
vectorflow: a minimalist neural-network library
optimized for sparse data and low-latency

Benoît Rostykus
Netflix

brostykus@netflix.com

Yves Raimond
Netflix

yraimond@netflix.com

ABSTRACT
We introduce vectorflow1, a minimalist neural-network library for
single machine environment written in D optimized for sparse data
and low-latency. The library offers a Directed Acyclic Graph with
allocation-free and copy-free forward and backward propagations,
making it particularly suited for IO-bound, sparse or low-latency
machine learning problems. Good runtime performance is achieved
through a combination of software leverage (compile-time language
and LLVM features) and distributed optimization care (lock-free
stochastic gradient descent).

1 INTRODUCTION
In the last few years we have seen many innovations on Open
Source Machine Learning software. Most of these innovations
(e.g. Tensorflow2[1] or PyTorch3) evolved from fairly specialized
computational code for large dense problems such as image classi-
fication into general frameworks for neural-network-based models
offering marginal support for sparse models. A few frameworks are
specifically optimized for sparsity though, such as Vowpal Wabbit4
and Amazon’s DSSTNE5.

At Netflix, our machine learning scientists deal with a wide vari-
ety of problems across a broad spectrum of areas: from personalizing
TV andmovie recommendations to optimizing encoding algorithms.
A subset of our problems involves dealing with extremely sparse
data; the total dimensionality of the problem at hand can easily
reach tens of millions of features, even though every observation
may only have a handful of non-zero entries. For these cases, we felt
the need for a library that is specifically optimized for training shal-
low neural networks on sparse data in a single-machine, multi-core
environment, as well as quickly iterating on their architecture. We
wanted something small and easy to modify, so we built vectorflow,
a minimalistic (6k lines of code) neural network library, and one of
the many tools our machine learning scientists use.

2 DESIGN
Dense problems such as image classification are typically compute-
bound, where computation cost (e.g. dense convolutions) outweighs
data transfer and memory allocation costs. For such problems, pass-
by-copy, mini-batch training and GPU computation are particularly
appropriate. However training shallow networks on sparse data
is typically IO-bound; there will be relatively few operations to
run per row, so data transfers and memory allocations become

1https://www.github.com/Netflix/vectorflow
2https://www.tensorflow.org/
3http://pytorch.org/
4https://github.com/JohnLangford/vowpal_wabbit
5https://github.com/amzn/amazon-dsstne

the bottleneck. This fundamental difference led us to a number of
design considerations and technology choices.

2.1 Sparse-aware
Vectorflow avoids, wherever possible, copying or allocating any
memory during both the forward and backward passes, with each
layer referencing the data it needs from its parents and children.
Matrix-vector operations have both sparse and dense implemen-
tations, the latter ones being SIMD-vectorized thanks to LLVM
intrinsics surfaced at the language level6. Vectorflow also offers a
way to run a sparse back-propagation when dealing with sparse
output gradients, useful for high-dimensional output problems such
as auto-encoders trained on large vocabularies.

2.2 IO agnostic
As mentioned above, shallow neural networks trained on sparse
data are typically IO bound. By definition in this case the trainer
will run only as fast as the IO layer. Vectorflow enforces very loose
requirements on the underlying data schema (merely to provide
an iterator of rows with a “features" attribute) so that one can
write efficient data adapters based on the data source and avoid
any pre-processing or data conversion steps while sticking with
the same programming language. This allows to move the code to
the data, not the opposite. Data is mapped to the DAG input nodes
at compile-time through introspection so that there is no runtime
cost for the neural-network to access the input data.

2.3 Single-machine
Distributed systems are hard to debug and introduce fixed costs
such as job scheduling. Implementing distributed optimization of a
novel machine learning technique is even harder. This is why we
created an efficient solution in a single machine setting, lowering
iteration time of modeling without sacrificing scalability for small
to medium scale problems. We opted for generic asynchronous SGD
solvers using Hogwild [3] as a lock-free strategy to distribute the
load over the cores with no communication cost (at the exception
of cores cache lines invalidation by the CPU prefetcher [2]). This
works for most linear or shallow net models as long as the data is
sufficiently sparse, and provides near-perfect linear scalability with
the number of cores. As an example, a sparse logistic regression
model trained using vectorflow on ∼30M rows with ∼500 non-zeros
per row (out of 10k features) takes 4s per epoch on a r4.8xlarge7
Amazon EC2 instance and uses 75% of the RAM bandwidth of the
machine.

6https://www.github.com/ldc-developers/ldc
7https://aws.amazon.com/ec2/instance-types/

https://www.github.com/Netflix/vectorflow
https://www.tensorflow.org/
http://pytorch.org/
https://github.com/JohnLangford/vowpal_wabbit
https://github.com/amzn/amazon-dsstne
https://www.github.com/ldc-developers/ldc
https://aws.amazon.com/ec2/instance-types/

SYSML’08, Feb 2018, Stanford, California USA B. Rostykus et al.

Model 1 Model 2 Model 3
training set size 5M 5M 10M
total input dimensionality 512 1M 1M
avg non-zero per row 7 16 16
model parameters 513 1M 10M
training cores 4 4 8

Table 1: Experiment set-up

Model 1 Model 2 Model 3
download time 1.7s 2.5s 3.6s
pre-processing 12.1s 18.2s 36.1s
training time 1.6s 4.1s 1m25s
training AUC 0.67 0.73 0.75

Table 2: Results

2.4 Agility
We want our scientists to easily run and iterate on their models
quickly and in total autonomy. We wrote vectorflow in D8, a mod-
ern systems language with a very gentle learning curve. Thanks to
its fast compilers and functional programming features, it offers a
Python-like experience for beginners but with typically multiple or-
ders of magnitude of performance gain at run-time, while enabling
seasoned developers to leverage more advanced features, such as
a templating engine, compile-time functionalities and lower-level
features (C interface, in-line assembler, manual memory manage-
ment, LLVM intrinsics, ...). Relying on a single language (as opposed
to e.g. C and Python) also helps agility and flexibility; it enables
experimentation with both low- (e.g. moving to a custom operation
in an objective function) and high-level (e.g. modifying the input
data) changes in a single model iteration. Vectorflow does not have
any third-party dependencies, which eases its deployment. It also
offers a templated callback-based API to easily plug-in custom loss
functions for training, thus covering a wide range of supervised
learning problems.

3 EXAMPLE APPLICATION
A few months after the project’s inception, we’ve seen a wide
variety of use cases for the library and multiple research projects
and production systems are now using vectorflow for problems as
diverse as causal inference, survival regression, density estimation
or ranking algorithms for recommendation. It is also included in the
default toolbox installed on basic instances used by Netflix machine
learning practitioners.

As an example, we investigate the performance of the library on
a marketing problem Netflix faces related to promoting our grow-
ing portfolio of original content. In this case, we want to perform
weighted Maximum Likelihood Estimation with a survival expo-
nential distribution [4]. To implement this, the custom callback
function passed to vectorflow is:

8https://www.dlang.org

auto g rad_su rv = d e l e g a t e f l o a t (f l o a t [] preds , r e f Obs o ,
r e f f l o a t [] g r ad s)

{
au to l a b = o . l a b e l ; / / we can a c c e s s any f i e l d o f o
doub le e l = exp (p reds [0]) ;
f l o a t l o s s = vo id ;
i f (! o . r i g h t _ c e n s o r)
{ / / uncensored p a r t o f the log− l i k e l i h o o d

grads [0] = − (1 . 0 − l a b ∗ e l) ;
l o s s = −(pred − l a b ∗ e l) ;

}
e l s e
{ / / c enso red p a r t o f the log− l i k e l i h o o d , g i v e s us

r i gh t −c en so r i ng po i n t
g rad s [0] = l a b ∗ e l ;
l o s s = l a b ∗ e l ;

}
g r ad s [0] ∗= o . weight ; / / MLE we igh t ing
r e t u r n l o s s ∗ o . weight ; / / o p t i o n a l : r e t u r n l o s s va l u e

to moni tor p r o g r e s s dur ing t r a i n i n g
}

Using this callback for training, we can easily compare 3 models:
• Model 1: linear model on a tiny set of sparse features (5̃00
parameters to learn);

• Model 2: linear model on a larger sparse set of features (1M
parameters to learn);

• Model 3: shallow neural network on a sparse set of features
(10M parameters to learn), trained on twice the data.

auto nn1 = Neura lNet ()
. s t a c k (Spa r seDa ta (5 1 2))
. s t a c k (L i n e a r (1)) ;

au to nn2 = Neura lNet ()
. s t a c k (Spa r seDa ta (1 _048_576)) / / 2^20 f e a t u r e s
. s t a c k (L i n e a r (1)) ;

au to nn3 = Neura lNet ()
. s t a c k (Spa r seDa ta (1 _048_576))
. s t a c k (L i n e a r (1 0))
. s t a c k (SeLU ())
. s t a c k (L i n e a r (1)) ;

The data source described in Table 1 is a Hive table stored on
S3 using the columnar data format Parquet and we train directly
against this data by streaming it to a c4.4xlarge instance and
building in-memory the training set which we learn from. The
results are presented in Table 2.

4 CONCLUSION
In this paper, we presented vectorflow – a minimalistic neural
network library optimized for training shallow networks on sparse
datasets. We described various design considerations which arise
from this use-case, as well as an example application.

In the future, we plan to broaden the possible topologies sup-
ported beyond simple linear, polynomial or feedforward architec-
tures, develop more specialized layers (such as recurrent cells) and
explore new parallelism strategies while maintaining the “minimal-
ist" philosophy of vectorflow.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris Olah, Mike Schuster,

https://www.dlang.org

vectorflow: a minimalist neural-network library SYSML’08, Feb 2018, Stanford, California USA

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul A. Tucker, Vin-
cent Vanhoucke, Vijay Vasudevan, Fernanda B. Viégas, Oriol Vinyals, PeteWarden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. Ten-
sorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems.
CoRR abs/1603.04467 (2016). arXiv:1603.04467 http://arxiv.org/abs/1603.04467

[2] Christopher De Sa, Matthew Feldman, Christopher Ré, and Kunle Olukotun. 2017.
Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient
Descent. SIGARCH Comput. Archit. News 45, 2, 561–574. https://doi.org/10.1145/
3140659.3080248

[3] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems. 693–701.

[4] G. Rodriguez. 2010. Survival Models. Technical Report. http://data.princeton.edu/
wws509/notes/c7.pdf

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467
https://doi.org/10.1145/3140659.3080248
https://doi.org/10.1145/3140659.3080248
http://data.princeton.edu/wws509/notes/c7.pdf
http://data.princeton.edu/wws509/notes/c7.pdf

	Abstract
	1 Introduction
	2 Design
	2.1 Sparse-aware
	2.2 IO agnostic
	2.3 Single-machine
	2.4 Agility

	3 Example application
	4 Conclusion
	References

