
Breaking the Nonsmooth Barrier: A Scalable Parallel
Method for Composite Optimization

Fabian Pedregosa
UC Berkeley

Berkey, California
f@bianp.net

Rémi Leblond
INRIA and Ecole Normale Superieure

Paris, France
remi.leboond@inria.fr

Simon Lacoste–Julien
MILA and DIRO, Montreal University

Montreal, Canada
slacoste@iro.umontreal.ca

ABSTRACT

Due to their simplicity and excellent performance, parallel asynchro-
nous variants of stochastic gradient descent have become popular
methods to solve a wide range of large-scale optimization prob-
lems on multi-core architectures. Yet, despite their practical success,
support for nonsmooth objectives is still lacking, making them un-
suitable for many problems of interest in machine learning, such as
the Lasso, group Lasso or empirical risk minimization with convex
constraints. In this work, we propose and analyze ProxAsaga, a
fully asynchronous sparse method inspired by Saga, a variance
reduced incremental gradient algorithm. The proposed method is
easy to implement and significantly outperforms the state of the
art on several nonsmooth, large-scale problems. We prove that our
method achieves a theoretical linear speedup with respect to the
sequential version under assumptions on the sparsity of gradients
and block-separability of the proximal term. Empirical benchmarks
on a multi-core architecture illustrate practical speedups of up to
12x on a 20-core machine.

KEYWORDS

parallel optimization, machine learning, stochastic optimization

ACM Reference Format:

Fabian Pedregosa, Rémi Leblond, and Simon Lacoste–Julien. 2018. Breaking
the Nonsmooth Barrier: A Scalable Parallel Method for Composite Opti-
mization. In Proceedings of SysML conference (SYSML’17). ACM, New York,
NY, USA, 3 pages. https://doi.org/10.475/123_4

1 SETTING

The class of problems that we consider are problems of the form:

argmin
x ∈Rp

f (x) + h(x) , with f (x) := 1
n
∑n
i=1 fi (x) ,

where each fi is convex with L-Lipschitz gradient, the average
function f is µ-strongly convex and h is convex but potentially
nonsmooth. We further assume that h is “simple” in the sense
that we have access to its proximal operator and that it is block-
separable, that is, it can be decompose block coordinate-wise as
h(x) =

∑
B∈BhB ([x]B), where hB only depends on coordinates in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SYSML’17, February 2017, Stanford, California USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

block B and B is a partition of the coefficients into subsets which
will call blocks.

This template models a broad range of problems arising in ma-
chine learning and signal processing: the finite-sum structure of f
includes the least squares or logistic loss functions; the proximal
term h includes penalties such as the ℓ1 or group lasso penalty.
Furthermore, this term can be extended-valued, thus allowing for
convex constraints through the indicator function.

2 SPARSE PROXIMAL SAGA

Our first contribution is to develop a sparse variant of the Saga
algorithm [1] in which the cost per iteration is only proportional to
the nonzeros in the partial gradient. We denote byTi the “extended
support” of ∇fi , which is defined as the smallest set of blocks in
B that contain the support of ∇fi . Let dB := n/nB , where nB :=∑
i 1{B ∈ Ti } is the number of times that B ∈ Ti . For simplicity

we assume nB > 0, as otherwise the problem can be reformulated
without block B. We also define φi (x) :=

∑
B∈Ti dBhB (x).

Following Leblond et al. [2], we will also replace the dense gra-
dient estimate ui by the sparse estimatevi := ∇fi (x) − α i + Diα ,
where Di is the diagonal matrix defined block-wise as ⟦Di⟧B,B =
dB1{B ∈ Ti }I |B | . We now describe the Sparse Proximal Saga al-
gorithm. As the original Saga algorithm, it maintains two moving
quantities: the current iterate x ∈ Rp and a table of historical gra-
dients (α i)

n
i=1, α i ∈ R

p . At each iteration, the algorithm samples
an index i ∈ {1, . . . ,n} and computes the next iterate (x+,α+) as:

vi = ∇fi (x) − α i + Diα ;

x+ = proxγφi
(
x − γvi

)
; α+i = ∇fi (x) ,

(SPS)

where in a practical implementation the vector α is updated incre-
mentally at each iteration.

3 PROXIMAL ASYNCHRONOUS SAGA

Our algorithmmaintains two quantities in shared memory to which
the different processors will have access: the vector of coefficients
x ∈ Rp and a table of memory terms α , which is of size n × p in
the general case but can be compressed to size n for generalized
linear models such as logistic regression. In our algorithm, each
processor samples a data index i and performs asynchronous the
update described in Algorithm 1.

4 ANALYSIS AND EXPERIMENTS

We prove that our method achieves a theoretical linear speedup
with respect to the sequential version under assumptions on the
sparsity of gradients and block-separability of the proximal term.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SYSML’17, February 2017, Stanford, California USA F. Pedregosa et al.

0 20 40 60 80 100
Time (in minutes)

10 12

10 9

10 6

10 3

100
Ob

je
ct

ive
 m

in
us

 o
pt

im
um

KDD10 dataset

0 10 20 30 40
Time (in minutes)

10 12

10 9

10 6

10 3

KDD12 dataset

0 10 20 30 40
Time (in minutes)

10 12

10 9

10 6

10 3

100 Criteo dataset

ProxASAGA (1 core)
ProxASAGA (10 cores)

AsySPCD (1 core)
AsySPCD (10 cores)

FISTA (1 core)
FISTA (10 cores)

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20

Ti
m

e
sp

ee
du

p

KDD10 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 KDD12 dataset

2 4 6 8 10 12 14 16 18 20
Number of cores

2
4
6
8

10
12
14
16
18
20 Criteo dataset

Ideal ProxASAGA AsySPCD FISTA

Figure 1: Convergence for asynchronous stochastic methods for ℓ1 + ℓ2-regularized logistic regression. Top: Suboptimality as a

function of time for different asynchronous methods using 1 and 10 cores. Bottom: Running time speedup as function of the

number of cores. ProxAsaga achieves significant speedups over its sequential version while being orders of magnitude faster

than competing methods. AsySpcd achieves the highest speedups but it also the slowest overall method.

Algorithm 1 ProxAsaga
1: Initialize shared variables x , (α i)

n
i=1, α

2: loop
3: Sample i uniformly in {1, ...,n}
4: Si := support of ∇fi
5: Ti := extended support of ∇fi in B
6: [x̂]Ti = inconsistent read of x on Ti
7: α̂ i = inconsistent read of α i
8: [α]Ti = inconsistent read of α on Ti
9: [δα]Si = [∇fi (x̂)]Si − [α̂ i]Si
10: [v̂]Ti = [δα]Ti + [Diα]Ti
11: [δx]Ti = [proxφi (x̂ − γv̂)]Ti − [x̂]Ti
12: for B in Ti do
13: for b in B do

14: [x]b ← [x]b + [δx]b ▷ atomic
15: if b ∈ Si then
16: [α]b ← [α]b + 1/n[δα]b ▷ atomic
17: end if

18: end for

19: end for

20: α i ← ∇fi (x̂) ▷ atomic
21: end loop

Our main results states that ProxAsaga obtains (under assump-
tions) a theoretical linear speedup with respect to its sequential
version. Empirical benchmarks reported Figure 1 show that this
method dramatically outperforms state of the art alternatives on

large sparse datasets, while the empirical speedup analysis illus-
trates the practical gains as well as its limitations.

Definition 4.1. Let ∆ := maxl=1..p |{i : l ∈ Ti }|/n. This is the
normalized maximum number of data points that share a specific
block in their extended support. For example, if a block is present in
all Ti , then ∆ = 1. If no two Ti share the same block, then ∆ = 1/n.

Corollary 4.2 (Speedup). Suppose τ ≤ 1
10
√
∆
. If κ ≥ n, then

using the step size γ = 1/36L, ProxAsaga converges geometrically

with rate factor Ω(1κ). If κ < n, then using the step size γ = 1/36nµ ,
ProxAsaga converges geometrically with rate factor Ω(1n). In both

cases, the convergence rate is the same as its sequential counterpart.

Thus ProxAsaga is linearly faster than its sequential counterpart up

to a constant factor. Note that in both cases the step size does not
depend on τ .

Furthermore, if τ ≤ 6κ, we can use a universal step size of Θ(1/L)
to get a similar rate for ProxAsaga than Sparse Proximal Saga, thus

making it adaptive to local strong convexity since the knowledge of κ
is not required.

These speedup rates are comparable with the best ones obtained
in the smooth case, including Niu et al. [3], Reddi et al. [4], even
though unlike these papers, we support inconsistent reads and
nonsmooth objective functions. The one exception is Leblond et al.
[2], where the authors prove that their algorithm,Asaga, can obtain
a linear speedup even without sparsity in the well-conditioned
regime. In contrast, ProxAsaga always requires some sparsity.
Whether this property for smooth objective functions could be
extended to the composite case remains an open problem.

Breaking the Nonsmooth Barrier: A Scalable Parallel
Method for Composite Optimization SYSML’17, February 2017, Stanford, California USA

REFERENCES

[1] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. 2014. SAGA: A fast
incremental gradient method with support for non-strongly convex composite
objectives. In Advances in Neural Information Processing Systems.

[2] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. 2017. ASAGA: asyn-
chronous parallel SAGA. Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics (AISTATS 2017) (2017).
[3] Feng Niu, Benjamin Recht, Christopher Re, and Stephen Wright. 2011. Hogwild:

A lock-free approach to parallelizing stochastic gradient descent. In Advances in

Neural Information Processing Systems.
[4] Sashank J Reddi, AhmedHefny, Suvrit Sra, Barnabas Poczos, andAlexander J Smola.

2015. On variance reduction in stochastic gradient descent and its asynchronous
variants. In Advances in Neural Information Processing Systems.

https://arxiv.org/abs/1407.0202
https://arxiv.org/abs/1407.0202
https://arxiv.org/abs/1407.0202
https://arxiv.org/abs/1606.04809v2
https://arxiv.org/abs/1606.04809v2
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/5821-on-variance-reduction-in-stochastic-gradient-descent-and-its-asynchronous-variants.pdf
http://papers.nips.cc/paper/5821-on-variance-reduction-in-stochastic-gradient-descent-and-its-asynchronous-variants.pdf

	Abstract
	1 Setting
	2 Sparse Proximal Saga
	3 Proximal Asynchronous Saga
	4 Analysis and experiments
	References

