
On Scale-out Deep Learning Training for Cloud and HPC
Srinivas Sridharan, Karthikeyan Vaidyanathan, Dhiraj Kalamkar, Dipankar Das,

Mikhail E. Smorkalov, Mikhail Shiryaev, Dheevatsa Mudigere, Naveen Mellempudi,
Sasikanth Avancha, Bharat Kaul, Pradeep Dubey

Intel Corporation
[srinivas.sridharan,karthikeyan.vaidyanathan,dhiraj.kalamkar,dipankar.das,mikhail.e.smorkalov,mikhail.shiryaev,

dheevatsa.mudigere,naveen.mellempudi,sasikanth.avancha,bharat.kaul,pradeep.dubey]@intel.com

ABSTRACT
This paper describes the motivation, design, and implementation
of Intel® Machine Learning Scaling Library (MLSL) and presents
proof-points demonstrating DL training on 100s to 1000s of nodes
across Cloud and HPC systems.

1 INTRODUCTION
Deep Learning (DL) is driving the adoption of Machine Learning
(ML) and Artificial Intelligence (AI) across a wide range of appli-
cation domains such as image recognition, natural language pro-
cessing, and autonomous driving. The exponential growth in use
of large deep neural networks has accelerated the need for training
these deep neural networks in hours or even minutes. This can
only be achieved through scalable and efficient distributed train-
ing, since a single node/card cannot satisfy the compute, memory,
and I/O requirements of today’s state-of-the-art deep neural net-
works. However, scaling synchronous Stochastic Gradient Descent
(SGD) is still a challenging problem and requires continued re-
search/development. This entails innovations spanning algorithms
[6, 11], frameworks [1, 7, 9], communication libraries [2, 8, 15],
and system design [10]. In this paper, we describe the philosophy,
design, and implementation of Intel® Machine Learning Scaling Li-
brary (MLSL) and present proof-points demonstrating DL training
on 100s to 1000s of nodes across Cloud and HPC systems.

2 DESIGN CHOICES AND INSIGHTS
The common parallelization techniques for partitioningwork across
multiple nodes, are data parallelism (replicating the entire model)
and model parallelism (distributing the model). In [4], we present a
detailed theoretical analysis of computation and communication
involved in DL training. Based on this analysis, we derived the
compute to communication ratio that captures the number of com-
pute operations per layer to the communication volume. The goal
is to maximize this ratio for best scaling. For data parallelism, we
observe that this ratio is a function of the size of output feature-
maps, mini-batch size and effectiveness of overlap. Interestingly,
it does not depend on the kernel size or number of input/output
feature maps or stride. We use these insights to guide different
design choices for realizing scalable distributed training.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SysML Conference, February 2018, Stanford, CA, USA
© 2018 Copyright held by the owner/author(s).

Choosing the right work partitioning strategy: First, using the
methodology in [4], we identify the optimal parallelization strategy
for each layer depending on the type of the layer (convolutional,
fully connected, etc.), size of output feature maps, and so on. Further,
we developed a novel work partition strategy, called hybrid paral-
lelism, which partitions the work across both the data and model
using the concept of node groups; i.e. nodes within a group employ
model parallelism and data parallelism is used across groups. One
could consider data and model parallelism as two extreme design
points of hybrid parallelism with node group size being one and all
nodes respectively.
Increasing concurrencywith large batch training: For data par-
allelism, we observe that the compute to communication ratio is
proportional to the mini-batch size. This implies, scaling will be
negatively impacted as we strong-scale the mini-batch and the
mini-batch per node drops. More specifically, communication starts
dominating total execution time since communication tends to
become more latency bound and there’s lesser compute to hide
communication. Hence, large batch training is essential for efficient
scaling and this observation is in line with recent efforts enabling
large mini-batch in training without affecting accuracy [6, 11, 18].
Overlapping communication and computation: Unlike model
parallelism, in data parallelism, there’s significant opportunity to
overlap communication with compute. Each node computes partial
weight gradients for its mini-batch in the back-propagation step in
each layer and aggregates these partial gradients across all nodes
using an allreduce operation. These aggregated weight gradients
are used to update the weights and only required right before the
forward propagation step for that layer in the next iteration. This
is captured in the compute to communication ratio and relies on
networking library/HW’s ability to asynchronously progress com-
munication and framework’s ability to schedule communication to
maximize compute-communication overlap.
Prioritizing latency-bound communication:While overlapping
communication with computation across layers is indispensable,
the overheads of the first layer’s weight gradient communication
in data parallelism is fully exposed given lack of useful compute to
overlap communication. In other words, while network bandwidth
is critical for all other layers, optimizing for network latency is
essential for the first layer since size of the weight gradients are
typically small(er). This motivates the need for further prioritizing
and completing the first layers communication operations before
communication operations from later layers even though they were
issued earlier. Similarly, in the case of model/hybrid parallelism,
activation communication must be prioritized as they may block
the next layer’s compute.



Reducing communication volume: Finally, scaling can be fur-
ther improved by reducing the volume of communicated data. For
instance, this can be achieved through message compression and/or
quantization [5, 13, 16]. The growing adoption of lower precision
for training, has an impact of communication/scaling as well. At
a minimum, while communication should support the same pre-
cision as the compute, the precision for communication could be
further reduced allowing for improved scaling. However, this entails
frameworks, libraries and HW to natively support low precision
communication, for guaranteeing correctness and realizing the
performance potential.

We now present Intel®Machine Learning Scaling Library (MLSL),
a core component of our solution stack embodying many of the
optimizations and design choices just described.

3 MACHINE LEARNING SCALING LIBRARY

Figure 1: Intel MLSL Architecture

Figure 1 presents the MLSL SW architecture. At the highest level,
MLSL exposes two interfaces for frameworks: collectives and DL
layer. The collectives API is similar to Message Passing Interface
(MPI) collectives interface and supports commonly used collec-
tive operations found in DL/ML workloads. The DL Layer API is
a higher-level interface that abstracts the exact communication
operation depending on the type of parallelism chosen (data, model,
or hybrid) for each layer of the neural network at runtime, thus
reducing the hassle of supporting these different scenarios within
each framework explicitly.

Regardless of the chosen interface, MLSL’s runtime implementa-
tion enables novel DL specific optimizations unavailable in MPI and
other communication libraries, such as asynchronous progress for
compute-communication overlap, dedicating one or more cores for
driving the network in an optimal manner, message prioritization,
and collectives in low-precision data types. MLSL’s flexible API
enables these runtime optimizations to be applied across frame-
works and lowers the effort required in optimizing each framework
independently. Furthermore, MLSL uses existing communication
libraries, such as MPI, for commonly used control path operations
but only implements performance critical data path operations in
an optimal manner.

The benefits of MLSL’s design and implementation becomes self-
evident when examining one of the DL-specific communication
optimizations in greater detail. Like mentioned earlier, with data
parallelism the weight gradient communication in the first layer is
latency bound and the updated weights are required immediately
in the forward pass. However, MPI interface and implementations

do not support prioritizing such messages. MLSL’s message prioriti-
zation feature overcomes this limitation by preempting an ongoing
large weight gradient exchange operation from one of the later
layers and instead prioritizes the smaller weight gradient allreduce
from the first layer to proceed. The preempted operations are com-
pleted in an optimal manner as and when they are required in the
forward pass and not necessarily the order in which they were orig-
inally issued. This optimization resulted in 1.8x to 2.2x reduction
in exposed communication time for standard topologies such as
Resnet-50, VGG-16, and Googlenet on Intel® Xeon® Gold 6148 pro-
cessors (code-named Skylake) and 10Gbps Ethernet. Additional DL
specific optimizations, such as message quantization and persistent
collectives [14], are currently being evaluated and will be made
available as part of upcoming MLSL SW releases.

65%

70%

75%

80%

85%

90%

95%

100%

0E+0

2E+3

4E+3

6E+3

8E+3

1E+4

1E+4

1E+4

2E+4

2E+4

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

E
ff

ic
ie

n
cy

T
h

ro
u

g
h

p
u

t 
(i

m
a

g
e

s/
s)

Number of worker nodes

2 socket SKX-6148 OmniPath w/ 32 batch size per node

Throughput Ideal Efficiency

Figure 2: Resnet-50 scaling on Intel Xeon / Omnipath

MLSL has been integrated with numerous DL frameworks, in-
cluding but not limited to, BVLC Caffe [7], Google⋆TensorFlow,
and Intel® nGraph™[9]. While the integration strategy differs in
each case, the use of a single library facilitates common set of
optimizations across all these frameworks. For instance, Figure 2
presents Resnet-50 scaling on Intel® Xeon® Gold 6148 processors
(code-named Skylake) and Intel Omnipath fabric using Intel Caffe
and MLSL demonstrate 90% scaling on 256 nodes (75.8% top-1 vali-
dation accuracy). Further, this solution has been used to scale deep
neural networks solving scientific pattern classification problems
to 9600 Xeon-Phi nodes [12] and to train Resnet-50 in 40 minutes
on 256 nodes on the MareNostrum system at Barcelona Supercom-
puting Center [3]. For TF, we have developed a new distributed
solution that adopts Uber Horovod [17] interface but uses MLSL to
achieve higher scaling performance over the out-of-box Horovod
MPI implementation. We observe >93% scaling efficiency on the
fore-mentioned Intel® Xeon® system on 64 nodes. For nGraph, we
added new graph passes to insert non-blocking MLSL collective
operations and novel scheduling optimizations to ensure maximum
compute-communication overlap. More details on MLSL with TF
and nGraph will be shared in the near future.

We plan to continue extending MLSL with novel DL features
and optimizations. We are actively looking for collaborating with
researchers/developers interested in using MLSL and extending the
scaling envelope for DL workloads.

2



REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). http://tensorflow.org/ Software available from tensorflow.org.

[2] Minsik Cho, Ulrich Finkler, Sameer Kumar, David S. Kung, Vaibhav Saxena,
and Dheeraj Sreedhar. 2017. PowerAI DDL. CoRR abs/1708.02188 (2017).
arXiv:1708.02188 http://arxiv.org/abs/1708.02188

[3] Valeriu Codreanu, Damian Podareanu, and Vikram Saletore. 2017. Scale out for
large minibatch SGD: Residual network training on ImageNet-1K with improved
accuracy and reduced time to train. (2017). https://arxiv.org/abs/1711.04291

[4] Dipankar Das, Sasikanth Avancha, Dheevatsa Mudigere, Karthikeyan
Vaidyanathan, Srinivas Sridharan, Dhiraj D. Kalamkar, Bharat Kaul, and
Pradeep Dubey. 2016. Distributed Deep Learning Using Synchronous Sto-
chastic Gradient Descent. CoRR abs/1602.06709 (2016). arXiv:1602.06709
http://arxiv.org/abs/1602.06709

[5] Tim Dettmers. 2015. 8-bit approximations for parallelism in deep learning. arXiv
preprint arXiv:1511.04561 (2015).

[6] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour. CoRR abs/1706.02677 (2017).
arXiv:1706.02677 http://arxiv.org/abs/1706.02677

[7] Intel. 2018. Intel Caffe. (2018). https://github.com/intel/caffe
[8] Intel. 2018. Intel Machine Learning Scalability Library (MLSL). (2018). https:

//github.com/intel/MLSL
[9] Intel. 2018. Intel Nervana Graph. (2018). https://github.com/NervanaSystems/

ngraph
[10] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/3079856.3080246

[11] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy,
and Ping Tak Peter Tang. 2016. On Large-Batch Training for Deep Learning: Gen-
eralization Gap and Sharp Minima. CoRR abs/1609.04836 (2016). arXiv:1609.04836
http://arxiv.org/abs/1609.04836

[12] Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis Mitliagkas, Md.
Mostofa Ali Patwary, Tareq Malas, Narayanan Sundaram, Wahid Bhimji, Mikhail
Smorkalov, Jack Deslippe, Mikhail Shiryaev, Srinivas Sridharan, Prabhat, and
Pradeep Dubey. 2017. Deep Learning at 15PF: Supervised and Semi-supervised
Classification for Scientific Data. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’17). ACM,
New York, NY, USA, Article 7, 11 pages. https://doi.org/10.1145/3126908.3126916

[13] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. 2017. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. arXiv preprint arXiv:1712.01887 (2017).

[14] Bradley Morgan, Daniel J. Holmes, Anthony Skjellum, Purushotham Bangalore,
and Srinivas Sridharan. 2017. Planning for Performance: Persistent Collective
Operations for MPI. In Proceedings of the 24th European MPI Users’ Group Meeting
(EuroMPI ’17). ACM, New York, NY, USA, Article 4, 11 pages. https://doi.org/10.
1145/3127024.3127028

[15] NVIDIA. 2018. NVIDIA Collective Communications Library (NCCL). (2018).
https://developer.nvidia.com/nccl

[16] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of speech
dnns. In Fifteenth Annual Conference of the International Speech Communication
Association.

[17] Alex Sergeev and Mike Del Balso. 2017. Meet Horovod: Uber’s Open Source
Distributed Deep Learning Framework for TensorFlow. (2017). https://eng.uber.
com/horovod/

[18] Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. 2017. Don’t De-
cay the Learning Rate, Increase the Batch Size. CoRR abs/1711.00489 (2017).
arXiv:1711.00489 http://arxiv.org/abs/1711.00489

⋆Other names and brands may be claimed as property of others.
Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Software
and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests
to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to http://www.intel.com/
performance.

3

http://tensorflow.org/
http://arxiv.org/abs/1708.02188
http://arxiv.org/abs/1708.02188
https://arxiv.org/abs/1711.04291
http://arxiv.org/abs/1602.06709
http://arxiv.org/abs/1602.06709
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
https://github.com/intel/caffe
https://github.com/intel/MLSL
https://github.com/intel/MLSL
https://github.com/NervanaSystems/ngraph
https://github.com/NervanaSystems/ngraph
https://doi.org/10.1145/3079856.3080246
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836
https://doi.org/10.1145/3126908.3126916
https://doi.org/10.1145/3127024.3127028
https://doi.org/10.1145/3127024.3127028
https://developer.nvidia.com/nccl
https://eng.uber.com/horovod/
https://eng.uber.com/horovod/
http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1711.00489
http://www.intel.com/performance
http://www.intel.com/performance

	Abstract
	1 Introduction
	2 Design Choices and Insights
	3 Machine Learning Scaling Library
	References



