Scalable Language Modeling:
WikiText-103 on a Single GPU in 12 hours
Extended Abstract

Stephen Merity”*
Salesforce Research
Palo Alto, CA
smerity @salesforce.com

James Bradbury
Salesforce Research
Palo Alto, CA
james.bradbury@salesforce.com

ABSTRACT

Word-level language modeling (WLM) is one the foundational tasks
of unsupervised natural language processing. Most modern archi-
tectures for WLM use several LSTM layers, followed by a softmax
layer. Even with larger batch sizes and a multi-GPU setup, train-
ing of these networks on large-vocabulary corpora is slow due to
increased computation involving the softmax and the high cost
of recurrence computation. We propose a model architecture and
training strategy that enables us to achieve state-of-the-art perfor-
mance on the WikiText-103 data set using a single GPU while being
substantially faster than an NVIDIA cuDNN LSTM-based model by
utilizing the Quasi-Recurrent Neural Network (QRNN), an adaptive
softmax with weight tying, and longer sequences within batches.
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1 INTRODUCTION

Language modeling (LM) is one of the foundational tasks of natural
language processing. The task involves predicting the (n + 1)!%
token in a sequence given the n preceding tokens, these tokens may
be words, characters or sub-words. Trained LMs are useful in many
models including speech recognition [17], machine translation [10],
natural language generation [12], and generating token embeddings.
In this paper, we focus on the specific task of word-level language
modeling (WLM) where the sequence is composed of tokens in the
form of words. Currently, most state-of-the-art models for WLM use
an embedding layer to map the discrete tokens into a continuous
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vector space, followed by recurrent or convolutional layers, and
a final softmax layer which maps the latent representation to the
vocabulary space. For large corpora, such as the WikiText-103 [13]
or the One Billion Word Benchmark [2], these networks are slow
to train due to the number of tokens, the size of the vocabulary,
the speed of recurrent neural models, and the prohibitive costs of a
softmax over hundreds of thousands words.

To enable faster training of large-scale corpora, many approaches
have been explored. A popular approach, especially in the computer
vision field, is data parallelism through increased batch sizes [4, 16].
In this paper, we take an orthogonal approach and reduce training
time through architecture design.

2 MODEL ARCHITECTURE

Our model is based on the AWD-QRNN proposed in [11]. By using
the Quasi-Recurrent Neural Network (QRNN) [1] instead of the
LSTM, we avoid costly recurrence computation.

The key to the QRNN architecture is that recurrence within
the RNN does not involve a matrix multiplication and is instead
performed as an elementwise operation. This avoids the sequen-
tial bottleneck that traditionally accompanies RNN architecture,
with the QRNN’s recurrence operation taking less time than the
application of dropout to the QRNN’s input. This greatly decreases
training time, especially when larger sequence lengths are chosen.
In our model, we use 4 QRNN layers with 2500 nodes in each layer.
As in [11], we use a 400-dimensional embedding layer with tied
softmax weights.

To address large vocabulary sizes, which can result in imprac-
tically slow models, we use adaptive softmax [5], which uses a
hierarchy determined by word frequency to reduce computation
time, modified to allow weight tying [8, 15]. Similar strategies for
improved softmax training speed have been proposed earlier [7, 14].

To our knowledge, this is the first work to use weight tying
in conjunction with the adaptive softmax. Weight tying has been
shown to substantially improve the prediction of rare words. Given
the adaptive softmax is specifically targeted toward large vocabu-
laries, with most of the words being infrequent due to Zipf’s Law,
we suggest this should be a standard tactic.
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Model Val Test
Grave et al. [6] - 48.7
Dauphin et al. [3], 1 GPU - 44.9
Dauphin et al. [3],4 GPUs | - 37.2
Proposed, 1 GPU 32.0 33.0

Table 1: Perplexity on WikiText-103.

Model ‘ Time per batch

LSTM 726ms
ORNN 233ms

Table 2: Mini-batch timings during training,.

3 EXPERIMENTAL RESULTS

While the speed gains should be applicable to many large corpora,
we validate our model against WikiText-103. The WikiText-103
dataset contains 103 million tokens and a vocabulary of 267,735. As
opposed to the One Billion Word Benchmark, which uses randomly
shuffled sentences, the WikiText-103 dataset uses whole articles
from Wikipedia, allowing for long term dependencies.

In order to increase concurrency in training, we propose not
only increasing batch sizes but also sequence lengths. Unlike tasks
like neural machine translation, wherein the sequence length is
determined by the size of the sentence, WLM allows for training of
sequences with arbitrary length. Traditionally increasing sequence
lengths has been known to make training both slower and more
difficult. In our experiments with sequence lengths of up to 200, we
found no tangible difficulties for backpropagation and experience a
minimal loss in speed due to the QRNN. We use Adam [9] with a
learning rate of 1x 1073 as the optimizer and train for 14 epochs. We
reduce the learning rate by 10 on epoch 12. Our model consists of an
embedding layer of size 400, 4 layers of 2500 nodes and an adaptive
softmax layer. We train with a batch size of 60 and a sequence
length of 140. To avoid over-fitting, we employ the regularization
strategies proposed in [11] including variational dropout, random
sequence lengths, and Ly-norm decay. The values for the model
hyperparameters were tuned only coarsely.

The model trains at 2980 seconds per epoch on the NVIDIA V100
and 5460 seconds per epoch on the NVIDIA P100. This is a 3.1 times
speed-up over an NVIDIA cuDNN LSTM baseline which uses the
same model hyperparameters. We report single model perplexity
and per batch timing in Table 1.

4 DISCUSSION

Scaling is traditionally achieved by increasing the number of exam-
ples per batch, seen frequently in the computer vision community.
Our results above show that using the QRNN and increasing the
sequence length allows for increased concurrency even with small
batch sizes. With such a high utilization on a single GPU, we believe
this is a promising strategy for achieving strong speed-ups in lan-
guage modeling within a multi-GPU setting. We also expect further
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reductions in training time by using reduced precision computation
(FP16) on the NVIDIA Pascal and Volta GPU architectures.

While working at the word level has many advantages, the soft-
max overhead could also be reduced by splitting the existing word
level vocabulary to a subword representation. This would substan-
tially reduce the size of the vocabulary, improving both the number
of parameters used by the model’s word embeddings as well as
decreasing the computation time for each softmax call during train-
ing. The impact that such a tactic would have upon weight tying
is unknown however as weight tying has traditionally only been
performed upon a word level vocabulary.

5 CONCLUSION

In this work, we describe our tactics for reducing trainings times
and improving perplexity for large scale language modeling corpora.
Using the AWD-QRNN as a foundation, we discuss our architectural
choices for using the QRNN instead of the LSTM and adaptive
softmax with weight tying. We also discuss increasing concurrency
in not just the size of the batches but increasing We also discuss
increasing concurrency in each batch by increasing the sequence
length of the batches themselves. Using this approach we reduce
our per-epoch time substantially and achieve a new state-of-the-art
on WikiText-103 despite training for 14 epochs, a total time of only
12 hours.
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