values at to fit a curve f (k) =

1
ak2+bk+c + d for sublinear algorithms, or f (k) = µk−b + c for
linear and superlinear algorithms. Intuitively, loss values ob-
tained in the near past are more informative for predicting the
loss values in the near future. Experiments show that this pre-
diction achieves less than 5% prediction errors for all the algo-
rithms in Figure 2 when predicting the next 10th iteration.

1Assume f is convex, differentiable, and ∇ f is Lipschitz continuous.
2Assume f is convex and twice continuously differentiable, optimizers can

take advantage of the second-order derivative to get faster convergence.

1

0 20 40 60 80 100
Cumulative Time %

0
20
40
60
80

100
Lo

ss
 R

ed
uc

tio
n

%

LogReg
SVM

LDA
MLPC

Figure 1: > 80% of work is done in < 20% of time.

0 30 60 90 120
Iteration

−0.2
0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 ¢
Lo

ss K-Means
LogReg
SVM

SVMPoly
GBT
GBTReg

MLPC
LDA
LinReg

Figure 2: Normalized ∆Loss for ML algorithms.

0 100 200 300 400 500 600 700 800
Time (seconds)

0

20

40

60

80

100

S
ha

re
 o

f C
lu

st
er

 C
P

U
s

(%
)

Bottom 50% Jobs Second 25% Jobs Top 25% Jobs

Figure 3: Resource allocation across job groups.

0 100 200 300 400 500 600 700 800
Time (seconds)

0.00
0.05
0.10
0.15
0.20

Lo
ss

Fair Resource SLAQ

Figure 4: Average of normalized loss values.

80 85 90 95 100
Loss Reduction %

10
20
40

100
200

Ti
m

e
(s

ec
on

ds
) Fair Resource SLAQ

Figure 5: Time to achieve loss reduction percentage.

1000 2000 4000 8000 16000
Number of Workers

0.0

0.5

1.0

1.5

2.0

S
ch

ed
ul

in
g

Ti
m

e
(s

) 1000 2000 3000 4000 Jobs

Figure 6: Scheduling time.

Scheduling Based on Quality Improvements. We schedule
a set of J jobs running concurrently on the shared cluster for a
fixed scheduling epoch T . The optimization problem for max-
imizing the total normalized loss reduction over a short time
horizon T is as follows. Sum of allocated resources a j cannot
exceed the cluster resource capacity C.

max
j∈J

∑ j Loss j(a j, t)−Loss j(a j, t +T)

s.t. ∑ j a j ≤C
The algorithm starts with a j = 1 for each job to prevent star-

vation. At each step we consider increasing ai (for all jobs i) by
one unit (i.e., one CPU core) and get the predicted loss reduc-
tion. Among these jobs, we pick the job j that gives the highest
loss reduction, and increase a j by one unit. We repeat this until
we run out of available resources.

3 Evaluation
Setup. We implemented SLAQ within the Apache Spark
framework [18] and utilize its accompanying MLlib machine
learning library [19]. Our testbed consists of a cluster of 20
c3.8xlarge EC2 instances on the AWS Cloud. We tested SLAQ
with the most common ML algorithms, including (i) classifi-
cation: SVM, Neural Network (MLPC), Logistic Regression,
GBT, and our extension to Spark MLlib with SVM polynomial
kernels; (ii) regression: Linear/GBT Regression; (iii) unsuper-
vised learning: K-Means, LDA. Each algorithm is further di-
versified to construct different models. We collected more than
200GB datasets from various online sources, spanning numer-
ical, plain texts [20], images [21], audio meta features [22],
and so on [23]. The baseline we compare against is a work-
conserving fair scheduler, which is the widely-used scheduling
policy for cluster computing frameworks [8, 9, 10, 12, 13].
Scheduler Quality and Runtime Improvement. We submit
a set of 160 ML training jobs with different models, following
a Poisson distribution (mean arrival time 15s). Figure 4 shows
the average normalized loss values across running jobs in an
800s time window of the experiment. When a new job arrives,
its initial loss is 1.0, raising the average loss value; the spikes
indicate new job arrivals. The average loss value achieved by
SLAQ is on average 73% lower than that of the fair scheduler.

Figure 5 shows the average time it takes a job to achieve
different loss values. As SLAQ allocates more resources to jobs
that have the most potential for quality improvement, it reduces
the average time to reach 90% (95%) loss reduction from 71s
(98s) down to 39s (68s), 45% (30%) faster. For exploratory

training, this level of accuracy is frequently sufficient. Thus,
in an environment where users submit exploratory ML training
jobs, SLAQ could substantially reduce users’ wait times.

Figure 3 explains SLAQ’s benefits by plotting the allocation
of CPU cores in the cluster over time. Here we group the ac-
tive jobs by their normalized loss: (i) 25% jobs with high loss
values; (ii) 25% jobs with medium loss values; (iii) 50% jobs
with low loss values (almost converged). With a fair scheduler,
the cluster CPUs should be allocated to the three groups pro-
portionally to the number of jobs. In contrast, SLAQ allocates
much more resource to (i) (60%) than to (iii) (22%), which is
the underlying reason for the improvement in Figures 4 and 5.

Scalability and efficiency. SLAQ is a fine-grained job-level
scheduler: it allocates resources between competing ML jobs,
but does so over short time intervals to ensure the continued
rebalancing of resources across jobs. Figure 6 plots the time
to schedule tens of thousands of concurrent jobs on large clus-
ters (simulating both the jobs and worker nodes). SLAQ makes
its scheduling decisions in hundreds of milliseconds to a few
seconds, even when scheduling 4,000 jobs across 16K worker
cores. SLAQ is sufficiently fast and scalable for (rather aggres-
sive) real-world needs.

4 Conclusion and Future Work

SLAQ is a quality-driven scheduling system designed for large-
scale ML training jobs in shared clusters. SLAQ leverages the
iterative nature of ML algorithms and obtains highly-tailored
prediction to maximize the quality of models produced by a
large class of ML training jobs. As a result, SLAQ improves the
overall quality of executing ML jobs faster, particularly under
resource contention.

Non-convex optimization. Loss functions of non-convex op-
timization are not guaranteed to converge to global minima, nor
do they necessarily decrease monotonically. The lack of an an-
alytical model of the convergence properties interferes with our
prediction mechanism, causing SLAQ to underestimate or over-
estimate the potential loss reduction. One potential solution is
to let users provide the scheduler with hint of their target loss
or performance, which could be acquired from state-of-the-art
results on similar problems or previous training trials. The con-
vergence properties of non-convex algorithms is being actively
studied in the ML research community [24, 25]. We leave mod-
eling the convergence of these algorithms to future work, and
an interesting topic for future discussion at SysML.

2

References
[1] H. Zhang, L. Stafman, A. Or, and M. J. Freedman. SLAQ:

Quality-Driven Scheduling for Distributed Machine Learning. In
ACM SoCC, 2017.

[2] M. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M. Cafarella,
A. Kumar, F. Niu, Y. Park, C. Ré, and C. Zhang. Brainwash: A
Data System for Feature Engineering. In CIDR, 2013.

[3] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
Optimization of Machine Learning Algorithms. In NIPS, 2012.

[4] D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-
based Hyperparameter Optimization through Reversible Learn-
ing. 2015.

[5] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Tal-
walkar. Efficient Hyperparameter Optimization and Infinitely
Many Armed Bandits. ArXiv, abs/1603.06560.

[6] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-
ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan,
C. Fernando, and K. Kavukcuoglu. Population Based Training of
Neural Networks. ArXiv, abs/1711.09846.

[7] S. Han, H. Mao, and W. J. Dally. Deep Compression: Com-
pressing Deep Neural Network with Pruning, Trained Quantiza-
tion and Huffman Coding. ArXiv, abs/1510.00149, 2015.

[8] Apache Hadoop YARN. Retrieved 02/08/2017, URL:
http://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html.

[9] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A Platform for Fine-
grained Resource Sharing in the Data Center. In USENIX NSDI,
2011.

[10] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,
and I. Stoica. Dominant Resource Fairness: Fair Allocation of
Multiple Resource Types. In USENIX NSDI, 2011.

[11] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi,
S. Shenker, and I. Stoica. Hierarchical Scheduling for Diverse
Datacenter Workloads. In ACM SoCC, 2013.

[12] Capacity Scheduler. Retrieved 04/20/2017, URL: https://
hadoop.apache.org/docs/r2.4.1/hadoop-yarn/
hadoop-yarn-site/CapacityScheduler.html.

[13] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg. Quincy: Fair Scheduling for Distributed Computing
Clusters. In ACM SOSP, 2009.

[14] D. Powers. Evaluation: From Precision, Recall and F-Measure
to ROC, Informedness, Markedness & Correlation. Journal of
Machine Learning Technologies, 2(1):37–63, 2011.

[15] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Sto-
ica. Ernest: Efficient Performance Prediction for Large-Scale
Advanced Analytics. In USENIX NSDI, 2016.

[16] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang. CherryPick: Adaptively Unearthing the Best Cloud
Configurations for Big Data Analytics. In USENIX NSDI, 2017.

[17] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statis-
tical Learning: Data Mining, Inference and Prediction. Springer,
2nd edition, 2009.

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient Dis-
tributed Datasets: A Fault-tolerant Abstraction for In-memory
Cluster Computing. In USENIX NSDI, 2012.

[19] X. Meng, J. K. Bradley, B. Yavuz, E. R. Sparks, S. Venkatara-
man, D. Liu, J. Freeman, D. B. Tsai, M. Amde, S. Owen, D. Xin,
R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Tal-
walkar. MLlib: Machine Learning in Apache Spark. ArXiv,
abs/1505.06807, 2015.

[20] Associated Press Dataset - LDA. Retrieved 04/20/2017, URL:
http://www.cs.columbia.edu/~blei/lda-c/.

[21] MNIST Database. Retrieved 04/20/2017, URL: http://
yann.lecun.com/exdb/mnist/.

[22] Million Song Dataset. Retrieved 04/20/2017, URL: https://
labrosa.ee.columbia.edu/millionsong/.

[23] LibSVM Data. Retrieved 04/20/2017, URL: https:
//www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/.

[24] N. Boumal, P.-A. Absil, and C. Cartis. Global Rates of Conver-
gence for Nonconvex Optimization on Manifolds. ArXiv e-prints,
May 2016.

[25] S. Lacoste-Julien. Convergence Rate of Frank-Wolfe for Non-
Convex Objectives. ArXiv e-prints, July 2016.

3

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
https://hadoop.apache.org/docs/r2.4.1/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.html
http://www.cs.columbia.edu/~blei/lda-c/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://labrosa.ee.columbia.edu/millionsong/
https://labrosa.ee.columbia.edu/millionsong/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

	Background and Motivation
	Design
	Evaluation
	Conclusion and Future Work

