
Towards Optimal Winograd Convolution on Manycores
Zhen Jia∗† Aleksandar Zlateski∗‡ Fredo Durand‡ Kai Li†
†Princeton University ‡Massachusetts Institute of Technology

∗Equally contributed

Motivation and Previous Work

As convolutional layers are computationally intensive and dom-
inate the total execution time of modern, deep Convolutional
neural networks (ConvNets) [15, 22, 24, 25], many efforts have
been made to improve the performance of the convolutional
primitives for CPUs [1, 6, 26, 31, 33], GPUs [4, 7, 19, 27] or
both [32]. An important class of improvements is to reduce
the computations required for a convolution. Several efforts
employed FFT-based convolutions to reduce the required com-
putations for GPUs [19, 27] and CPUs [31, 32].

Recently, Lavin et al. [16] proposed an algorithm based on
the Winograd algorithm for minimal filtering, originally de-
veloped for fast computation of finite impulse response (FIR)
filters [30]. The key idea of the Winograd–based convolution is
similar to the one based on FFTs. The inputs and the kernels
are first transformed, and then an element–wise multiplication,
which is an equivalent problem to a matrix multiplication, is
performed. An inverse transformation of the result yields the
result of the convolution. Unlike the FFT–based convolution,
where the point-wise multiplications are done in the complex
domain, the Winograd–based convolution operates on real num-
bers, thus requiring fewer operations.

After Lavin et al. [16] demonstrated that Winograd–based
convolution can be more efficient than FFT in reducing the
number of multiplications, especially for small 2D kernels
(e.g. 3 × 3), Nervana [4] and Nvidia’s cuDNN [7] had imple-
mented Winograd–based convolution for GPUs. CPU imple-
mentations were also provided by FALCON [1], LIBXSMM[5],
Intel MKL-DNN [2] and Budden et al. [6]. In addition, cur-
rently available implementations support only 2D convolutions
and single kernel size (3 × 3), which restricts the range of the
application of Winograd–based convolution. 3D ConvNets are
becoming important, as they have been successfully applied to
many fields [9, 14, 20, 21].

Our work on the design, implementation and evaluation of a
fast Winograd-based implementation is motivated by the fact
that current Winograd–based implementations for multicore or
manycore CPUs perform well below the hardware capability.
In many cases, they under–performed more computationally
expensive, but more optimized implementations, such as direct
convolutions.

Our Contributions and Novelty

Several challenges make it difficult to fully utilize the hardware
resources on modern CPUs. (1) Winograd–based convolution
might access the memory subsystem inefficiently, which may
cost more than the time saved by performing fewer computa-
tions. (2) Winograd-based convolution requires efficient ma-
trix multiplications on tall and skinny matrices. Optimized
libraries for matrix multiplication, such as Intel MKL and

The full version of this paper [13] has been accepted at PPoPP 2018.

LIBXSMM [10, 11] do not achieve satisfactory performance
on such matrices [17, 29]. (3) The increasing of thread and
data level parallelisms requires new scheduling algorithms that
minimize load balancing and synchronization overhead for
manycore CPUs.

This paper offers two main contributions. First, we present a
new implementation for Winograd–based convolution for many-
core CPUs. It is the first publicly available implementation that
supports N–dimensional ConvNets with arbitrary kernel and
tile (transformation) sizes. Second, to address the aforemen-
tioned challenges, we propose several novel optimizations for
manycore CPUs, including:

• a custom data layout that allows efficient memory access
by using only vector loads and stores, and using streaming
stores when the data will not be required in the near future,

• a method to organize memory access patterns to minimize
TLB misses, as well as amortize the memory access overhead
by interleaving computation with memory operations,

• a novel JIT code generator to generate optimal matrix multi-
plication routines for matrices of relevant sizes to maximize
cache locality, and

• a static scheduling method for even parallel execution on the
available cores to minimize synchronization overheads.

We have implemented these ideas and evaluated our imple-
mentation with several representative ConvNets on an Intel
manycore CPU (Knights Landing) [12]. Our implementation is
publicly available [3].

Evaluation

We benchmarked our implementation and other CPU imple-
mentations on an Intel Xeon Phi 7210 (Knights Landing, KNL)
node, which has 64 cores, capable of approximately 4.5 TFLOPS
of single precision floating points, and 400 GBytes/s bandwidth
memory. For GPU methods, we evaluated on an Nvidia Titan
X Pascal, capable of approximately 11 TFLOPS for FP32.

To evaluate 2D ConvNets, we chose the VGG-A version
of OxfordNet [24] and FusionNet [23]. For 3D ConvNets, we
chose C3D [21] and 3D U–Net [8]. We benchmarked the most
computationally expensive convolutional layers of each net-
work. Fig. 1 shows the execution times. For our implementation,
we show the speeds of various tile sizes, i.e., F (m, r ), whose
definition can be found in [16]. The columns annotated with
“FX” assume no kernel transformation, which are suitable for
inference–only computation.

2D networks FALCON’s Winograd implementation only
supports F (2x2, 3x3). Our implementation achieved speedups
between 1.08x and 5.39x. With larger F (m, r ), our implementa-
tion achieved up to 8.33x speedup. MKL-DNN and LIBXSMM
only support F (4x4, 3x3). Our implementation achieved speedups
ranging from 1.59x to 2.84x over MKL-DNN and from 1.32x



18
.0

2
71

.4
9

64
.1

710
1.

17
72

.2
6

88
.9

3
29

.3
2

29
.2

1
30

.4
1

30
.3

1
35

.5
8

35
.5

7
60

.9
0

60
.9

1

0

30

60

90
VGG 1.2

2.
06

10
.3

9
9.

04
S

eg
 fa

ul
t

12
.9

9
25

.5
7

3.
78

3.
79

3.
79

3.
82

4.
59

4.
637.

67
7.

71

0

10

20

FusionNet 1.2

12
.9

872
.8

2
64

.3
2

57
.3

6
57

.9
6

61
.7

9
21

.7
9

21
.8

2
22

.0
4

21
.9

2
25

.6
1

25
.6

1
44

.3
0

44
.3

4

0

20

40

60

80 VGG 2.2

1.
74

10
.2

9
8.

71
S

eg
 fa

ul
t

14
.6

121
.3

1
2.

89
2.

95
2.

83
2.

88
3.

57
3.

616.
00

5.
99

0

5

10

15

20
FusionNet 2.2

13
.3

680
.6

0
63

.0
6

36
.5

9
30

.4
6

46
.4

7
20

.9
1

20
.9

9
19

.9
1

19
.5

0
22

.9
4

23
.0

4
41

.7
7

42
.0

7

0

20

40

60

80 VGG 3.2

1.
63

9.
96

8.
80

S
eg

 fa
ul

t
8.

2321
.9

2
2.

66
2.

75
2.

52
2.

63
3.

33
3.

345.
35

5.
31

0

5

10

15

20
FusionNet 3.2

12
.7

978
.6

0
61

.9
0

38
.2

9
36

.4
5

36
.7

8
19

.6
7

19
.9

9
18

.2
0

18
.2

5
21

.4
6

21
.6

1
34

.2
0

34
.2

0

0

20

40

60

80 VGG 4.2

1.
559.
90

8.
36

S
eg

 fa
ul

t
11

.5
017

.0
4

2.
36

2.
76

2.
26

2.
513.
69

3.
90

4.
47

4.
53

0

5

10

15
FusionNet 4.2

3.
89

21
.7

1
16

.7
1

18
.9

3
14

.8
1

10
.9

06.
15

6.
51

6.
95

7.
10

7.
77

7.
918.
96

9.
09

0

5

10

15

20
VGG 5.2

2.
86

8.
95

8.
02

12
.7

0
17

.7
223
.6

1
3.

124.
56

2.
773.
91

4.
02

4.
55

4.
15

4.
52

0
5

10
15
20
25 FusionNet 5.2

69
.0

8

75
.4

3

21
8.

10

39
.3

9

40
.1

1

41
.1

0

40
.8

2

48
.7

7

48
.7

6

16
3.

24

16
5.

12

0

50

100

150

200 C3D C2a

20
0.

32

24
.8

2

69
.6

3

21
.1

3

21
.1

5

22
.0

4

22
.0

2

21
.9

4

22
.0

3

44
.2

6

44
.3

9

0

50

100

150

200 3D UNet 1.2

47
.3

4

77
.0

9

22
2.

40

33
.3

0

33
.5

2

23
.5

9

23
.8

9

35
.0

3

35
.2

6

73
.4

3

73
.9

8

0

50

100

150

200
C3D C3b

76
.2

3

9.
19

30
.2

2

5.
44

5.
49

5.
25

5.
71

6.
22

6.
2513

.1
3

13
.1

4

0

20

40

60

80 3D UNet 2.2

69
.2

8

38
.7

3

85
.3

0

10
.5

1

12
.1

8

14
.0

9

16
.4

2

13
.7

7

14
.6

4

34
.7

5

35
.3

9

0

25

50

75
C3D C4b

27
.6

6

3.
53

11
.6

8

2.
04

2.
17

1.
93

2.
21

2.
36

2.
454.
12

4.
25

0

10

20

30 3D UNet 3.2

Method

Ours F(2x2,3x3)/F(2x2x2,3x3x3)

Ours F(2x2,3x3)/F(2x2x2,3x3x3) FX

Ours F(4x4,3x3)/F(4x4x4,3x3x3)

Ours F(4x4,3x3)/F(4x4x4,3x3x3) FX

Ours F(6x6,3x3)/F(6x6x6,3x3x3)

Ours F(6x6,3x3)/F(6x6x6,3x3x3) FX

Ours F(6x8,3x3)/F(4x6x6,3x3x3)

Ours F(6x8,3x3)/F(4x6x6,3x3x3) FX

Falcon (Winograd)

Libxsmm (Winograd)

MKL−DNN (Winograd)

MKL−DNN (Direct)

Zlateski et al. (Direct)

cuDNN (GPU) 2D Winograd

cuDNN (GPU) 3D Matrix−multiply

cuDNN (GPU) 3D FFT

T
im

e 
(m

ill
is

ec
on

ds
)

Figure 1: Convolution layers’ runtime with different implementations. MKL-DNN’s Winograd–based convolution produces segmentation
faults for 4 of 5 FusionNet layers. The columns annotated with “FX” do not perform kernel transformations.

to 4.05x over LIBXSMM. With larger F (m, r ), our implementa-
tion achieved up to 3.34x speedup over MKL-DNN and 5.07x
over LIBXSMM. CuDNN’s 2D Winograd implementation for
the GPU outperformed ours by an average of 1.5x, while run-
ning on a GPU that is capable of roughly 2.5x FLOPS than the
KNL processor, indicating that we better utilize the hardware.

For the Winograd algorithm proposed by Budden et al. [6]
for CPUs, there is no publicly available code. Their measured
throughput of the sample network (3 layers with 32 channels
each, and unusual kernel size of 4x4) on an 18-core Intel E7-
8890 CPU (Haswell) was 10.9 MVox/s. For the same network,
our approach achieved roughly 100 MVox/s (9x speedup) on the
KNL. Since the peak FLOPS of the E7-8890 CPU is roughly
1/3 of the KNL processor, we can estimate that our algorithm
achieves 3x better utilization of the hardware.

3D networks Since all Winograd (CPU and GPU) imple-
mentations support only 2D, we could only perform limited
benchmarks for 3D ConvNets. We achieved better performance
than the approach proposed by Zlateski et al. [33] by 6x, cuDNN’s
matrix–multiply based convolution by 2x, and cuDDN’s FFT
based convolution by 8x.

Effects of tile size Theoretically, for Winograd, i.e. F (m, r ),
the larger the m, the more operations can be saved at the ma-
trix multiplication stage. However, in reality, large values of
m can lead to a computation overhead due to the following
reasons: (1) The dimension length of output images has to be
divisible by m, otherwise, the image is zero padded, increasing
the number of operations at both transformation and matrix
multiplication stages. This is the main reason why, for some
layers, larger ms did not achieve better performance. (2) The
number of operations for the image and kernel transformations
increases quadratically with m [18]. Since Winograd is numeri-
cally unstable [6, 16, 28], only small tile sizes can be used. Our

measurements [13] show that F (62, 32) for 2D and F (4x62, 33)
for 3D have errors small enough. Tile sizes larger than those
yield numerical errors two or more orders of magnitude larger,
when compared to direct convolution [13, 16].

Inference vs training All speedups reported above are for
training – using the implementation that transforms kernels as
well. The “FX” variation, that assumes memoized values of
the kernel transforms, can further improve the performances in
certain cases. For most of the layers, the kernel transformations
only require a small percentage of the total execution time.
However, for layers with a large number of input/output chan-
nels, the kernel transformations can take a large percentage of
time, especially when the batch size is one. This is notable for
FusionNet (layers 4.2 and 5.2).

Summary Overall, we observed an average of 66% uti-
lization of the theoretical peak FLOPS and roughly 80% of
the memory bandwidth. When compared to other existing
Winograd–based implementations, on the same hardware, an
average speedup of 3x, and in some cases more than 8x, was
observed.

Conclusion

While the Winograd–based convolution algorithm can greatly
reduce the computational complexity of convolutional layers,
it is challenging to implement it to fully exploit the hardware
performance of manycore CPUs.

Our implementation can achieve substantially better per-
formance than the existing Winograd implementations for the
CPU, competitive with GPU implementations for 2D and faster
for 3D. This was achieved by the proposed interdependent op-
timizations, each motivated by a specific hardware feature or
limitation, but designed to work together to improve overall
performances.

2



References

[1] 2016. FALCON Library: Fast Image Convolution in Neural Networks on
Intel Architecture. "https://colfaxresearch.com/falcon-library/". (2016).

[2] 2016. Intel(R) Math Kernel Library for Deep Neural Networks. "https:
//github.com/01org/mkl-dnn". (2016).

[3] 2018. N-Dimensional Winograd–based convolution framework.
https://bitbucket.org/poozh/ond-winograd. (2018).

[4] Accessed: 2018-01-01. Intel® Nervana reference deep learning framework.
https://github.com/NervanaSystems/neon. (Accessed: 2018-01-01).

[5] Accessed: 2018-01-01. LIBXSMM. https://github.com/hfp/libxsmm. (Ac-
cessed: 2018-01-01).

[6] David Budden, Alexander Matveev, Shibani Santurkar, Shraman Ray
Chaudhuri, and Nir Shavit. 2016. Deep Tensor Convolution on Multicores.
arXiv preprint arXiv:1611.06565 (2016).

[7] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[8] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and
Olaf Ronneberger. 2016. 3D U-Net: learning dense volumetric segmentation
from sparse annotation. In International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 424–432.

[9] Liuhao Ge, Hui Liang, Junsong Yuan, and Daniel Thalmann. 2017. 3d
convolutional neural networks for efficient and robust hand pose estimation
from single depth images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

[10] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst.
2016. LIBXSMM: accelerating small matrix multiplications by runtime
code generation. In High Performance Computing, Networking, Storage
and Analysis, SC16: International Conference for. IEEE, 981–991.

[11] Alexander Heinecke, Hans Pabst, and Greg Henry. 2015. Libxsmm: A high
performance library for small matrix multiplications. Poster and Extended
Abstract Presented at SC (2015).

[12] James Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon
Phi Processor High Performance Programming: Knights Landing Edition.
Morgan Kaufmann.

[13] Zhen Jia, Aleksandar Zlateski, Kai Li, and Fredo Durand. 2018. Optimizing
N-Dimensional, Winograd-Based Convolution for Manycore CPUs. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming.

[14] J Jiménez, S Doerr, G Martínez-Rosell, AS Rose, and G De Fabritiis. 2017.
DeepSite: Protein binding site predictor using 3D-convolutional neural
networks. Bioinformatics (2017).

[15] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems. 1097–1105.

[16] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional
neural networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4013–4021.

[17] Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, and Richard Vuduc.
2015. An input-adaptive and in-place approach to dense tensor-times-
matrix multiply. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 76.

[18] Vijay K. Madisetti. 2009. The Digital Signal Processing Handbook, Second
Edition. CRC Press.

[19] Michael Mathieu, Mikael Henaff, and Yann LeCun. 2013. Fast training
of convolutional networks through ffts. arXiv preprint arXiv:1312.5851
(2013).

[20] Daniel Maturana and Sebastian Scherer. 2015. 3d convolutional neural
networks for landing zone detection from lidar. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 3471–3478.

[21] Daniel Maturana and Sebastian Scherer. 2015. Voxnet: A 3d convolutional
neural network for real-time object recognition. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE, 922–
928.

[22] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio.
2014. On the number of linear regions of deep neural networks. In Advances
in neural information processing systems. 2924–2932.

[23] Tran Minh Quan, David GC Hilderbrand, and Won-Ki Jeong. 2016. Fu-
sionNet: A deep fully residual convolutional neural network for image
segmentation in connectomics. arXiv preprint arXiv:1612.05360 (2016).

[24] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014).

[25] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1–9.

[26] Vincent Vanhoucke, Andrew Senior, and Mark Z Mao. 2011. Improv-
ing the speed of neural networks on CPUs. In Proc. Deep Learning and
Unsupervised Feature Learning NIPS Workshop, Vol. 1. 4.

[27] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala,
Serkan Piantino, and Yann LeCun. 2014. Fast convolutional nets with
fbfft: A GPU performance evaluation. arXiv preprint arXiv:1412.7580
(2014).

[28] Kevin Vincent, Kevin Stephano, Michael Frumkin, Boris Ginsburg, and
Julien Demouth. 2017. On Improving the Numerical Stability of Winograd
Convolutions. (2017).

[29] Yida Wang, Michael J Anderson, Jonathan D Cohen, Alexander Heinecke,
Kai Li, Nadathur Satish, Narayanan Sundaram, Nicholas B Turk-Browne,
and Theodore L Willke. 2015. Full correlation matrix analysis of fMRI
data on Intel® Xeon Phi coprocessors. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. ACM, 23.

[30] Shmuel Winograd. 1980. Arithmetic complexity of computations. Vol. 33.
Siam.

[31] Aleksandar Zlateski, Kisuk Lee, and H Sebastian Seung. 2016. ZNN–A Fast
and Scalable Algorithm for Training 3D Convolutional Networks on Multi-
core and Many-Core Shared Memory Machines. In Parallel and Distributed
Processing Symposium, 2016 IEEE International. IEEE, 801–811.

[32] Aleksandar Zlateski, Kisuk Lee, and H Sebastian Seung. 2016. ZNNi:
maximizing the inference throughput of 3D convolutional networks on
CPUs and GPUs. In High Performance Computing, Networking, Storage
and Analysis, SC16: International Conference for. IEEE, 854–865.

[33] Aleksandar Zlateski and H Sebastian Seung. 2017. Compile-time optimized
and statically scheduled ND convnet primitives for multi-core and many-
core (Xeon Phi) CPUs. In Proceedings of the International Conference on
Supercomputing. ACM, 8.

Acknowledgments
We thank Sebastian Seung for helpful discussions. We are grate-
ful to Intel Corporation for supporting the Intel Parallel Com-
puting Center at Princeton University, and to Toyota Research
Institute for supporting the Toyota - CSAIL Joint Research
Center at MIT. Zhen Jia was partially supported by IARPA
(D16PC00005).

3

 "https://colfaxresearch.com/falcon-library/"
"https://github.com/01org/mkl-dnn"
"https://github.com/01org/mkl-dnn"
https://github.com/NervanaSystems/neon
https://github.com/hfp/libxsmm

	References

