
Salus: Fine-Grained GPU Sharing Among CNN Applications
Peifeng Yu

University of Michigan
peifeng@umich.edu

Mosharaf Chowdhury
University of Michigan
mosharaf@umich.edu

1 INTRODUCTION
The minimum granularity of GPU allocation in modern cluster man-
agers is the entire GPU [2, 9, 13] – a deep learning (DL) job can have
multiple GPUs, but each GPU belongs to exactly one job regardless of
its utilization level [3–5]. While this enables multi-tenancy at the
cluster level, chronic underutilization of individual GPUs remains
pervasive. The exclusiveness of GPU accessing makes unused re-
sources of one job reman inaccessible to others. Taking memory as
an example, as shown in Figure 1, the usage varies over time and
between iterations. High peak-to-average usage ratio also makes
static GPU memory partitioning ineffective. The root cause is the
lack of support for sharing among multiple processes in modern
GPUs and associated runtimes in a systematic manner [5].

Prior approaches for GPU sharing include library interception
and designing new API, both of which fall short in practice. Works
on library interception [1, 6–8, 11, 12] focus on applications with no
more than a few kernels, while modern DL applications consist of
hundereds of unique GPU kernels. They also lack wide support from
DL frameworks [5]. While designing new APIs from scratch [10,
14] achieves the most flexibility and efficiency, it is hard to adapt
existing DL frameworks to the new API. The bottomline is that
DL/CNN training today is performed on each GPU in a FIFOmanner
with all its known drawbacks: head-of-line (HOL) blocking, lack of
support for preemption, lack of fair sharing, etc.

We present Salus to enable fine-grained GPU memory sharing
among co-existing, unmodified CNN applications. At its heart, Salus
is a consolidated execution service that exposes the GPU to different
CNN applications and enforces fine-grained sharing by performing
low-level memory management, GPU task scheduling, and address-
ing associated issues such as deadlock prevention and GPU-to-host
memory paging. We have integrated Salus with TensorFlow and
evaluated it on the TensorFlow CNN benchmark. In extreme cases,
Salus improves GPU memory utilization by up to 20×. Training
times of individual jobs in online cases can also be improved by
Salus, which avoids HOL blocking caused by longer jobs.

2 SALUS OVERVIEW
The overarching goal of Salus is to enable fine-grained sharing of in-
dividual GPUs between multiple CNN applications without requiring
any changes to user-written scripts. It should also provide primi-
tives – such as fair sharing, preemption, and admission control – to
implement different resource sharing/scheduling policies, avoiding
head-of-line (HOL) blocking, and increasing resource utilization.

We use a job to represent one session of training of a computation
graph, which can have multiple iterations. A task is a closure that
performs a certain operation. It roughly corresponds to a node in the
computation graph, andmay consist of multiple CUDA kernels with

SysML’18, February 2018, Stanford, California USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

0 4 8 12
Time (s)

0.0 B
3.0 G
6.0 G
9.0 G

12.0 G

M
em

or
y

U
sa

ge

Figure 1: Memory usage when training ResNet152 on
NVIDIA Tesla P100. The high peak-to-average ratio creating
underutilization that cannot be addressed by static partition-
ing of GPU.

more contextual information, such as inputs, estimated memory
usage, dependencies, etc.

We choose the abstraction at the task level to leverage high-level
information for scheduling, and we also avoid the drawbacks of
the existing approaches mentioned earlier that deal with CUDA
kernel-level scheduling. A downside of our choice of scheduling
granularity is the loss of the ability to generalize to other non-
DL GPU applications. However, we believe that DL applications
– in fact, just CNN applications – themselves are a large enough
workload to warrant specific attention.

2.1 Architecture
At the highest level, Salus is implemented as a single execution
service and multiple user jobs submit their work to it using a simple
interface. As shown in Figure 2, user scripts communicate with the
execution service via RPC. For each iteration, the adaptor requests
the execution service to evaluate some portion of the computation
graph and returns the results back to the user script. From the user’s
perspective, the API of the framework does not change at all. All
their scripts will work the same as they did before.

Salus Execution Service is a single background service running on
the physical node. It consolidates all GPU accesses, enabling GPU
sharing while avoiding costly context switch among processes.

Framework plugins handle user requests received from the RPC
server. It takes care of converting framework-specific operations
into runnable tasks, and submiting them to the scheduler. The
plugins reuse the same set of operations available from the original
frameworks. Thus any existing scripts continue to work with the
rich set of existing operation implementations.

Salus Adaptor is implemented inside each framework. It collects
various information including computation graph and transfers
them to Salus Execution Service, so that application-aware sched-
uling decisions can be made.

2.2 GPU Memory Management
Salus performs both task- and job-level memory management, and
if necessary, paging to host memory.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML’18, February 2018, Stanford, California USA Peifeng Yu and Mosharaf Chowdhury

User Scripts

Thread Pool
Resource

Monitor

Scheduler

Framework Plugins

TensorFlow CNTK Caffe2 …

RPC Server (ZeroMQ)

TensorFlow

Salus Adaptor

Other Framework

Salus Execution Service

Resource

Allocator

Salus Adaptor

Figure 2: Salus Architecture.

For a task j in job i , the memory it allocates during execution can
be released as soon as the task finishes, or at the end of the whole
training session. We refer to the first kind of memory as the task’s
temporary memory t ji , and the latter, persistent memory p ji . From
the job’s perspective, its persistent memory is the sum of all its tasks;
i.e., Pi =

∑
∀j p ji . Oftentimes, model parameters that are updated

across iterations make up large part of a job’s persistent memory.
On the other hand, because a job goes through many iterations,
summing up all its tasks’ temporary allocations is not very useful.
Instead, we care about the peak temporary memory usage of that
job during any of its iterations (Ti = Pi = max∀k

∑
∀j t ji , where k

is one iteration).
A task is scheduled if and only if it is “safe” to run. If the total

memory capacity of a GPU is represented byC , then the task safety
condition can be expressed as: (p ji + t

j
i) ≤ C . Similarly, we can

calculate the job-level safety condition: (Pi +Ti) ≤ C .
For any iteration, if a job fails to meet this condition while run-

ning, it would simply crash/fail in most existing DL frameworks
due to insufficient memory on the GPU device. Salus uses a more
aggressive admission control policy to accept jobs into the system.
Specifically, the following condition is enforced for admitting job i:

Pi +
(∑

j
Pj +max

j
Tj
)
≤ C

which ensures there is enough remaining space for the largest peak
temporary memory usage for any admitted jobs, so at least one job
can progress. This way, job-level deadlocks are avoided.

A key assumption above is that we can accurately predict a job’s
persistent and peak memory usages. However, even with accurate
information, a bigger challenge arises when jobs do not allocate
memory atomically, causing deadlocks.

Salus implements an application-aware memory paging mech-
anism as a failsafe to deal with such extremities. This failsafe is
necessary, as simpler solutions like killing and restarting jobs has
prohibitively expensive overhead, due to the long-running nature
of many training jobs. Note that we refer to this mechanism as
paging to indicate that Salus moves some GPU memory content
to host memory when GPU memory is insufficient. However, the
granularity is not the standard 4 KB or 2 MB pages we see in operat-
ing systems. Application-specific granularity – specifically, tensors
– is used for performance reasons.

3 SCHEDULING POLICIES IN SALUS
The state-of-the-art for running multiple CNN (or DL) jobs on a
single GPU is simply FIFO [3–5], which can lead to HOL blocking.
By enabling fine-grained sharing of a GPU, Salus opens up a huge
design space that can be explored in future works. To demonstrate
the possibilities, we have implemented three simple policies.

Packing packs jobs with different GPU memory requirements
together at the task level to achieve higher utilization. This, of
course, should adhere to the task- and job-level safety conditions.
With no fairness consideration, tasks are submitted in a FIFO order
regardless of their parent jobs, and work conservation is achieved
by skipping tasks that do not fit in the available GPU memory.

Preemption enables prioritization of jobs based on arbitrary
criteria. For example, shortest-job-first and shortest-remaining-
time-first policies can be implemented to support DL and CNN
models development, which are often an interactive, trial-and-error
process with shorter jobs. With preemption, these interactive jobs
finish faster. Higher priority jobs are admitted as long as their own
safety condition is met regardless of other already-running jobs.

Fairness aims to equalize the resource usage of active jobs.
Tasks from the job with the least memory occupancy over time are
given higher priorities. We capture the memory occupancy of a job
(Ri) as an integral over time: Ri =

∫
t Mi (t), whereMi (t) is the job

memory usage at time t . To support online job submission, we reset
Ri values whenever a new job arrives to ensure long waiting jobs
do not starve when new jobs always arrive with Ri = 0.

Note that (multi-resource) temporal scheduling is a broad area,
which we plan to explore in the future.

4 EVALUATION
We evaluated Salus using 11 CNN workloads with different batch
sizes and durations to understand its effectiveness and overheads.
The highlights of our evaluation are as follows:
• Salus is able to handle multiple tasks in a fair fashion with
and without work conservation. Salus can also remove HOL
blocking by preempting the larger jobs.

• In a large-scale setting, Salus is able to handle 20 jobs simulta-
neously and equally assign the memory for each of the jobs.

• Salus still has some overhead in terms of the job completion
time (JCT), especially for CNNs that have a large number of
convolutional layers. The ratios of the JCT on Salus and the
baseline JCT are plotted for each workload in Figure 3.

ale
xn

et
go

og
len

et
in

ce
pt

io
n3

in
ce

pt
io

n4
ov

er
fe

at
re

sn
et1

01
re

sn
et1

52
re

sn
et5

0
vg

g1
1

vg
g1

6
vg

g1
9

1.0

1.5

2.0

JC
T

R
at

io

Figure 3: JCT ratios of Salus w.r.t. baseline

Salus: Fine-Grained GPU Sharing Among CNN Applications SysML’18, February 2018, Stanford, California USA

REFERENCES
[1] Cuda multi-process service. https://goo.gl/R57gNW. Accessed: 2017-04-27.
[2] Google Container Engine. http://kubernetes.io.
[3] MXNet issue #4018. https://github.com/apache/incubator-mxnet/issues/4018.

Accessed: 2017-10-01.
[4] TensorFlow issue #4196. https://github.com/tensorflow/tensorflow/issues/4196.

Accessed: 2017-10-01.
[5] TensorFlow issue #9080. https://github.com/tensorflow/tensorflow/issues/9080.

Accessed: 2017-10-01.
[6] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Orti. rCUDA: Reducing

the number of GPU-based accelerators in high performance clusters. In HPCS,
2010.

[7] G. Giunta, R. Montella, G. Agrillo, and G. Coviello. A GPGPU Transparent
Virtualization Component for High Performance Computing Clouds. In EuroPar,
2010.

[8] V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia, V. Talwar, and P. Ran-
ganathan. GViM: GPU-accelerated Virtual Machines. InWorkshop on System-level
Virtualization for HPC. ACM, 2009.

[9] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in
the data center. In NSDI, 2011.

[10] S. J. Krieder, J. M. Wozniak, T. Armstrong, M. Wilde, D. S. Katz, B. Grimmer,
I. T. Foster, and I. Raicu. Design and Evaluation of the Gemtc Framework for
GPU-enabled Many-task Computing. In HPDC, 2014.

[11] V. T. Ravi, M. Becchi, G. Agrawal, and S. Chakradhar. Supporting GPU sharing
in cloud environments with a transparent runtime consolidation framework. In
HPDC, 2011.

[12] L. Shi, H. Chen, J. Sun, and K. Li. vCUDA: GPU-Accelerated High-Performance
Computing in Virtual Machines. IEEE Transactions on Computers, 61(6):804–816,
June 2012.

[13] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler. Apache Hadoop YARN: Yet another resource
negotiator. In SOCC, 2013.

[14] T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann, and T. G. Rogers. Pagoda:
Fine-grained GPU resource virtualization for narrow tasks. In Symposium on
Principles and Practice of Parallel Programming. ACM, 2017.

https://goo.gl/R57gNW
http://kubernetes.io
https://github.com/apache/incubator-mxnet/issues/4018
https://github.com/tensorflow/tensorflow/issues/4196
https://github.com/tensorflow/tensorflow/issues/9080

	1 Introduction
	2 Salus Overview
	2.1 Architecture
	2.2 GPU Memory Management

	3 Scheduling Policies in Salus
	4 Evaluation
	References

