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1. Introduction

In the past few yearstherehasbeena vast upsurgeof interest in quantumgravity, particularly as
appliedto cosmology.Thereare severalreasonsfor this. First andforemost is Hawking’s remarkable
discoverythat particlecreation mustoccur in the stronggravitationalfield of a black hole. Hawking’s
resultsupportedthe earlier work by Zel’dovich andParkerindicating that quantumeffectsin the strong
gravitationalfield of the very earlyuniversecould dominatethe evolutionin this regime. Path integral
techniquesdevelopedby Hawking and Hartle to study particle creationaroundan evaporatingblack
holeweresoonappliedto particlecreationin theearlyuniverse.Thesetechniqueswereoriginally used
only semi-classically,with the gravitationalfield beingconskieredas a classicalfield, but Hawking has
spent the last few years attemptingto find a path integral formulation of a fully quantizedgeneral
relativity theory,culminating in his paperwith Hartle wherein the authorsclaimedto havediscovered
“The Wave Function of the Universe[1]”. But it is not enoughto discoverthe wave function of the
Universe.It is also necessaryto discoverwhat such a function means;that is, it is necessaryto analyze
the physical significanceof the wave function representingthe quantumstateof the Universe.It is the
main purposeof thepresentpaperto accomplishthis taskof interpretingthe UniversalWaveFunctioii.

Surprisingly, no one hasattemptedto do this before in a really systematicway. Most studies in
quantumcosmologyconcentrateon theproblem of obtainingthe appropriateSchrodingerequationfor
the wave function. The problem of interpretingthe wave function is them attackedby analyzingthe
motion of a wave packet, or by looking at the time evolution of the expectationvalue of some
observable.It is assumedthat the motion of a wave packetor the evolution of an expectationvalue (of
the radiusof the Universe,say) would resemblethe observedevolutionof the universe.

We shall see that theseassumptionsare not necessarilytrue. To show this it will be sufficient to
consider the simplest available minisuperspacemodel, the dust or radiation gas closed Friedmann
universe, wherein the only degreeof freedomto be quantizedis R, the radiusof the universe.The
classical theory of such a cosmologywill be reviewed at length in section 2, becausealthoughthe
Friedmannuniverse has beenknown for fifty yearsandhas consequentlybeenstudied,severalpoints
which turn out to be crucial to the quantumtheory of the model areobscuredin the usualelementary
treatments.

Interpretingthe wave function of the universe requiresadopting an interpretation of quantum
mechanics.I shall adopt the Many-Worlds Interpretation(MWI), becausethis interpretationseems
tailor madefor quantumcosmology.Indeed,Hugh Everett,theinventorof theMWI, assertedin thefirst
paragraphof his first paperon this interpretation,that a major motivationbehindhis developmentof
the Many-Worldsformalism was to find a languagein which the notion of the “wave function of the
Universe” makesphysicalsense[2]. A similar justification for the MWI hasbeengiven by virtually all
the proponentsof the MWI at onetime or another.

In spiteof this, no oneseemsto haveappliedthe MWI to quantumcosmologyexceptin an off-hand
manner[161.Even Bryce DeWitt, the main proponentof the MWI and the physicist responsiblefor
bringing the MWI to the attentionof the generalphysics community,did not himself use the MWI to
interpretthe quantizedFriedmannmodelwhich he developed.His only mention of Everett’stheory in
his classic paper “QuantumTheory of Gravity” occurred in the final philosophicalsection [31.As a
consequence,most cosmologistsare unfamiliar with the MWI, except perhaps as a vague, almost
philosophicalidea. Evenworse, I’ve discoveredin conversationswith my fellow cosmologiststhat the
impressionswhich manyof them haveaboutwhat is impliedby the MWI areactuallyfalse!

I shall endeavorto correctthis unfortunatedeficiencyin section3 by developingthe MWI in detail by
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presentinga toy modelof the measurementprocessaccordingto the MWI, and illustrating the process
by a concreteexample: the Wilson cloud chambermeasurementof particle tracks, a problem first
consideredby Heisenberg[4] and Mott [5]. This examplehighlights an important point mentioned
above: the motion of a wave packetor the time evolution of the expectationvalue of the particle
position in generalmaygive a wholly misleadingpictureof what an apparatusdesignedto measurethe
motion of the particlewould actuallysee.In the caseof the Wilsoncloud chamber,thewave function for
the particle is a stationaryplanewave,which is not normalizableandindeedhasconstantmodulusover
all space!Sohowdo weseeisolatedparticletracksin thecloudchamber?All will beexplainedin section3.

I shall develop in section 3 a formalism sufficiently general to discussthe problem of what an
apparatusdesignedto measurethe radiusof the Universeat sequentialtimeswould actually see and
record.We shallseethat beforethe first two radiusmeasurementsaremade,it is meaninglessto say the
Universehas a radius,while after thesemeasurementsaremade, at bestthe Universecan be said to
have all radii consistent with the support of the respectivewave functions of the Universe and
apparatus.

In section4 I shall apply the formalism to a quantizedversion of the classicalFriedmannuniverse
discussedin section2. A numberof well-known technicalproblemsarise in quantizingthe Friedmann
model, among them the choice of the time parameter,the way in which the constraint Einstein
equationsare to be takeninto account,and the appropriateboundaryconditions.Thesepointswill be
coveredin sections2 and4. 1 shall arguethat conformaltimeis the mostappropriatetime parameter.I
shall imposethe physical condition that the domain of the Universalwave function be restrictedto
positive values of R, whereR is the Friedmannscale factor (the spatial quantizationvariable).This
conditionhasa considerablephysicaleffect if we require the quantumHamiltonian to be a self-adjoint
operator,as has beenpreviouslynotedby GotayandDemaret[7]. 1 shall discussthispoint at length in
section4. Onerathersurprisingfact to emergefrom this analysisis the effect of the R = 0 curvature
singularity on the time evolutionof the wave function: the singularity affectsthe time evolution at all
times ratherthanjust at the beginning andthe endas is the caseof the classicalcloseduniverse.Most
paperson quantumcosmologyattempt to determinethe effect of the singularity by studyingthe time
evolutionof the expectationvalue (R) of the radiusof the Universe.I shall show in section4 usingthe
formalism of section 3 that this is an incorrect procedure,for it is not possible to measurethe
expectationvalue of any Universal operator, even in principle. Similarly, the assertion that the
Universeis in an eigenstateof the UniversalHamiltonianis physicallymeaningless.

Although the formalismof section3 can be applied to any universalwave function to determinethe
observedtime evolution, we are of coursemost interestedin applying it to a wave function which
hopefully is close to the true wave function, and this will be obtainedby imposing the appropriate
boundaryconditionsanddecidingon the methodof taking in accountthe constraintequations.It turns
out that the problemsof the boundaryconditionsand the problem of the constraintsare intimately
connected. I shall handle them by an unorthodox technique: I shall quantize an unconstrained
Hamiltoriian, and then take the constraintsinto account by imposing boundary conditionson the
solutionsto Schrödinger’sequation.The readeris warnedthat this proceduremay or may not give an
accuratequantummodel. I shall neverthelessfollow this procedurebecausethe resulting model is
exceedingly simple and illustrates the interpretation formalism without introducing mathematical
complexities.The formalism can be of courseapplied to quantummodelsobtainedby other quan-
tizationprocedures.In particular,I shallshowin theAppendixthattheADM methodgivesexactlythesame
Schrodingerequationas my unorthodoxmethod in the caseof the radiation-filled closedFriedmann
universe.

I shall arguethat my methodof imposingthe constraintsallows justone solutionto the Schrodinger
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equationusingtheunconstrainedHamiltonian. In otherwords,my procedureof quantizingtheuniverse
hasthe property which Wheeler [33] and DeWitt [3] conjecturedthe correctquantumtheory for the
Universemusthave:a single, uniquesolutionfor thecosmologicalSchrodingerequation.I shalldiscuss
thevariouspropertiesof this uniquesolution in section4. Besidesuniqueness,it hasseveralothernice
properties:(1) thetime evolutionof the universalradiusas measuredby anobserverinside the universe
is virtually identical to theclassicalmotion evennearthe singularity,exceptof coursefor theinevitable
but very small limitations imposedby the uncertaintyprinciple; and (2), all classicalclosedFriedmann
universesareequallyprobablein the sensethat whenthe Universeis split into branchesby thefirst two
measurementsof the Universalradius,the probability that we arein a given universedoesnot depend
on the valueof R. In section4, I shall proposethis uniqueuniversalwave function as a representation
of the wave function of the Universe;moreprecisely,I shall arguethat it probablymodelsthe features
of the actualquantumUniverseat leastaswell as the classicalFriedmannuniversemodelsthe observed
structureof the branchof the total Universewe happento be in. Even if my unorthodoxquantization
procedureleavesa lot to bedesired,I expectthe essentialpropertiesof the uniquesolutionto persistin
thewavefunctionobtainedby amorecorrectprocedure.Forevidence,I shallshowin theAppendixthatthe
samesolutionis themostphysicallynaturalsolutionof theWheeler—DeWittequationobtainedviatheADM
quantizationmethod.

My proposedUniversalwavefunction hasanotherinterestingproperty:the probability is essentially
onethat we arein abranchof the Universein which the actualmatterdensityis arbitrarily closeto the
critical density.This is true eventhoughno inflationary phaseis assumedto occur. The stress-energy
tensoris assumedto be radiation for the entireevolutionaryhistory of the Universe.I shall show in
section 4 that this property—we might call it “inflation without inflation”—is a property of any wave
function which satisfiesa QuantumCopernicanCosmologicalPrinciple: all closeduniversesareequally
probable.

In the concludingsection5, I shall summarisethe conclusionsimpliedby the Many-Worldsapproach
to quantumcosmology, and discusspossible directionsof future work from this point of view. In
particular, I shall touch on the Horizon Problem,the Magnetic Monopole Problem, andthe Initial
PerturbationProblem.

I shall be using standardPlanck units (c = hl2rr = G = 1) unless these constantsare explicitly
included in the equations.For example, the Einstein equations are Rab —2gabR=

81rTab. I shall
capitalize the word “Universe” when I use it to refer to the traditional object of study in cosmology,
and leaveit uncapitalizedwhenI am referring to a classicalmodel, or to system/apparatuscollection.
Seesection3 for a thoroughdiscussionof this point.

2. The classicalclosedFriedmann universe

The deepestinsight into the significanceof a physicaltheory is obtainedby expressingit in termsof
an action principle.The full action in Einstein’sgravitationaltheory is

S = ~~—J~\/_g d4x + j— J tr KVyd3x + J LmVg d4x+ C (2.1)

where8M is theboundaryof the four-dimensionalregion M, havingextrinsiccurvatureK andintrinsic
metric y. The spacetimemetric is g, from which the Ricci curvature~ is obtained.The matter
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Lagrangian is Lm. The constantC is a boundaryterm which must be consideredin open universes,
includingasymptoticallyflat spacetimes[81,but may be set to zeroin closeduniverses.Theaction (2.1) is
a global objectandis well-definedonly if the global topology is fixed [9, 10, 11; seehowever,1 and12].
I shallconsiderhereonly the standardFriedmanncloseduniverse,so theglobal topologyis S3x li’. The
form of the action (2.1) makesit clearwhy theoristsfrom Einstein[13] to Misner,ThorneandWheeler
[141haveregardedcloseduniversesas morephysically reasonablethanopen universes.The latter have
the boundaryterm C to deal with, and the surfaceintegral in (2.1) is also morecomplicatedin open
universes,since in this caseit mustcontain timelike portions.For closeduniverses,the surfaceintegral
can be taken over two disjoint spacelikehypersurfaces,or removed altogetherby collapsing the
boundary8M onto the initial andfinal singularities.For closeduniversesonewould haveonly the two
volume integrals in (2.1), and theseterms would be finite even if M were chosento be the entire
spacetime(for suitablechoicesof the matter Lagrangians).In the open universe casethe boundary
termscomeinto the theory in a fundamentalway, and thereis no good way to decidewhat theseterms
shouldbe for arbitrary open universes[13,14].

I shall be concernedin thispaperonly with closedFriedmannuniverses,which meansI shall consider
only variationsin the action (2.1) which preserveisotropy and homogeneity.Taking the path integral
view of quantummechanics,this meanswe shall consideronly thosepathsin which the radiusof the
universevaries; pathsin which the homogeneityor isotropy varieswill be omittedfrom the Feynmann
sum. It is well-known that the metric for sucha universecan be written

ds2 = —dt2 + R2(t)[dX2+ sin2x (do2+ sin2 0 d~2)] (2.2)

where the spatial variables have ranges 0 � x ~ ii~, 0 ~ 0 ~ ir, 0 ~ ~ 2iT. We immediately have
= R3(t)sin2x sin 0, and

= 6[R’R + R2(1+ J~2)] (2.3)

with the dot denotingdifferentiationwith respectto t, and

K~
1= —R~R&~,, tr K = g~’K11= ~°K~1= —3R

1R (2.4)

in a local Euclidean frame, if we choose~M to be two disjoint hypersurfacesof homogeneityand

isotropy. Considerfirst the purely gravitationalpart of (2.1):
1,- 1~- —

Sgrav = J ~V—g d4x + — j tr K\/y d3x. (2.5)
l6lT 8ir

M SM

A straightforwardcalculation, includingan integrationby partsof the first term in (2.5) showsthat Ggrav

can be written
t2

3V . 3 1 .IV
SgravJ(1_R2)Rdt~J [~_~~~]V_gd4x (2.6)

where t
1, t2 arethe values of the propertime on the future andpastboundaries,respectively,and
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,,- ,r 2n

V= J J J sin2x sin 0 dx dO d4 = J \/y d3x = 21T2

is the scale-factorindependentvolume of oneof the spacelikehypersurfacesfonning the boundaryof
the region M. Equation (2.6) shows very clearly that the effect of the boundaryterm is to remove
second derivatives from the gravitational action. Like all other fundamentalfields in physics, the
gravitational field has an action which is a functional of the basic field — the metric — and its first
derivatives only. It is this fact that allows the quantizationof the gravitational field with standard
techniques(at leastin the minisuperspacecase).

The gravitationalaction simplifiesconsiderablyif the time variableis chosento be conformaltime t,

definedby

R(t)d/dt= d/dT

or

dt R(t(r))dr. (2.7)

In conformaltime the gravitationalpart of the action becomes

Sgrav = ~ J (R~- R’2) dr (2.8)

where the prime denotesdifferentiation with respectto conformal time. The parameterr is called
conformaltime becausein termsof r the metric (2.2) can be written

ds2= R2(r) [—dr2+ sin2x (do2+ sin2 0 d42)] (2.9)

so the metric (2.2) is conformally relatedto the metric of the Einstein static universe, given by the
metric inside the bracketsin (2.9); see [15]for a detaileddiscussion.

Let us nowconsiderthe actionfor thematter.I shallenormouslysimplify the analysisif I assumethe
matter to be an isentropic perfect fluid. The techniquesfor dealing with an isentropic perfect fluid
action integralhavebeendevelopedby HawkingandEllis [15] section3.3. With my normalization,the
Lagrangedensityfor such a fluid can be written

Lm = —p(l — ~)= (2.10)

wherep is the massdensity,~ = e(p) is the fluid internal energy,p is the pressure,and~i is the total
energydensityof thefluid, consistingof restmassandinternalenergy.Hawking and Ellis point out that
in order to obtain the correct dynamicalequationsfrom a variation of the action, it is necessaryto
requirethecurrentvectorJa, definedby ja = pUa where~a is theunit tangentvectorto thefluid flow lines,
to becovariantlyconserved:
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Ja1~(VgJa)o (2.ll~

\/—g axa

Sincein our casewe havefrozen all degreesof freedomexceptthe radiusof the universe,therewill be
no variation of the action in any variable except R(t). This means Ua will remain normal to the
hypersurfacesof homogeneityandisotropy evenalonghistoriesin which the action is not an extremum.
Thus (2.11) becomessimply

(R~(t)p) =0= (R3(T)p). (2.12)
dt dr

For an isentropicperfect fluid with polytropic index y, the pressureand total energydensityare
relatedby

p=(y—l)~. (2.13)

The pressureis given in termsof the internalenergyandmassdensityby

pz~p2dE/dp. (2.14)

Equating(2.13) and (2.14),andusing(2.10) to eliminate~a,we get the differentialequationd~/(1+ e)
(y — 1) dp/p, which can be immediately integratedto yield 1 + ~ = constantx p~. Putting this ex-
pressionbackinto (2.10) gives

= constantX p”. (2.15)

But eq. (2.12) implies that R3(t)p is a constant,so if this fact is used to eliminatep from (2.15), we
finally obtain for the matterLagrangedensity

Lm = —~ = CR3~ (2.16)

where ~ is a constant.The actionfor the matter is

Smatter = J ~R~~Vg d4x= V~J R3t~1~dt = V~J R3~~4dr (2.17)

so the total action is

S= Sgrav + Smatter= J [(R’)2— R2+ CR3~~4Jdr (2.18)
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whereC = —8ITC/3is a constant.The total Lagrangianwill bequadraticin threecases:

0 ~‘ y = ~, radiation gas

—3y+4=l~y= 1, dust

2~y = ~, unphysical,sinceit implies a negativepressure.

For the radiationgas, varying with respectto the metricgives the Lagrangeequation

d2R/dr2 + R = 0 (2.19)

sincethe constantterm in the Lagrangiancan be omitted. The generalsolutionto (2.19) is of course

R(r) = R sin(T+ 8). (2.20)

The two integration constantsin (2.20) can be evaluatedin the following way. It is clear that all
solutions (2.20) have zeroswith the sameperiod IT. Since it is physically meaninglessto continuea
solution through a singularity which occursat every zero, all solutionsexist only over a T-interval of
length ir. Thusfor all solutionswe can choosethe phasedeltaso that for all solutionsthe zeroof r-time
occursat the beginning of the universe,at R = 0. This implies 8 = 0 for all solutions,in which casethe
remainingconstantR is seento be the radiusof the universeat maximum expansion:

R(r) R~,(sin‘r. (2.21)

In the radiation gas case,all solutionsare parameterizedby a single number~ the radiusof the
universe at maximumexpansion.It is important to note I haveobtainedthe standardresult (2.21)
without having to refer to the Friedmannconstraint equation. Indeed, I obtained the dynamical
equation(2.19)by an unconstrainedvariation of theLagrangian(2.18); I obtainedthecorrectdynamical
equation and the correct solution even though I ignored the constraint. The constraint equation
containedno information that was unavailablein the dynamicalequation,obtainedby unconstrained
variation,exceptfor the tacit assumptionthat p � 0. Fromthe point of view of the dynamicalequation,
the vacuum “radiation gas” is an acceptable“solution”. For a true radiation gas (p � 0) at least,
ignoringthe constraintsis alegitimateprocedure.It is well thisis so, for I haveprecludedany possibility
of obtainingthe Friedmannconstraintequationby fixing the lapseN before carryingout the variation
(in effect I chose N = R(r)). The fact that the constraint can be ignored in the radiation case is
important becausequantizing a constrainedsystem is loaded with ambiguities [3, 171; indeed, the
problemof quantizing Einstein’s equationsis mainly the problem of decidingwhat to do with the
constraintequations[17],andtheseambiguitiesdo not arisein the unconstrainedcase(see[181chapter
21 andthe Appendixfor a discussionof the relationshipbetweenthe lapseandthe Einstein constraint
equations).

The constraintequationin the radiationgas casetells us two things: thedensitycannotbe zero, and
thesolutionshit thesingularity. Thus aslong as theseimplicationsof the constraintsare duly takeninto
account in some mannerin the quantumtheory, quantizing an unconstrainedsystem should be a
legitimateprocedure,at leastfor a radiationgas.

It is not possible to ignore the constraintin the dust-filled universe.With y = 1 an unconstrained
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variation with respectto the metric gives the Lagrangeequation

d2R/dr2+ R= C/2 (2.22)

for which the generalsolution is

R(r) = R cos(r+ 8) + C/2. (2.23)

As far as we could tell by our previousanalysis,the constantC is restrictedonly by the condition C> 0,
which comesfrom the strong energycondition [151.Thus it would seemthat a judiciouschoice of C
would enableus to avoid zerosof R(r)—i.e.,singularities—altogether.Alas, we know this isn’t true. It
is the constraintsthat force all solutionsto the dust dynamicalequationsthrough R = 0. The constraint
equationprovidesa relation betweenR, C and6.

Onecould obtain someinformation about this relation purely dynamically by varying the flow lines
of the fluid, which can be regardedin the perfect fluid caseas the analogueof varying the action with
respectto the non-gravitationalvariables.Such a variation implies Raychaudhuri’sequationand the
geodesicnature of the flow lines [15]. For geodesicflow, Raychaudhuri’sequation can be written
R + CR = 0, which implies that all solutions(2.23) have periodic zeros.Requiring as in the radiation
casethat the zero of time in all solutions(2.23) is to be set at the initial singularity gives the relation
C= —2R cos 6. The fact that we can set 8 = 0 and so obtain the completeset of Friedmannsolutionsin
the form

R(r) = (R~’:~/2)(l— cos T) (2.24)

whereR~is the radiusof the universeat maximumexpansion,comesfrom the Friedmannconstraint
equation.Of course,oncewe know the answer (2.24) we can obtain that answerby starting with the
solutions(2.23) on the unconstrainedLagrangeequationandputting in by handthe requirementsthat
all solutionshaveinitial singularitiesandthat all solutionshavezerophaseat the initial singularity. In
short, the other dynamicalequationand the constraintequationcan be incorporatedby a judicious
choiceof boundaryconditionson the unconstraineddynamicalequation(2.22).

The matterLagrangianwill still bequadratic(andsothe unconstrainedquantizationwill still be fairly
straightforward)if it is the sum of two non-interactingperfectfluids, dust and radiation.

The total action for the two-fluid model is

S = - ~ J [(R’)~- R2+ ~USiR + C~]dT. (2.25)

Sincethe constant~ gives no contributionto the unconstraineddynamicalequation,the dynamical
equationobtainedby varying (2.25) with respectto the metric and ignoring the effect of constraintsis
just (2.22), with the generalsolution (2.23). As in the dustcase,the constraintequationallows us to
evaluatethe constantsR, 3 and C(~t.The solution which takesinto account the constraintcan be
written (ref. [18] p. 741):

R(r) = R’~(1 — sec3 cos(r+ 6)j (1 + sec3)_1 (2.26)

where as before ~ is the radiusof the universe at maximum expansion.In expressingthe
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solution in the form (2.26), it is assumedthat the initial singularity occursat r = 0. We immediately
obtain from (2.26)that the universereachesits maximumradiusat r = ir — 3, andit terminatesin a final
singularityat T = 2(ir — 6). The phaseangledelta is relatedto physicalquantitiesvia

tan 8 = 3/irad(T)/[21T/2~ust(T) R2(T)i”2 (2.27)

wherel2rad(T) is theradiationdensityand~ is thedustdensity.Thus0 � 6 � irI2. Also, sinceP~rad(T)

is proportionalto R4 and i.~dust(T) is proportionalto R3, the right-handside of (2.27), and hence
the phase6, is an invariant,independentof r, which is determinedby the universalphotonper baryon
ratio. For aconstantT, as /~Lrad//~Ldust~O,6—*0, and(2.26)reducesto (2.24).As /-Lrad//~t~ust~~, 6*
and (2.26) reducesto (2.21). Since the phase6 is determinedby the photonper baryon ratio, it is an
isentropicinvariant, socannotbe expectedto changein the isentropicmodelsanalyzedin this paper.
This meansthat the lengthof time the model universestays in existence,which is 2(ir — 8), is chosena
priori in both the classicalmodelsby selectingthe initial photonper baryonratio.

I havewritten the action in termsof conformal time becauseI ultimately intend to quantize in
conformaltime; i.e., I shall quantizeby replacingtheclassicalHamiltonian implied by theLagrangianin
(2.18) or (2.25) by the “obvious” Hamiltonian operatorand evolve the system via the Schrödinger
equation

i 9~!,/a~= .F~4r (2.28)

so that conformal time r will be my time parameter.A few remarksneed to be madeabout this
quantizationproposal.First of all, equation(2.28)is first order in time but secondorderin space.This is
contraryto most quantizationproceduresfor quantumgravity, which generallyrequiretime andspace
to enterthe equationfor the wave function on an equalfooting. However, requiringspaceandtime to
appearon an equal footing either resultsin equationswhich are secondorder in time, which in turn
meansUniversalwave functions with positive and negativefrequencies,or equationswhich are first
order in space,which in turn meansdealingwith Universalspinorsrather than Universalscalarwave
functions,or operatorswhich areneitherfirst nor secondorder in either spaceor time andhaveto be
defined indirectly via the spectraltheorem.In any of thesecasesboth the mathematicsand the wave
function interpretationis very difficult. With a distinguishedtime coordinate,one can avoid these
difficulties. Furthermore,generalrelativity, in contrastto special relativity, often picks out a preferred
time coordinate. In virtually all physically realistic classical closed universes, the constant mean
curvaturefoliation definesa uniquepreferredtime coordinate[191.In writing the Friedmannmetric in
the form (2.2), I havein fact chosenthe constantmeancurvaturefoliation by settingthe shift vector to
be zero. Thus we might expectquantumgravity to be similar to classicalgravity in picking out a pre-
ferredtime coordinate.In addition,equation(2.28)will be regardedin thepreferredtimequantummech-
anicsas a genuinedynamicalequation.In many treatmentsof quantumgravity (e.g.,the Appendix,[11
and[3]), the “evolution” equationisnot anevolutionequationatall but ratheraconstraintequation~r= 0,
where~~‘isthesuper-Hamiltonian,turnedinto aconstraintonthewavefunctionviatheprescription~i = 0.

Thereisno generalprincipleof quantummechanicsthatrequirestheconstraintstobehandledin thisway. It is
merelyslavishdevotionto thespecialrelativistic(butnotgeneralrelativistic!)principle thatthespaceand
timevariablesaretobetreatedin thesamemanner,andthatall timecoordinatesaretobeon anequalfooting,
combinedwith the fact that ~‘ = 0 givesno quantummechanicsat all [3]. And in the end,the symmetry
betweenspaceandtime is lost anywayin the ~,/,= 0 theory becauseonemust choosea preferredtime
coordinatein order to carry out the replacement~W—~~C,anddifferentpreferredtimesgive physically
differentquantumtheories.However,for thosewhopreferthe~‘~/i = 0 approachtoquantumgravity,I shall
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show in the Appendix that in fact for the radiation-filled closed Friedmannuniverse, the equation
= 0 is equivalentto (2.28), with H being the simple harmonic oscillatoroperator,provided the

preferredtime is conformaltime.
Although the constantmeancurvaturefoliation picks out a preferredtime coordinate,it doesnot fix

the scale of the time coordinate.The conformal time is but one scale of many; other choicesare
discussedin [171.Therearetwo reasonsto chosethe conformaltime. First and foremost,such a choice
simplifies the mathematicsenormously. The Lagrangian (2.18) for the radiation gas is just the
Lagrangianfor a simpleharmonicoscillator(SHO), andthe moregeneralLagrangian(2.25) is not much
morecomplicated.It would be difficult to find a simpler system to analyzein trying to interpret the
wave function. Such a simple Lagrangianallows us to completely avoid the factor-orderingproblems
which bedevilotherchoicesof the time variable [171.

There is a morephysicalreasonfor choosingthe conformaltime as the quantizationtime parameter.
Whichever time variable is chosen, it will be an unmeasurableparameterin the quantumtheory,
becausethe time variable in Schrödinger’sequationis a parameter,not an operator[201.But according
to the fundamentalpostulatesof quantummechanics,an observable— which is to say, anythingthat can
be measured—mustbe representedby an operator[self-adjoint].Hence, once a quantizationtime
parameteris chosen,we must henceforthabandonall attemptsto measurethat variable. It is not a
physical quantity; it just ordersthe statesin time.

The conformaltime is to be preferredover many otherchoices(such aspropertime, or mattertime

1171)becauseon the classicallevel, it is usedin preciselytheway thequantummechanicaltime is used:
to order the states.The conformal time is independent(at least in the puredust or radiation cases)of
the only physical constantin the system, the radius of maximum expansion.True physical time, for
instancethe proper time or the mattertime, doesdependon the maximum radius,sincepropertime
(for example)is obtainedvia integration of eq. (2.7). From the point of view of the Many-Worlds
Interpretation,a time parameterwhich treatsall the classicalworldson an equalfooting is required,so
that all the classicalworldscan be subsumedinto a single wave function. This is possibleto accomplish
in the dustandradiationcase,because8 is not quantized.The conformaltime coordinateis perhapsnot
uniquein havingthesecharacteristics,but it is the simplestchoicewhich does.

The conformal time also has an advantagein closeduniversesover someintrinsic times, such as
mattertime (in which the time coordinateis set equalto the matterdensity),becauseit increasesin both
the expandingand contractingphase.The matter time, on the other hand, is doublevalued: in the
closedFriedmannuniverse,the samematter densityoccurs twice— oncein the expandingphase,and
oncein the contractingphase.This meansthat if mattertime is used,the sametime variablecannotbe
used in both phases,and it becomesvery difficult to addressglobal evolution questionsin quantum
cosmology.

With conformal time as the time variable, time unidirectionally increasesin both the expandingand
contractingphasesof acloseduniverse.Thisunidirectionalityof timemaybelostif othertimeparametersare
used.Forexample,time goesbackwardin thecontractingphaseof Hawking’squantumcosmology[Ij. In
orderfor the secondlaw of thermodynamicsto be globallyvalid, wemusthavetemporalunidirectionality,
andthis is anotherargumentfor conformaltime.

I am not the first to suggestquantizing in conformal time. J.V. Narlikar and his students have
extensivelydevelopeda numberof quantumcosmologiesbasedon quantizingin conformal time; see
[401for a recentreviewof this work. I havetwo mathematicalobjectionsto their work. First of all, I do
not think they have adequatelyconsideredthe constraint equations in their model. They use the
standardFriedmannmetric with only the conformal degreeof freedom,andput this into the standard
Einsteinaction. However,as I discussedabove,the variation of this metric will give only the dynamical
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Einstein equations.The constraintsmust be either solved before quantization,or dealt with at the
quantumlevel. A secondmathematicalobjectionis that theypay no attentionto the domain of their
operators.If, as I have argued,the domain must be restrictedto R > 0, then the requirement of
self-adjointnessof the Hamiltonianplacesboundaryconditionson the admissiblewavefunctionsat the
origin. I seeno evidencethat theyhaveimposedsuch boundaryconditions.

But thesemathematicalobjectionsare ratherminor; the real objectionI have to their work is the
view of quantummechanicsunderlying it. They regard the effect of quantumgravity as generating
fluctuationsaround a single classical universe.The MW! suggestsa radically different Universe:all
classicaluniversesaresimultaneouslypresent,and the appearanceof a single classicaluniversearises
from the measurementprocess.The MWI leads to a different view of the appropriateboundary
conditions,andhencethe MWI implies a physicallydistinct quantumcosmology.

The matterin my classicalmodel is a perfectfluid. Since the mattertensorcompletelydeterminesthe
geometryin the Friedmannuniverse,I shall, in effect,be quantizingtheperfectfluid. Many workersin
quantumcosmologyworry aboutthe legitimacyof quantizingsuch a“field”, andso theydecideto let the
matterbe a scalarfield, for which the quantizationproceduresarewell understood.However,theactual
matter in the Universeis not now, and as far as we can tell, neverhas been,predominatelya scalar
field. This makesit difficult to apply the scalarfield quantumcosmologiesto the actualuniverse.

I personallybelievedirectly quantizinga perfectfluid is justified on physicalgrounds.Perfectfluids
havebeendirectlyquantized:Landaudid so in orderto studysuperfluids,and his quantumfluid model
[31] hasbeenfound quite accuratein describingmany (but not all) aspectsof superfluidity.Landau
quantizedthe fluid by replacingthe classicaldensityscalarandcurrent vectorwith quantumoperators
which were subject to certain commutationrelations.My quantizationprocedurewill be somewhat
analogousto his.

3. The Many-Worlds Interpretation

I shall beginthe presentationof the Many-Worldstheory with a simple examplewhich illustratesthe
salient featureswithout any unnecessarymathematicalcomplication.The simplestquantummechanical
systemof interestis a systemwith two possiblestates.For definitenesslet us think of thesestatesas the
two possiblestatesof the verticalcomponentof the spin of the electron,andtheywill berepresentedas

‘1~)and .~),the former denotingspin up, and the latter spin down. Acorrding to the postulatesof
quantummechanics,thesetwo statesform a basisfor the statespaceof the electron-spinsystemandso
any stateIa’) of this systemcan be written as a linear superposition

(3.1)

For reasonsthat will be apparentlater, I shall not imposean a priori normalizationcondition on the
constantsa andb.

According to quantumtheory,it is necessaryto includesomephysicsof the observeror measuring
apparatusin the analysisif one wishes to talk about the result of a measurementon a system.A
moment’sreflectionwill show that the essentialfeatureof a measuringapparatusis the ability to record
the result of a measurement.The essenceof a successfulmeasurementis the transferof information
aboutthe systembeingmeasuredto the memoryof the measuringapparatus,as Everett[2] andDeWitt
[20] (seealso [41and [5]) were the first to show.Sincein our simplesystemthe spinof theelectroncan
be spin up or spin down, we needan apparatuswhosememoryis sufficiently complexto recordeither
possibility. We shouldalso havean apparatusneutralstate,correspondingto no measurementhaving
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beenperformed.The minimal apparatusrequiredto measurethe spin of the electronshouldhave three
memory states u), d), In), which representthe memory recording the electron spin to be up, the
electronspinto bedown,andnorecordingyethavingbeenmaderespectively.(Theneutralstateisnotstrictly
speakingnecessary,but it simplifies the analysisenormously.SeeDeutsch’simportantpaper[491for a
discussionof thispoint.)The lawsof quantummechanicsmustberegardedasuniversalifwearetoapplythem
to cosmology, so theymust apply with equalforce to the measuringapparatusas to the systembeing
measured.Thus ageneralstate 1) of the measuringapparatusmustalsobealinear superpositionof the
threebasisstates.ThegeneralstateCosmos)of theuniverse,whichisdefinedto beeverything— all systems
andapparata— consideredin theanalysis,is asumof tensorproductsof thebasisstatesof thesystemwith the
basisstatesof the apparatus:

Cosmos)=~ a~~ ~). (3.2)

It is of coursenot a priori obviousthat the universe as definedabovecan be sufficiently divided into
systemsandapparatato permitwriting Cosmos)as a sumof tensorproducts.However,sucha division
must be possibleif the term “measurement”is to be meaningful, so we must assumethe universe is
sufficiently inhomogeneousto allow such a division. This assumptionis called The Postulate of
Complexity by DeWitt [21, 22]. It is an unobjectionableassumptionin standardquantummechanics,
but it must be justified in cosmology, where the system is the Universe itself. The measurement
correspondsto achangeof stateof theuniverse.Accordingto laws of quantummechanics,all changes
of state are accomplishedby linear unitary operatorsacting on the state. In our example, the
appropriatestate is Cosmos),so the measurementmust be representedas

MlCosmos(before))= ICosmos(after)) (3.3)

whereM is the linear unitary operator,and Cosmos(before)),JCosmos(after))are the statesof the
universebefore andafter the measurementis performed,respectively.It is very important to note we
haveeliminated all possibility of wave function reductionby our assumptionthat all apparataand
systemsareequallygovernedby the samequantummechanicallaws. Again, thisassumptionis essential
if standardquantummechanicsis to be appliedto the Universeasa whole. SinceM is a linearoperator,
its action on Cosmos)can be completelydeterminedby its action on the tensorproductsof the system
and apparatusbasisstates.For simplicity, we shall chooseM to representwhat DeWitt calls a “von
Neumannmeasurement”[23],which is a measurementthat hasno effecton the systemif the systemis
in an eigenstateof the observablemeasuredby the particular apparatusused. In the electron spin
example,if the apparatusis set to measurespin up or down, andthe electronspin happensto be either
up or down, then a von Neumannmeasurementis performedif the apparatusrecordsspin up or down,
respectively,and further the stateof the electronis not changedby the measurementinteraction.This
measurementcan be representedformally as

M~j’)~n)=~j’)~u) (3.4a)

MI~)In)=I~)Jd). (3.4b)

Thus if the systemis in an eigenstateof the systemvariable to be measuredby the apparatusa von
Neumannmeasurementdoes not disturb the system.The existenceof such measurementoperators
surprisesmanyphysicists.EversinceHeisenbergusedhis gamma-raymicroscopethought-experimentto
demonstratethe UncertaintyPrinciple for the position and momentumof an electron, many have
believedthat a measurementon asystemnecessarilydisturbsthe system,andthis disturbanceis causeof
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the UncertaintyPrinciple. This is not true. The operatordefinedin (3.4) doesnot disturb the system
(provided the system happensto be in an eigenstateof the componentof spin measuredby the
apparatus).For virtually any variable, measurementoperatorscan be definedwhich havethe effect of
recordingthe stateof the system in the memory of the measuringapparatuswithout disturbing the
system.As DeWitt hasstatedit “. . . if suitabledevicesare used,...the apparatuscan recordwhat the
value of the systemobservablewould havebeen without the coupling [24]”. In our simple two-spin-
stateelectronexample,the Stern—Gerlachapparatuscanbe regardedas a physicalrealizationof such a
von Neumannmeasuringapparatus,provided the vertical componentof momentumof the atom is
consideredto be the memorytraceof the apparatus,and spin precessionis ignored. (Seeref. [20] pp.
201—202for a fuller discussion.)

The effect of a von NeumannmeasurementoperatorM acting on any state (3.2) where we set
Cosmos(before))= ~/J) ~)for simplicity, andwith ~/i) given by (3.1) and t1) = n) is then

MlCosmos(before))= M(aI 1’ ) + bI ~ ))In)
=M(alt )~n))+M(bI~
= alt )Iu) + bI~)Id)

= Cosmos(after)). (3.5)

We can assumethat {I ‘1’ ) In), I ~) In)} span the initial statespace,for we shall assumethe apparatusis
alwaysinitially in the neutralposition.

The fundamentalproblem in the quantum theory of measurementis deciding what the linear
superpositionof universestatesin the third line of eq. (3.5) means.Theadvocatesof the Many-Worlds
Interpretationdecide this questionby arguingas follows. It is obviousthat eachelementin the two
cases(3.4) correspondsto a real physicalstateof someactualentity eitherassociatedwith the systemor
the apparatus.If we grantthat the state(3.1) alsocorrespondsto an actualphysicalstate— and we can
justify thisby referenceeither to innumerableexperimentsor to the superpositionprinciple of quantum
mechanics— andwe grantthat quantumevolutionof everythingin existenceoccursvia linear operators,
thenwe are led necessarilyto the conclusionthat each term in (3.5) correspondsto an actual physical
state.We areforced to say that the universe“splits” into two “worlds”. In the first world, represented
by the first term in (3.5), the electronhasspin up, andits spin is measuredto bespin up. In the second
world, representedby the secondterm in (3.5), the electronhasspin down, andits spin is measuredto
bespin down. Anotherway to expressthis is to say that all a quantummeasurementdoes,or indeedcan
do, is establisha uniquecorrelation betweenstatesof the systembeing measuredand statesof the
measuringapparatus.In the abovediscussion,I qualified the statementthat the operator(3.4) did not
disturb the systemwith theproviso that the systembe in a certaineigenstate.If thesystemis not in an
eigenstate— as it is not in (3.5)—then the operatordoeseffect the system.What theoperator(3.4) does
when the systemis in a general stateis establishcorrelationsbetwe~nthe apparatusbasis statesand
thosesystembasis stateswhich are selectedby the choiceof apparatusbasis states.The existenceof
thesecorrelationscan bedetectedif the {system}+ {apparatus}is measuredby a secondapparatus.For
example,a short calculationwould show that a measurementof the systemby an apparatuswith basis
statescorrespondingto a measurementof spin in the horizontalratherthanthe verticaldirection would
givea different result if thesystemis measuredby thesecondapparatusbefore thesysteminteractswith
the first apparatus,than the result which the secondapparatuswould obtain were it to measurethe
system after the system has been measuredby the first apparatus.Needlessto say, the practical
importanceof thesecorrelationswill dependon the size of the systemand the measuringapparatus
relative to Planck’s constant, and in the situation where the system and the apparatusare both
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macroscopicobjects(which is the casewe are interestedin here), the correlationscan be effectively
ignored.

There is a misconceptionin popularaccountsaboutthe MW! which must be clearedup before the
MW! can be applied to cosmology.The misconceptionarisesbecausethe word “universe” is used in
onesensein technicaldiscussionsaboutthe MW!, andin anothersensein non-technicaldiscussions.We
havesaid in our interpretationof (3.5), which is the stateof the universeafter the measurement,that
the universeis split by the measurement.This is the standardterminologyin the technicalliterature,but
it is important to note thissplit is to be associatedmorewith the measuringapparatusratherthan with
the systembeing measured.In the caseof a von Neumannmeasurement,the system is not effected
(again, with the exceptionof the correlations)by themeasurement,so it is completelymisleadingto the
system as splitting as a result of the measurement.On the other hand, as is obviousfrom (3.5), the
measuringapparatusundergoesa tremendouschange: it goesfrom in) to either lu) or Id) (or both). Of
course,in measurementswhich arenot of the von Neumanntype, the systemvariablesandnot just the
system/apparatuscorrelationswill be changedby the measurement,but for macroscopicsystemsthe
changeof the system variablesare very small; measurementsof such systemscan be regardedas
essentiallyvon Neumannmeasurements.In particular,a measurementof the radiusof the Universecan
be considereda von Neumannmeasurement,and it would thus be more appropriateto regard the
recordingapparatusas splitting rather thantheUniverse,althoughthe “universe” in the technicalsense
defined above does split. The “universe” in the technical senseincludes just the system and the
measuringapparatus,whereasthe Universein the non-technicalsenseincludesthesetwo entities,plus
everythingelsein existence.I havemadea distinctionbetweenthe two usesof the word “universe” by
capitalizingthe word when it refers to the totality of everything in existence,and left it uncapitalized
whenit refers to just the systemandthe apparatus:i.e., to everythingbeingconsideredin the analysis
of the measurement.The other things in the Universe, thosethings which are not consideredin the
analysisof the measurement—theplanets,starsand galaxies—arecoupled only very weakly to the
measuringapparatus.Thustheseother itemsdo not split whenthe apparatusdoes.Looking at thesplit
from thispoint of view obviatesoneof the majorobjectionsto the MW!, which is that the MWI seems
to requireif not an actualinfinity, then at leasta largenumberof “Universes” (in thepopularsense)to
explain a measurementof somemicroscopicphenomena,andthis is contrary to Occam’sRazor. In the
explanationof the MWI given above, thereis only one Universe,but small parts of it — measuring
apparata— split into severalpieces.They split — or moreprecisely,theyundergoa drasticchange— upon
the act of measurementbecausethey are designedto do so. If they were not capableof registering
changeson a macroscopiclevel theywould be quite uselessas measuringdevices.This fact plus the
linearity of quantummechanicaloperatorsrequiresthem to split.

Everetthimself realizedthat it is moreappropriateto think of the measuringapparatusratherthan
the Universeas splitting. In reply to a criticism by Einstein againstquantummechanics,to the effect
that he (Einstein) “. . . could not believe... a mousecould bring aboutdrasticchangesin the Universe
simply by looking at it,” Everett said, “. . . it is not so much the system which is affected by an
observationas the observer.. . ([20] p. 116). .. . The mousedoes not affect the Universe— only the
mouseis affected” ([201 p. 117).

We can seethisformally by simply putting the non-interactingremainderof theuniversein eq. (3.5):

MiUniverse(before))= M(aJ t ) + b~J1 ))~n)everythingelse)

= al ~)~u)Ieverythingelse)+hi ~ )ld) everythingelse)
= (a it) lu) + b I ) Id)) everythingelse). (3.6)

It is clear from (3.6) that “everythingelse” doesnot split.
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Bryce DeWitt hasoccasionallydescribedtheMany-Worlds Interpretationin terms which suggesthe
disagreeswith Everett’sassessmentquotedabove.For instance,DeWitt hasclaimed: “The Universeis
constantly splitting into a stupendousnumberof branches,all resulting from the measurement-like
interactionsbetweenits myriads of components.Moreover, every quantumtransition taking place on
everystar,in everygalaxy, in everyremotecorner of the Universeis splitting our local world on Earth
in myriads of copies of itself.. . . I still recall vividly the shock I experiencedon first encounteringthis
multiworld concept.

“The idea of 10100+ slightly imperfect copies of oneselfall constantlysplitting into further copies,
which ultimately becomesunrecognizable,is not easy to reconcile with common sense.Here is
schizophreniawith avengeance([20] p. 161).”

I fear I muststandwith EverettagainstDeWitt; I believeEverett’sword pictureis closerto what the
mathematicsis telling us thanthe imageinvokedby DeWitt’s phrasing.A humanbeingcan properly be
saidto split only if he undergoesan interactionwith restof the Universewhich causesa changeof state
in hismemory, in which differentstatesof hismemoryarecorrelatedafterthe interactionwith different
statesof that portionof the restof the Universewith which he interacted.The overwhelmingmajority
of quantumtransitionstaking placein distant starswill not inducea changeof stateanalogousto (3.4),
with i~) representingthe humanmemory,evenif the word “memory” is expandedto includeany part
of the humanbody that can record the effect of interacting with the external world. Thus these
transitionswill not inducea split in the humanbeing.With respectto thesedistantquantumtransitions,
the humanbeing is analogousto everything else) in (3.6). The humanbeing is not split by these
transitions.

A humanbeing, or indeed any measuringapparatus,would be unawareof, or in the caseof an
inanimateapparatus,could not detect, thosesplits which he/she/itdoesundergo.To detectthe split
wouldentail introducinga secondobservingapparatusinto the universewhich is capableof recordingin
its memoryboth worlds lu) and Id) of the split first apparatus.In the caseof a humanbeing, the two
apparatacould in principle be two sectionsof the humanmemory, the secondof which observesthe
first. It is impossibleto constructsuch a secondapparatusif it is reasonablyrequiredthat this second
apparatusdefinitely recordsthe first apparatusto be in the state u) if in fact it is, or in the stateId) if in
fact it is. We may as well let the secondapparatusperforma von Neumannmeasurementon thesystem
simultaneouslywith measuringthe first apparatus,as a check. We require only that the second
apparatusrecordthe systemasbeing in the stateJ ~ ) if in fact it is in thisstate,andas being in the state

I ~) if in fact it is in thisstate.The stateof thesecondapparatus,IA2), canthusbe expandedin termsof
basis statesof the form ai, a2), where a1 recordsthe value of the systemvariable and a2 recordsthe
contentof the first apparatus’memory. Both a1 and a2 can havethe values n, u or d. Before the
interactionbetweenthe secondapparatusand the rest of the universe,we shall require the second
apparatusto be in the state in, n).

The above restrictionson what the secondapparatusmust record uniquely defines the second
apparatusinteractionoperatorM2 acting on the basisstatesof the universe.We have

M21 I )iu)in, n) = I I )iu)iu, u) (3.7a)

M2i ~ )id)in, n) = I ~ )id)id, d) (3.Th)

M2i I )in)in, n) = it )In)iu, n) (3.7c)

M2i ~ )in)in, n) = I J1 )jn)Id, n). (3.7d)
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The last two entriesin (3.7) areeffectiveonly if we were to interactthe secondapparatuswith the rest
of the universe before the first apparatushas measuredthe stateof the system.Beforeany measure-
mentsby any apparatusare performed,the stateof the universeis

ICosmos(before))= i~’)In)In,n). (3.8)

A measurementof the stateof the systemby thefirst apparatus,followed by measurementsof the state

of the systemandthe stateof the first apparatusis thusrepresentedas:
M2M1ICosmos(before))= M2M1(ai I) + bi ~ ))In)in, n)

= M2(ai I )Iu)in, n)+ bJ ~)id)in, n)) (3.9a)

= alt )Iu)iu, u)+ bi ~)id)Id, d). (3.9b)

It is clear from (3.9) thatthe first apparatusis the apparatusresponsiblefor the splitting of the universe.
More precisely,it is the first apparatusthat is responsiblefor splitting itself and the secondapparatus.
The secondapparatussplits, but the split just follows the original split of the first apparatus,as is
apparentin (3.9b). As a consequence,the secondapparatusdoesnot detect the splitting of the first
apparatus.Again, the impossibility of split detection is a consequenceof two assumptions:first, the
linearity of the quantum operatorsM2 and M1 second, the requirement that M2 measure the
appropriatebasis states of the system and the apparatuscorrectly. The second requirement is
formalizedby (3.7). Again, in words this requirementsaysthat if the systemandfirst apparatusare in
eigenstates,then the secondapparatushadbetterrecord this fact correctly.

Our ultimate goal is to developa formalismwhich will tell us what we will actuallyobservewhenwe
measurean observableof a systemwhile the systemstate is changingwith time. Onelessonfrom the
aboveanalysison quantummechanicsfrom the Many-Worldspoint of view is that to measureanything
it is necessaryto set up an apparatuswhich will record the result of that measurement.To have the
possibilityof observinga changeof someobservablewith time requiresan apparatuswhich can record
the results of measuringthat observableat sequentialtimes. To make n sequentialmeasurements
requiresan apparatuswith n sequentialmemory slots in its staterepresentation.At first we will just
considerthe simple system (3.1) that we have analyzedbefore, so the time evolution measurement
apparatushas the stateJE), which can be written as a linear superpositionof basis statesof the form

(3.10)

whereeachentry a1 can havethe valuen, u or d, as before.The jth measurementof the systemstateis
representedby the operatorA1, definedby

M11 t )~a1,a2,. . . , a1,...,a~)= I I )1a1, a2,. . . , u a~) (3.lla)

M11 I )1a1, a2,. . . ,a1, . . . , a~)= I I )1a1, a2, . . . ,d, . . . , a,) . (3.llb)

As before,the initial stateof the apparatuswill be assumedto be In, n n). The measurementis a
von Neumannmeasurement.

Time evolution will be generatedby a time evolutionoperatorT(t). It is a crucial assumptionthat
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T(t) act only on the system,and not haveany effect on the apparatusthat will measurethe time
evolution. In other words, we shall assumethe basisstates(3.10)arenot effectedby the operatorT(t).
This is a standardandindeedan essentialrequirementimposedon instrumentsthatmeasurechangesin
time. If the recordof the valuesof someobservablechangedon time scalescomparablewith therate of
changeof the observable,it would be impossibleto disentanglethe changeof the observablefrom the
changeof the recordof the change.When we measurethe motion of a planet,we record its positions
from day to day, assuming(with justification!) that our recordsof its position at various timesare not
changing.If we write the apparatusstateas I~),the effect of a generaltime evolutionoperatorT(t) on
the basisstatesof the systemcan be written as

T(t)i I )~P)= (aij(t)I I) + a12(t)i I ))i~1~) (3.12a)

T(t)i I )I’) = (a21(t)I I) + a22(t)i I ))I~). (3.12b)

Unitarity of T(t) imposessome restrictionson the ac’s, but we won’t haveto worry about these.
Interpretingthe result of a measurementon the systemin an initially arbitrary stateafter an arbitrary
amountof time haspassedwould require knowing how to interpret the ac’s, andas yet we havenot
outlined themeaningof thesein the MWI. So let us for themomentanalyzeavery simplified typeof time
evolution. Supposethat we measurethe state of the systemevery unit amount of time; that is, at
t = 1, 2, 3,..., etc. Since time operatorssatisfy T(t) T(t’) = T(t+ t’), the evolution of the systemfrom
t = 0 to t = n is given by [T(1)]”. Again for simplicity, we shall assumea11(1)= a22(1)= 0, a12(1)=
a21(1)= 1. This choicewill give a unitary T(t). We have

T(1)II)J~I~)iJ,)I’P) (3.13a)

T(1)II)I1)=iI)iP). (3.13b)

All that happensis that if the electronspin happensto bein an eigenstate,that spin is flipped from one
unit of time to the next,with [T(1)]

2~= I, the identity operator.
After every unit of time we shall measurethe state of the system. The time evolution and

measurementprocessestogetherwill be representedby a multiplicative sequenceof operatorsactingon
the universeas follows:

M~T(1)M~_
1T(1)— . M~T(1)M1 I~/’)In, n, . . . , n) (3.14a)

= M~T(1)M~_1T(1)~. . M2 T(1) [Mi(aI I) + bI I ))]In, n,. . . , n) (3.14b)

= M~T(1)M~_1T(1)~ M2 T(1)(all’ )iu, n, . . . , n)+ bi I )Id, n, . . . , n)) (3.14c)

= M~T(1)M~_1T(1)” M2(aj I )Iu,n,. . . , n)+ bit) Id, n,. . . , n)) (3.14d)

=M,,T(1)M~_iT(1)~”MsT(1)(aIJ~.)Iu,d,n...)+bIt)id,u,n,...)) (3.14e)

andso on.
The particularlyinterestingstepsin the abovealgebraare(3.14c)and(3.14e).The first measurement

of the stateof the systemsplits the universe(or moreprecisely,the apparatus)into two worlds. In each
world, the evolutionproceedsas if the otherworld did not exist.Thefirst measurement,M1, splitsthe
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apparatusinto the world in which the spin is initially up and the world in which the spin is initially
down. Thereaftereach world evolves as if the spin of the entire system were initially up or down
respectively.

If wewere to choosea = b, then T(1)j~i)iJ)= i~’)iJ);i.e., thestateof thesystemin the absenceof a
measurementwould not change with time. It would be a stationary state. If the system were
macroscopic—forinstance,if it were the Universe—theneven after the measurementthe Universe
would be almoststationary;the very smallchangein the stateof a macroscopicsystemcan be ignored.
Nevertheless,the worldswould changewith time. An observerwho was capableof distinguishingthe
basisstateswould see a considerableamountof time evolutioneventhough the actual,total stateof the
macroscopicsystemis essentiallystationary.Whetheror not time evolution will be observeddepends
moreon the details of the interactionbetweenthe systemandthe observertrying to seeif the change
occursin the system,ratherthan on what changesareactually occurringin the system.

In order to interpretthe constantsa, b in (3.1), or the a~1’sin (3.12), it hasbeenshownby Hartle [28],
Finkelstein [291and Graham[30] (seealso DeWitt’s articles in [20]) that it is necessaryto use an
apparatuswhich makesrepeatedmeasurementson not merelya single stateof a system,but ratheron
an ensembleof identical systems.The initial ensemblestatehasthe form:

iCosmos(before))= (k?1))mln, n, n, .. . ,n) (3.15)

wheretherearem slots in the apparatusmemorystateIn, n, .. . ,n). The kth slot recordsthe measured
stateof the kth system in (i~(,))m.The kth slot is changedby the measuringapparatusoperatorMk,
which actsas follows on the basisstatesof the kth ~‘):

Mki~)” . ~)iu)I~Y. . ~)in,n,. . . ,n) = I~)~~)Iu)I~ . . i~)in,.. . , n, u, n,. . . ,n) (3.16a)

J~4’kI~’) I~’)id)I~’). . . kl’)in, n n) = Iv’) kfr)Id)I~’). . . I~’)In,n, . . . , n, d, n, . . . , n) . (3.16b)

The Mk operatoreffectsonly the kth slot of the apparatusmemory. It has no othereffect on eitherthe
systemensembleor the othermemoryslots.

If we perform m statemeasurementson the ensemble(i~1,))m,an operationwhich would be carried
out by the operatorMmMm_i .. . M2M1. The result is

MmMmi . M2[M~(a~I )+ bI I ))1(I~))m~hIn,n, . . . , n)

= MmMm~t MsM2(i~))”’’(aII )iu, n,. . . ,n)+ bI I )id, n,. . . ,n))

= MmMm~i~~Ms(i~))m
2(aM

2i~)iI )iu, n, . . . ,n)+ bM2f~)iI )id, n,. . . ,n))

= Mm M4(i~))~
3(M

3i~))(a
2iI )i I )Iu, u, n,. .. ,n)

+abiI)II)iu,d,n,...,n)+bail)II)Id,u,n,...,n)+b2II)II)Id,d,n,...,n))

= ~ a’b~1(iI ))‘(I I ))~‘isi,S2,. . . , sm)

wherethe s
1’s representeither u or d, andthe sum is overall possiblepermutationsof u’s andd’s in the

memorybasisstateIs1, ~2’• . , Sm). All possiblesequencesof u’s andd’s arerepresentedin thesum. The
measurementoperatorMm . . M1 splits the apparatusinto 2~worlds. In this situation we havem
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systemsrather thanone,so eachmeasurementsplitsthe apparatus(or equivalently,the universe).Each
measurementsplits eachpreviousworld in two.

In eachworld, we now calculatethe relativefrequencyof the u’s andd’s. Hartle [28], Finkelstein[29]
and Graham[30] haveindependentlyshown that if a, b aredefinedby a = (~‘II) and b = (~I’i I), then
as m approachesinfinity, the relative frequencyof the u’s approachesaI2/(Iai2+ ibI2), andthe relative
frequencyof the d’s approachesIb12/(la12+ IbI2) in theHilbert spacefor which the scalarproductdefines
(~‘II) and(4”i I), exceptfor a set of worldsof measurezeroin the Hubertspace.It is only at thisstage,
wherea andb areto be interpreted,that it is necessaryto assumeIv’) is avector in a Hilbert space.For
the discussionof universesplitting, it is sufficient to regardi~/’)asa vectorin a linear spacewith ~/‘)and
cI~i),for any complexconstantc, beingphysicallyequivalent.If weimposethe normalizationcondition

Iai2+ Ib12= 1, then al2 and IbI2 will bethe usualprobabilitiesof measuringthe statei~/’)in the stateII)
or I), respectively.It is not essentialto imposethe normalizationconditionevento interpret a and b.
For example, a12/(1a12+ lbI2) would representtherelativeprobability of the subspace(~‘I I) asopposed
to (~‘I I) even if we expandedIv’) to includeother states,enoughto makeIv’) itself non-normalizable.
This point is importantbecauseit allows us to considernon-normalizableUniversalwave functions. In
the quantizationprocedureI shall develop in the next section,the ability to handlenon-normalizable
wave functions will be absolutelyessential,for the universal wave function generatedby my quan-
tization methodwill in fact be non-normalizable.

Onekey point can be madenow: sincethereis only one Universerepresentedby only one unique
wave function l~~’),the ensemblenecessaryto measureRaL~P)I2cannot exist for any state a). Thus,
being unmeasurable,the quantitiesI(aL!P)12 have no direct physical meaning.We can at bestassume
a12/(lal2+ 1bl2) measuresrelativeprobability. But thereis still absolutelyno reasonto assumethat I~~’)is
normalizable.

We will now considerwave packetspreadingfrom the Many-Worldspoint of view. A simple system
which will show the essentialfeatureshasfour degreesof freedom,labeledby the basisstatesII)~I I),
I—*) and ~—). As before,we shall needa measuringapparatusto recordthestateof the systemif we are
to sayanythingaboutthe stateof the system.Sincewe areinterestedin measuringtime evolution,say
at m separatetimes (which will be assumedto be multiplesof unit time, as before),we shall needan
apparatusstatewith m slots: in, n,.. . , n), wherethe n denotesthe initial “no record” recording.The
kth measurementof thesystemstatewill be carriedout by the operatorMk, which changesthe kth slot
from n to u, d, r or 1, dependingon whetherthe stateof the systemis lI)~I I), —~) or I~—)~respectively.
The time evolution operatorT(t) will not effect the apparatusstate,and its effect on the systembasis
statesis as follows:

T(1)II)= a
1..I—~)+a1Ill) (3.17a)

T(1)II)=a~J—)+a~1II) (3.17b)

T(1)I~—)= a~II )+ a_..I—~) (3.17c)

T(l)l—~’)= a. ~ 1)+ a..._I+—). (3.17d)

The effect of the time evolution operatoris easily visualizedby regardingthe arrow which labels the
four basisstatesof the systemas a handof a clock. If the handis initially at 12 o’clock (basisstateI I )),

the operatorT(1) carriesthe handclockwiseto 3 o’clock (basisstate_-*)), andto 6 o’clock (basisstate
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I I)). More generallyfor any basis state,the operatorT(1) carries the basisstate(thought of a clock
handat 12, 1, 6 or 9 o’clock) clockwiseone quarterand one half the way aroundthe clock. We shall
imaginethat

acl2~’IaIkI (3.18)

if j = i + 1, andk= i + 2, where i + n meanscarryingthe arrow clockwise aroundn quartersfrom the
ith clock handposition.The condition(3.18) meansroughly that “most” of the wave packetinitially at
one definite clock position is carried to the immediatelyadjacentposition in the clockwisedirection,
with a small amountof spreadinginto the positionhalfway aroundthe clock. In addition to satisfying
(3.18), the constantsau must be chosento preservethe unitarity of T(t), andlet us supposethey will
havetheproperty T(t) id’) = lu’), where iv’) = It) + l—~)+ II) + I~—).The measuredtime evolutionof the
state I I) throughthreetime units is then

M
4T3M3T2M2T1M1JI)in,n,n,n)=M4T3M3T2M2T1II)iu,n,n,n) (3.19a)

= M4T3M3T2M2(at...I—*)+a1 ~II ))Iu, n, n, n) (3.19b)

r, n,n)+ a1 ~II )lu,d,n,n)) (3.19c)

= M4T3M3[a1..(a~II )+ a...,4*—))iu,r, n, n)+ a1 ~(a1 .I~—)+a1 ~II ))Iu, d, n, n)] (3.19d)

= M4T3[a1.a.1 II )Iu, r, d, n)+ a .a.I~—)!u,r, 1, n)
+at1a1..I~—)lu,d,l,n)+a11aj111)Iu,d,u,n)] (3.19e)

~

~

(3.19f)
= a~.a~a1~~~l~—)Iu,r,d,l)+ a 1..a.1a1 ~ )Iu, r, d, u)+six otherterms. (3.19g)

Thus eachmeasurementsplits eachpreviousworld into two; the numberof branchesof the universe
doubles upon each measurement.The time evolution however, does not split worlds, for only
measurementscan do that. Eachworld is definedby a definite sequenceof measuredsystembasisstates
in theapparatusmemory.(This is anotherindication that it is moreappropriateto regardthe apparatus
as splitting ratherthan the system.)Every possiblesequenceof recordsallowedby the time evolution
operatoris representedin the universe after eachof the three measurements.However, becauseof
condition (3.18) and the probability interpretationof the constantsa~,some of the worlds are much
more probablethan others. The first world in the list in (3.19g), the world l~—)Iu,r, d, 1) is the most
probableworld to be in at the endof threetime periodsandfour measurements,sincethe coefficient of
this world hasthe largest relative modulus.When condition (3.18) is imposed, the time evolution
operatoris most likely to carry the systemstate into the clockwiseadjacentstate,and indeedthis is
what is recordedin the memorysequenceof the most probablefinal stateof the universe.We might
regard this sequenceas the “classical” evolutionarysequence,becauseit is both the sequenceof the
peakof the wavepacketinitially in the stateI I)~and,as a consequence,the mostprobablefinal state.
It is possible,of course,to havea memorysequencecorrespondingto a “non-classical”world: one in
which the observedmotion is not from i to i + 1. The mostprobableof the “non-classical”worldsare
thosewhich haveonly onememoryslot entryout of the classicalsequence,so if onedid not observea
purely “classical” evolution, the most likely oneto seeis oneof the oneswhich is as close to “classical”
aspossible.
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For all worlds— memory sequences— thereis no overlapbetweenthe worlds, eventhough by the
secondtime period the wavepacketsof the systemhavebegunto overlaponeanother.This is a general
propertywhich is a consequenceonly of the linearity of the operators,the assumptionthat the time
evolution doesnot effect the apparatusmemory,and the assumptionthat the measurementis a von
Neumannmeasurement.

If we hadevolvedandmeasuredthe time evolutionof a generalsystemstate I~’)~the resultswould
havebeenbroadly speakingthe same.For example,if we had chosen ~‘)= II) + I—k) + II) + I~—)~then
if the ac’s werechosenas in (3.19) but with the addedproviso that T(1)I,/i) = I~’)~thentherewouldhave
beenfour maximumprobabilityworlds,eachof which would be observedto evolve “classically”, as we
havedefinedit. The “classical” worldswouldbe definedby the initial staterecordedin the first memory
slot: for each “classical” world, the recordedvalue i in the first slot would be u, r, d or I, andthe value
recordedin the kth slot would be i + k. The overlapbetween the system wave packetswould be
enormous,but the overlapwould not be seenby the measurementapparatus.

We havehithertoassumedin our analysisthat the eigenspectraof both the apparatusandthe system
arediscrete.This is a convenientbut not essentialassumption.If one wishesto havethe universebe
split cleanlyby a measurementinto distinct, non-overlappingworlds thenit will be necessaryto assume
that at leastoneof the systemandapparatushavea discretespectrum.It neednot be both that havea
discrete spectrum,but one must. To see this, we shall use a notation for the MWI measurement
developedby DeWitt [20]. DeWitt’s basisstatesare Is)IA), where s labelsthe systemvariable(which he
assumesto be discrete),andA labelsthe apparatusvariable (which he assumesto be continuous).A
measurementof the systemvariable s is accomplishedby the operatorM, which hasthe effect

MIs)IA) = Is)IA + gs) (3.20)

whereg is somesmall coupling constant.The result of a measurementon ageneraluniverse state
IV~)= I~’)I~)~where I~/’)is a generalstateof the systemand IP) is a generalstateof the apparatus,is
thus

MI~) = ~(ski)J (AIPIA + gs)dA. (3.21)

In orderfor (3.21) to makesense,the systemandapparatusstatespacesmustbeHilbert spaces.DeWitt
normalizesthe basesas follows:

(s I s’) = ~ (A I A’) = 3(A— A’)

(3.22)~J s)IAXsRAIdA =1.

Since the apparatusvariable A is continuous,the measurement(3.20) will not split the apparatusinto
clearly distinct apparatusstatesunless we restrict the supportof the initial apparatusstate IcI~). We
require Z) to satisfy

(3.23)

wh~.rez~sis the spacingof the discrete systemvariable s (that is, the distancebetweenadjacents



254 Frank I Tip/er, Interpreting the wavefunction of the Universe

values),and ~A is the root mean squaredeviationof A from its averagevalue definedby the wave
function (A I

J (A-(A))2I(AI~)I2dA

J (A I ~)I2dA (3.24)

(A) = (~[‘IAi~)/(~PI~P)= (~IAIcP)/(~I ~).

To seethe effect of condition (3.23), it is useful to imagine the function VA I 1)J2 to be a Gaussian
distribution with standarddeviation ~A, and peakat (A). The result of measuringa systemwhich
happenedto be in a systembasisstatewould be, from (3.21),

MIs)I~)= Is) J(A I ~) IA + gs) dA

= is)J(A_gsI~)IA)dA

which meansthat the peakof the Gaussianis movedfrom (A) to (A) — gs. If condition (3.23) holds,
thentherewill be essentiallyno overlapbetweenthe Gaussianin its shiftedposition,andthe Gaussian
placedin its original position.

With condition (3.21) the effect of the measurementoperatoron a general system state I’!’) =
~ is) (s I ~‘)is to split the apparatuswavefunction into a numberof non-overlappingwave functions,one
for eachvalueof the systemvariables. This sum of non-overlappingwave functionsis essentiallywhat
(3.21) denotes.The single Gaussianwave packet going to several non-overlappingwave packetsis
analogousto the transitionIn) -~ {Iu), jd)} which occurredin the discretevariableapparatuswe discussed
above. Condition (3.21) insures that the basis statesof the continuousvariable apparatusdo not
interfereafterthe measurement.Sucha conditionis not necessaryif the apparatusmemoryhasdiscrete
variablesonly.

If both systemsand apparatusvariablesarecontinuous,then the sum in (3.20) must be replacedby
an integral over s. There is no obvious replacementfor (3.21); we cannot restrict g2 ~ =

g2 f (s— (s))2I(s I çli)~2ds, becausewe want to measuresystemstatesmore general than narrow Gaussian
wave packets.Whateverthe form of (s u’), the effect of themeasurementis to correlateeachs with an
A. The original narrowGaussianwave packetI(A I ~)l2 is smearedout by themeasurementoperator;it
is no longer a narrow Gaussian,but a wide one, and it cannot be representedas a superpositionof
non-overlappingwave packets. It will prove instructive to demonstratethis in detail. Before the
measurementthe universeis in the state

I~)=I~)I~)=ffdsdA s) IA) (sl~)(Al ~)

where the continuousvariables s, A will be assumedto go from —~ to +°~,and I(A I ~)I2 will be
assumedto be a narrowGaussianin A with peakat (A) andstandarddeviationt~A.The measurement
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operatorwill havethe effectMIs) IA) = Is) A + gs) on the basis states.A measurementon the universal
stateI II’) will yield a state

MI ~)=JJdsdA Is) IA + gs)(s I ~)(A I ~) (3.25a)

= Jds(s I ~)Is) [JdA IA) (A - gs ~)] (3.25b)

= JdA IA) [Jds js) (s I ~)(A - gs I ~)] (3.25c)

= J dA IA) I~)A (3.25d)

where (3.25b) hasbeenobtainedby a changeof apparatusvariable. The state I~’)A,which is definedto
the statein bracketsin (3.25c), representsthe superpositionof system basis stateswhich havebeen
correlatedwith agiven apparatusvariableA. Thewave function(A — gs I 1) will be a Gaussianpeaked
at the valueA — gs= (A). This implies that the valueof s in kI’)A (whereinA is fixed) will bepeakedat
s = (A — (A))/g, with a spreadof

z~s= ~((A — (A))/g)= L~A/g.

But in the total universal wave function (3.25d) the value of A is not fixed: it varies from —~ to +o~.

This meansthat the Gaussianin s, whichis peakedat (A — (A))/g, is smearedout asfar as the effective
support of (s I v’) will permit; if (s I i/i) = constant,then the Gaussianwill be spreadinfinitely wide and
will be non-normalizable.If s were discrete,then thiswould not occurbecausein this case(s I i/i) would
in effect be very narrow Gaussianspeakedat the integral values of s. Thesenarrow Gaussiansin the
stateI~’)Awouldcausethe integrandin (3.25d) to haveeffectivesupportonly in separatedregionsof the
variable A, and so the integral would be replacedby a sum. Therewould be a clear split in the
apparatusstates.

DeWitt [32] has called a superpositionwith systemand apparatusvariablesboth continuous, an
“imperfect measurement”,becausethereis no clear split in the apparatusmemorystates.However,
DeWitt [32]claimsa split can beforced in animperfectmeasurementby introducinga secondapparatus
to measurethe stateof thefirst apparatus.

Let us investigateDeWitt’s claim by calculatingthe stateof the universewhich consistsof a system
and two apparataafter the first apparatuswith initial stateI~)= fdA IA) (A I ~), measuresthe system
stateand after the secondapparatus,with initial stateIF) = f dB IB) (B I F), hasmeasuredthe stateof
the first apparatus.The measurementoperatorsaredefinedby:

MA is) IA) IB) = Is) IA + gs) IB) (3.26a)

MB Is) IA) B) = Is) IA) lB + hA). (3.26b)

The effect of a measurementon a generaluniversalstateJ!1’) = I’!’) I~)IF) is then:
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MB MA ~)i~)IF) = MB ff dA ds Is) A) (s I ~)(A - gs I ~)J dB iB) (B IF) (3.27a)

JJdA ds Is) IA) (s I ~)(A - gsI ~)J dB lB + hA)(B I F) (3.27b)

=fJdA ds Is) IA) (s I ~)(A - gs I ~)J dB IB) (B - hA F) (3.27c)

= f dB IB) I~)B (3.27d)

wherewe havedefined

I~)B=JJdAdsIs)IA)(sI~)(A_gsI~)(B_hAIF).

We shall assumeasbefore that {s, A, B} are all continuousvariableswith rangesfrom —~ to +~,and
that (A I P), (B I F) are both Gaussianwave packets,with peaks at (A) and (B), and standard
deviation~A andi~B,respectively.

To assessthe splitting effect of the secondapparatus,let us assumethe systemwavefunction to be
flat: (s I ~,) = 1. In this case,a close inspectionof (3.27c) and (3.27d) showsthat I~/’)B does not have
peaks,just certaindistinct valuesof B. Rather,it is a statewhich is just as smearedout as ~‘)A sincethe
wave function product

(A—gsl’i) (B—hAlF)

will peak for any B for a suitable choice of A and s. In short, a secondapparatuswith continuous
variableswill not generatea measurementsplit in the universe.I fear I must disagreewith DeWitt’s
claim to the contrary.A clearsplit will occuronly if the systemor apparatusvariable is discrete,or if
both arediscrete.A consistentformulationof the Many-WorldsInterpretationrequiresthat continuous
variablesbe measuredby discretevariables,at least if a “good measurement”is definedto be one in
which thereis a clearandunequivocalsplit.

One may get confused if one consults Everett’s original paper on the question of measuring
continuousvariables,for he discussed[34] at length the “measurement”of the positionof a particleby
recordingit in the positionof a pointer,with both the pointer andparticle position beingregardedas
continuous.However, it shouldbe kept in mind that Everett did not define a “good measurement”,a
conceptintroducedby DeWitt [20].I believethisconceptis essentialif the natureof the measurement
processis to be understood.A “good measurement”is onewhich resultsin a clearsplit.

Sincewe shallbe interestedin measuringthe radiusof the universe,which is acontinuousvariable,it
will be useful to formulate the measurementof a continuoussystem variableby a discreteapparatus
variable. The stateof the universebefore the measurementwill be denoted

I~)= I~)I~) = ~IA) Jds Is) (si~)(Al ~). (3.28)

For concreteness,we will restrict the continuousvariable s to (0,+~)—therangeof possiblevaluesof
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the radiusof the Universe— andthe rangeof the discretevariableA to the non-negativeintegers.Since
the variableA is discrete,it will be able to distinguishvaluesof s only if thesevaluesaresufficiently far
apart.We will imaginethat the measurementregistersin the memoryof the apparatusonly theinteger
portion of the positivereal numbers, written as a decimalfraction. Thus actual s = 78.879 and78.001
will be registeredas s = 78, etc. Hence the effect of the measurementoperationon the universebasis
stateswill be

M Is) IA) = Is) IA + s’), wheres’ = integer(s). (3.29)

For simplicity we shall assumek1)= 10), with (010)= 1. The effect of measuringageneralsystemstateis
then

M I~)10) = MJ ds Is) (s I ~) lO) = ~ Jds Is) (s I ~)IA + s’) (3.30)

wherethesum is over all integersA consistentwith the supportof the wave function (s I u’). In (3.30)we
havea clearsplit; the measurementis “good”.

A particularly instructiveexample of a good measurementof a continuousvariable by a discrete
variable apparatusis the Wilson cloud chamberexperiment, which was first analyzed quantum
mechanicallyby Mott and Heisenberg.In this experiment,the system variable is the position of a
chargedparticle, an alphaparticle,say,andthis position is measuredby exciting a seriesof atomsin a
threedimensionalarray. Sincean atom hasa non-zerosize a, the apparatuswill not be able to measure
thelocationof thealphaparticleat any giventime closerthana. This limitation is essentiallythe sameas
pointedout in the simplemodelabove.

The alphaparticlewave functionwill be a sphericalwave outgoingfrom the nucleusfrom which it is
emitted.By the time it reachesthe cloud chamber,it can be approximatedvery accuratelyby aplane
wave.The theory of measurementmustexplainhow aplanewavefunction, which is spreadout all over
space,can give the localizedstraight line motion actuallyobserved.

The explanationwas given by Mott and Heisenberg(we shall follow the presentationof J.S. Bell
[35]).The initial wave function of the alphaparticleis

fr(r)= exp(iklr—r0~) (3.31)

and4~will denote the groundstateof the arrayof atoms.Let

4(n1,n2,...) (3.32)

denotea stateof the arrayin which atomsn1, n2,... areexcited.If no alphaparticlewere present,the
universalstatewould be the productof (3.31)and (3.32).Becauseof the interactionbetweenthe alpha
particleandthe atomsof the array, the universalwave function will be the sum of this productandthe
scatteredwavesproducedby the interaction.In a multiple scatteringapproximationthe scatteredwaves
are

~ [~i(n1,n2,. . ,nN)exp(ikNIrrNI)IN(ON)IIrrNl]
N flt,fl2..., “N

x [exp(ikN_1IrN— rN_lI)fN_l(ON_l)/IrN — rN_lI]~ [exp(ik0Ir1— r01)IIr1 — r01]. (3.33)
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The generalterm in (3.33) is a sum over all possible sequencesof N atoms in the threedimensional
array. The position of the n1 atom is denotedby r1 k1 = (k~_1/2m— e)~

2,where e is the atomic
excitation energy; O~ is the angle between r

1 — ~ and r1~1— i~ (or r— rN for n = N); f1(O) is the
inelasticscatteringamplitudefor an alphaparticle of momentumk1_1 incident on a single atom.

An explicit formula for f(O) can be calculatedin the Born approximationin termsof atomic wave
functions,and it is found that f(O) peaksin the direction of the incident alphaparticle momentumk,
with angularspreadz~O= (ka)’. This meansthat the relativeprobability of observinga sequenceof
excitedatomsn1, n2, . . . , will be greatestif theseatomslie essentially in a straight line, or rather in a
coneof openinganglez~O.For an alphaparticle of energy ‘—1 MeV, andwith a typical atomic size of
-~-10

8cm,we have ~O—-~i0~radians,so it is easyto see why we see the alphaparticle track as a
straight line.

However,it is not just asingle straight line we should see.The relative probabilitiesfor observinga
sequenceof atomsn

1, n2,...,aregivenby the squaresof the moduli of the coefficientsof ~(n1,n2,. .

and thereare many straight line sequencesof atomsin the sum (3.33), each havingapproximatelythe
sameprobability. It is clear from our previous discussionof the MW! how to interpret this: the
universeis split by the first stack of atomsin the array, andsubsequentexcitationsrespectthe original
split. Any other measuringapparatuswe could bring in to measurethe excitations(e.g., ourselves)
would alsorespectthe split, asdiscussedabove,andso we seea single straight line alphaparticletrack
in the cloud chamber.Thefirst atom in the array to be excitedcould be any atom, locatedat any point
in the array, so therewill be an enormousnumberof worlds in the universe.The split of the universe
into clearlydistinctstraightlineswill occuronly if a, the atomicradius,is non-zero,for werea to besmallin
comparisonto thealphaparticlemomentum,theopeninganglewouldbesolargethatnosingleparticletrack
wouldbeapparent.Thisillustratesourpreviousassertionthatacontinuousvariablecanbemeasuredonlyby
a discretevariableif onewantsa cleansplit betweenthe worlds.

The aboveanalysisis staticsince it is concernedwith the spatial shapeof the alphaparticletracks.
However, a dynamical analysis[35] showsjust what one would expect: the straight lines develop in
time. It is worth consideringin somedetail the quantumdynamicsfor a onedimensionalarrayof atoms
and an alphaparticle moving in one dimension,for this situationis very closely analogousto the
problem of measuringthe radiusof the Universein the Friedmannuniverse.The staticwave function
for the array and the alphaparticle in one dimensionis the same as (3.33), except that the factors

I r1 — r~iIin the denominatorare removed.The array wave function ~(n1,n2,...) now refers to a
sequenceof atomswhosepositions are given by a single coordinatex. It will be useful to distinguish
unexcitedandexcitedatomsin the sequence,so we shall denotean unexcitedatom in jth position in the
arrayby 0., andan excitedatom in thejth positionby e1. For example,with four atomsin the array the
wave function for the secondand fourth atoms unexcited and the other atoms excited would be
qS(e1,02, e3, 04). Initially the universalwave function is

= ~(0I,02,. . . ,ON) exp(i[kr — Et]). (3.34)

The interactionwill be turnedon at t = t~,after which the wave function of the universebecomes

~ ~(n1,n2,. . .)exp(i[kNIx— XNI — k~t/2m])fN(x,t)
N

x exp(i[kN_IIxN — XN_1I — k~_lt/2m])fN_l(x,t)~•. exp(i[k1Ix — x11I — k~t/2m]) (3.35)
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wherethe f1(x, t) are the time dependentinelastic scatteringamplitudes,m is the mass of the alpha
particle, and the othersymbolsare definedas in (3.33). As in the staticcasethe scatteringamplitudes
can be calculatedin time dependentperturbationtheory, and the most probableatomic statesat any
time t> t0 areillustratedin fig. 1.

Since initially the alphaparticle wave function is spreadout equally over all space—thatis, its
squaredmodulusis independentof the position coordinatex — the first atom to becomeexcited is
equally likely anywherein the one dimensionalarray.This first atom to be exciteddefinesa branchof
the universe for all succeedingtime, and eachatom in the array definessuch a world. In each such
world — the world definedby the ith atom being the first to be excited,say— the atom most likely to
becomeexcitednext is in the i + 1 position and the most likely time of its excitation is t = k,ImL +
whereL is the spacingbetweenthe array atoms, and t, is the time at which the ith atom becomes
excited.Figure 1 showsfour suchworlds, in which the first atomsto be excitedareadjacentatoms,and
the time is such that threefurther atomsalong the line havebecomeexcited.The direction of the

BEFORE the first
excitation:ariatcsn~array isasingle a o a a o

AFTER the first
excitahon thearray has split
into many wort~.

~L .4

World ()ie 6 6 0 • • .))) 0

~rld Two 0 0 .))) 0 0

World Three 0 .)) 0 0 0

Wor(d Four •))) o a o o

Fig. 1. The Splitting of an Apparains Designed to Measure the Position of an Alpha Particle as a Function of Time. The apparatus Consists of a one
dimensional array of atoms which become excited by the passage of an alpha particle with definite energy. A darkened circle denotes an atom that
has become excited, while an empty circle denotes an unexcited atom. The alpha particle momentum points from left to right. Each world is defined
by the first atom to the left to become excited. Before the excitation of the first atom, the atomic array defines only one world, denoted by the single
unexcited array at the top of the page. The universe is split into a large number of worlds by the first excitation. In the figure, four such worlds are
shown. Each world pictured is the most probable world defined by the leftmost excited atom, wherein the next atom to be excited is the adjacent
atom which is excited at time k/mL after the excitation of the first atom. (‘There would actually be one such most probable world defined by each
atom in the array, and many worlds of lesser probability. The worlds of lesser probability are those in which excited atoms are interspersed with
unexcited atoms.) In each world an outgoing wave packet is pictured moving to the right. The unexcited atom immediately to the right of the last
excited atom is most likely to be excited when the packet reaches it. The above picture assumes that the alpha particle wave function is initially aplane wave,
and that there is no interaction between the alpha particle and the array until t = t0. In a more realistic model, the alpha particle would be a wave packet
always in interaction with the atoms ofthe array, in which case the most probable worlds would be those whose first excited atoms are near the left hand side of
the array. The splitting of the Universe into branch universes, however, is closer to the “unrealistic” analysis pictured above.
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propagationof the excitation is picturedin fig. 1 by the direction of the outgoingwavesfrom the third
atomin eachworld. Again, we mustemphasizethat only oneof the four worldspicturedin fig. 1 would
be seenby a humanobserver,becausehe himself would split into four branchesif he were to try to
measurethe stateof the arrayof atomsat the given time.

It is important to note that the most probabletime for the i + 1 atom to be excitedin the branch
definedby the ith atom is given by the time a wave packet,of energyk~/2m,would take to travel
betweenthe two atoms. This means that to investigatethe most probabletime evolution of a single
branch(which is all we arephysically capableof doing whenwe try to determinethe time evolutionof
the entire Universe), it is sufficient to study the time evolution of a single wave packet of the
appropriatecharacteristicsoutgoing from the first interactioncenterwhich measuresthe radiusof the
Universe.

We haveassumedin the aboveanalysisthat the alphaparticle had a single definite energy,which
meansa wave function spreadout over all space.However, the essentialfeatureswould remain if we
were to analyzethe measurementof an alphaparticle wave packet which is localized in a region of
physical space,and hencespreadout in momentumspace;i.e., being a superpositionof planewave
functionswith a rangeof energies.The splitting into worlds would be a bit morecomplicated,for the
energyof aparticleis determinedby two positionmeasurements:oneat one time andanotherat some
later time. Two position measurements,in otherwords,would determinea world, ratherthan a single
positionmeasurementin the single energyuniverse.

An incoming alphaparticle wave packetwould causethe atomic array to be split by the first two
atomic excitationsinto worldswith all energiesconsistentwith the support of the alphaparticle wave
packetandthe discreteenergyresolution of the atomic array.

The time evolutionseenby the atomic arrayis in all essentialsthe sameas that seenin our discrete
time evolutionmodeldevelopedat length above. In bothcasesthe splits occur for thedominantworlds
in the first few interactions.There is, however,subsequentsplitting into improbablebranchesat every
measurementinteraction. The most probableworlds will be those which evolve classically, as the
Heisenberg—Mottanalysisshows,andso in what follows I shall focusattentionon them.When in doubt
aboutwhat is going on in the more realistic continuousvariable models,return to the toy discrete
model.

4. The quantized Friedmann universe

We shall now quantize the closed Friedmannuniverse whose classical theory was developedin
section2. As discussedin section2, our quantizationprocedurewill be to quantizethe unconstrained
Hamiltonian,andattemptto take into accountthe constraintsvia boundaryconditions.

The quantizationof the unconstrainedHamiltonianis on the face of it quite simple sincein all three
casesconsideredin section2—dust, radiation,andnon-interactingdust andradiation— the Hamiltonian
is either the Hamiltonian for a SHO (the radiation case)or can easily be transformedinto such a
Hamiltonian by standardtechniques.The only subtlety we must consider is the domain of the
Hamiltonianoperator:sincea negativeradiusfor theUniversemakesno obvioussense,we shall restrict
thedomainto R>0.

The quantummechanicsof the SHO on the domain (0, +02) hasbeenstudiedextensively[36, 37].
The key problemone faceson this domainis the problemof which boundaryconditionsto imposeat
the singularity R = 0. A straightforwardcalculationshows that in order for the operator—d2/dR2+
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V(R), where the time independentpotentialand acts on functionswhich makeit L2 on (0, +02), is
regular at the origin, to be self-adjoint on (0, +02), the operatormust be restrictedto thosefunctions
which satisfyoneof the following boundaryconditions:

either

(4.1)

or

~fi’(R=0,t)+Aç1i(R=0,t)=0. (4.2)

Condition (4.1) is a boundarycondition which Bryce DeWitt arguedmust be imposed on the wave
function of the Universe,for it hasthe effectof keepingwave packetsaway from thesingularity.I shall
thereforecall condition (4.1) the DeWitt boundarycondition. Condition (4.2) hasan arbitraryconstant
A. Werecondition (4.2) the appropriateboundaryconditionto imposeon the Universalwave function,
then this constantwould be a new fundamentalphysicalconstant.We could then avoid introducinga
new physicalconstantonly by requiringit to bezero; i.e., by imposingthe boundarycondition

4Y(R=0,t)=0. (4.3)

Both the DeWitt boundarycondition and (4.2) tell what happensto wave packetswhen they hit the
singularity at R 0. It shouldbe emphasizedthat in either case,the singularity is a real entity which
influences the evolution of the Universe (or more precisely,its wave function) at all times via the
boundaryconditionat the origin. In the classicaluniverse,the singularity is presentonly at the endand
at the beginningof time, so in a sensethe singularity is evenmorenoticeablein quantumcosmology
than in classicalcosmology.

Becausetheyarethe only boundaryconditionswhich do not introducea new physicalconstant,the
DeWitt boundarycondition or (4.3) are the most natural boundaryconditions to impose. I shall
henceforthrestrict attentionto theseconditionsonly. The wave function of the Universe,V’(R, r), can
be expressedin termsof_the boundaryconditions!P(R, T = 0) imposedat the beginningof time andthe
Green’sfunction G(R, R, r) via

~(R, r) = J d~~ r 0) G(R, ~, T). (4.4)

The initial conditions~i(R,r = 0) are determinedby the hitherto ignoredconstraint equations.I
arguedin section2 that the effect of the constraintequationsin the classicalcasewas to require all
classicalsolutionsto passthroughthe singularity R = 0 when T = 0. I shall thereforeattemptto include
the constraintsin my quantummodelby requiringall quantumuniversesto do the same.The only way
this can occur is if

r = 0) = f(1~)c5(1~). (4.5)

Fromthepropertiesof thedeltafunction, the functionalform of f(1~)is irrelevantsinceonlyf(0) givesa
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contribution. The value of the constantf(0) cannot be measured,even in principle, for it is nor-
malizationconstantfor the Universalwave function, andI arguedin section3 that sucha constantis not
measurable.Thereforefor mathematicalsimplicity I shall set f(0) = 1.

The Green’sfunction for the SHO on the domain (—cc, +cc) can be found in manytextbooks(e.g.,
[38]). If the boundaryconditionsat R = 0 are (4.1) or (4.3), then the Green’sfunction for the SHO on
(0, +cc) can be obtainedfrom the Green’sfunction on (—cc, +cc) by linear superposition.If G(R, R, r)
denotestheGreen’sfunctionon (—cc, +00), andG(R, R, r) is theGreen’sfunctionsatisfyingtheappropriate
boundaryconditionsat the origin, then for ~i(R,r = 0) beingan L2[0, +cc] function:

G(R, 1~,r) = G(R, 1~,r) — G(R, —1~,‘r) (4.6)

if the boundarycondition at the singularity is (4.1), and

G(R, R, T) = G(R, 1~,r) + O(R, —~, r) (4.7)

if the boundaryconditionat the singularity is (4.3). I havebeenunableto obtain an expressionin closed
form for the boundarycondition (4.2).

If the boundarycondition ~[‘(R,T = 0) is not a smoothfunction but a distribution* with supportat
R = 0—the situationwe wish to consider—theappropriateGreen’s function for boundarycondition
(4.3) is

G(R, 1~,r) = {O(R, 1~,r) + G(R, —1~,r)}/2. (4.8)

The DeWitt boundarycondition at the singularity is inconsistentwith the initial boundarycondition
(4.5), as a simple calculationusing(4.1) and (4.6) (or (4.6) timessome constant)will show.Therefore,
the boundarycondition (4.3) is the appropriatesingularity boundarycondition to use to obtain the
UniversalGreen’sfunction.

Putting (4.8) into (4.1) and using the Hamiltonian obtainedfrom (2.18) to generatethe Green’s
function G(R, R, r), we get for the wave function of a radiation-dominatedFriedmannuniverse:

~P’(R,r) = [3~/4LpIancksin r]h/2 exp[(31T/4i) (cot r) (RILpIafl~k)2] (4.9)

whereI haveput theunits backin to show the scaledependence:Lpianck is the Plancklength. The wave
function (4.9) is actuallyjust the Green’sfunction G(R,0, T).

The wavefunction (4.9) not only beginsas a delta function at T = 0, it recombinesinto a seconddelta
function 8(R) when T = n~in otherwords, all quantumworlds terminate in a secondsingularity at
r = ~r,just as all the classicalclosed Friedmannuniversesdo. This shows that the initial boundary
condition (4.5) is consistent,for the logic used to derive (4.5) requiresthat all the quantumuniverses
terminatein a final singularity at r =

Although thewave function is scaledby the Plancklength,as aquantumcosmologyshouldbe scaled,
thescaleonly effectsthe wavefunction phase.Thewave function modulusis independentof the radius
of the UniverseR, exceptat T = 0 andr = ir. Sinceat the initial instantthe Universalwave function (or
moreprecisely,wavefunctional) is concentratedentirely at R = 0, it hasall valuesof momentainitially.

* The quantum mechanicsofdistributions can betreated rigorouslyby regarding distributions and functions asboth elements ofa rigged Hubert space;

see [50jand [511 for a discussion.
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Thesemomentacausethewavefunction to explosivelyspreadout from the singularity to +x theinstant
after T = 0.

The physical interpretationof this Universalwave function is essentiallythe sameas that given a
highly localizedalphaparticlewave packetin section3. The first two measurementsof the radiusof the
Universewill split the Universeinto a large numberof worlds, in eachof which an almost classical
motion will be observed.As we haveshown at length in section3, the measurementof any variable
requiresa physical variablewherein the measurementis recorded,and our simple Friedmannmodel
contains no such variable. In the actual Universe the “measuring device” would be some non-
gravitational field in the early universe which could define a scale length. The radiation gas is
conformallyinvariant andso definesno intrinsic length,but a conformally invariant field can beusedto
define a non-intrinsic length: an electromagneticwave Gaussianpacket hasits standarddeviationas a
lengthscale.The first such field to coupleto the radiusof the Universe,andwhich retainsthe resultof
the couplingon time scaleslong comparedto the expansionof a given branchof the Universewasthe
actual“apparatus”that initially split the Universe.Whatevergeneratedthe perturbationspectrumthat
eventuallygave rise to the galaxies would be a candidatefor such a field, or it could be that the
spectrumis a relict of the initial split. As with the localized alphaparticle, the first two such field
interactionswould define the branchesof the Universe.At the presenttime the galaxies themselves
would serve as benchmarksfor the radius measurements,as they do in classical cosmology for
measurementsof the radius of the Universe [14]. The observedmotion of the alpha particle is
approximatelyclassicalin eachbranchandis determinedby the motion of the wave packetsscattered
from eachatom in the array. Similarly, the observedmotion of the Universein eachbranchwould be
approximatelyclassical(so long asthe observeris far from the final singularity), but the scatteredwave
packetswill be evolving in an harmonicoscillatorpotential.This will give the usualsinusoidalmotion of
a radiation universein eachbranch,for the motion of (R) of wavepacketsin sucha potential satisfies
the harmonicoscillatorequation.This interpretationof the Universalwave function is shown in fig. 2.

The Universe is split into branchesby the first two measurements.Say this first measurement
occurredat T = Tmfljtjal. Sincethe wave function modulusis independentof R, this meansthe probability
of being in aworld with radiusR at Tjflhtjal is independentof R: all classicaluniversesareequallylikely.
In particular,thereis no tendencyfor the worldsto be typically a Plancklength in size at the time of
maximum expansion,in this quantumcosmologyat least.Some relativistshavearguedon dimensional
groundsthat such a tendencyshould bea genericpropertyof quantumcosmologies.The Plancklength
is indeeda scale,but it scalesthe phaseof the wave function, not the overall size of the Universe.

Anotherconsequenceof I ~!‘(R,Tinitiai)12 being independentof R is that it is overwhelminglyprobable
the particularworld we happento be in will havean enormousradiusof maximum expansion.That is,
the probability is 1 — E that the densityparameter~uIin our particular branchof the Universeequals
1 + 8, whereE and 6 are true infinitesimals.To seethis, we needonly recall the discussionin section3
about the meaning of relative probabilities calculatedfrom non-normalizablewave functions: the
probability of IA) relative to IB) is given by I(ili I A)I21(I(i/i I A)I2+ I(’I’ I B)12) even if li/i) is not normaliz-
able. In the caseof the radiusof the Universeat Tinitiai, the probability that the radiusis smallerthan a
given radiusR

1 relative to the probability that it is largerthan R1 is

J I ~(R, ~iniiiai)I
2dR/ ( J I ~(R, ~initiai)I2dR + J ~(R, Tinitiail2 dR). (4.10)
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Fig. 2. The Branching of a Quantum Universe. Before the first interaction occurs that can encode a scale measurement, the Universe, represented
before this interaction occurs as a series of wavy lines, has no radius. After the first two scaled interactions have occurred, the Universe has been
split by the interactions into a large number of branches, in each of which an essentially classical evolution is seen. These branches are represented in
the figure by the sine curves, each of which goes through the final singularity at T S ~• The collection of all sine curves are all the classical radiation
gas Friedmann models. Each curve is defined by ~ the radius of the universe at maximum expansion. In the quantum Universe, all the classical
universes are present, one classical universe defining a single branch. The classical universes are equally probable. Five such classical universes are
pictured.

But this is zero,which gives the resultclaimed.To put it simply, if we pick a single integer(= radiusof
Universeto the nearestparsec)at randomfrom the set of all positiveintegers,and if all integersare
equallyprobable,then it is overwhelmingly probable the integerwe pick will be an extremely large
integer.

We do not actuallyneedthe various worldsto be equallyprobablein order for the value of 11 we
would measureto be infinitesimally close to 1. The expression(4.10) would be zero for any non-
normalizablewave function, which is regularat the origin, sincewith such a wave function the second
term in the denominatorwould be infinite. Thus whatever the actual probability distribution as a
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function of R, any non-normalizablewave function wouldyield an overwhelminglymostprobablevalue
of (1 of 1 + 8. To the bestof my knowledge, Narlikarand Padmanabham[40] were the first to suggest
that quantumgravity might naturally lead to the prediction 11 = 1.

It is a generalrule in physicsthat what is not forbiddenis compulsory,andwe showedin section3
that therewas no physical reasonto require the wave function of the Universeto be normalizable.
Therefore,we would expect that the correctquantumgravity theory would yield a non-normalizable
Universal wave function. The generalUniversal wave function (not the special Friedmann model)
advancedby Hartle and Hawking [1] probably has this property. The non-normalizability of the
Hartle—Hawkingwave function arisesfrom the desireof its creatorsto include all possibilities in the
Feynmansumoverhistories.

Anothergeneralrule in cosmologyis the CopernicanPrinciple: our placein the Universeis typical.
In standardcosmologythe word “place” is interpretedto meanposition in space:the Universeon a
sufficiently largescaleoughtto havethe samepropertiesindependentlyof position.But evenin classical
cosmologythereis anotherpossiblemeaningto the word “place” — position in initial dataspace.In the
caseof the radiation-dominatedFriedmannuniverse,the initial data spaceis parameterizedby one
variable, which can be chosento be the radiusof the Universeat a set time r1 (it is conventionalin
classicalcosmology to pick r~to be ir/2, the time of maximum expansion).The FlatnessProblemis
essentiallythe problem of explainingwhy, out of all possiblepointsin the one dimensionalinitial data
spaceof the Friedmannuniverse,we happento live in a very specialpointcorrespondingto a very large
radiusat maximumexpansion.(This is equivalentto askingwhy 11 is extremelycloseto 1.) In classical
cosmologythe only possibleanswerto this questionis to saythat we havebeenmisinformedas to the
size of the initial data space:thereare more forcesgoverningthe expansionof the Universethan a
radiationgas coupledto gravity, and theseotherforcesrestrict the actualFriedmanninitial dataspace
to a narrowrangearound(1 = 1, at leastin our neighborhoodin space.Suchan answerto the Flatness
Problemis the oneprovided by the inflationary universemodel [391.However, the inflationary model
doesnot provide a uniquevalue for the Universal initial condition. Although the initial data spaceis
reducedin size,it is still not reducedto a single point, andso the questionof why we happento live in a
very specialUniversedefinedby a definite particular valueof the radiusat maximumexpansionis left
unansweredby the inflationary model. Indeed, any classical cosmological model must leave this
question unanswered.It would also remainunansweredin any interpretationof quantummechanics
that hassomeforceresponsiblefor wavefunction reduction.

But it hasan answerin quantummechanicsif we acceptthe ManyWorlds Interpretation,for herewe
havethe possibility of having many universes,eachdefinedby a different radius at any given time,
existing simultaneously.The wholeof initial dataspacecan be spannedby the variousuniverses.Each
point in the initial dataspacewould be as real as the points in the sensiblethreedimensionalphysical
space.Thus we shouldexpectthe CopernicanPrincipleto apply to the initial dataspaceas it appliesto
threedimensionalphysicalspace.

A QuantumCopernicanPrinciple would require that all thepointsin classicalinitial dataspacewould
be equally probable;we would be no more likely to find ourselves in one classical universe than
another.We have seenthat the quantumcosmologicalmodel definedabovehas this property, but I
would expect that any accuratemodel of the Universe would have this property if the Quantum
CopernicanPrinciple were true. A consequenceof the Quantum CopernicanPrinciple is a non-
normalizable wave function if the wave function domain is (0,+cc), which leads to an 11 = 1 + 8
prediction.

It is a standardprocedurein quantummechanicsto expanda wave function in terms of the
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eigenfunctionsof a self-adjointoperatorH, and the expectationvalueof the operatorH with respectto
any wave function ~‘) is then written in terms of the eigenfunctionsof H. I haveused this procedure
extensivelyin section3. However,in standardquantummechanicseach term in the mathematicalseries
for the expectationvaluescan actually be directly measured,since

KifrIJ~IIi/i)=~ HI~i/jIH)I2 (4.11)

and the relative frequency R~’I H)I2 can be measuredby conductinga seriesof experimentson an
ensemble~‘) cl’)... as discussedin section3.

However, in quantumcosmology,this seriesof experimentscannotbe carriedout, for thereis only
one Universe: it is not possible to form an ensembleof Universe states IV’) IV’)... . The only
“ensemble” available in quantum cosmology is the collection of various branchesinto which the
Universeis split by the first measurements.This “ensemble” is utterly different from the ensemble
neededto define theterms in (4.11). Thusno expectationvalue in quantumcosmologycan bemeasured
physically, and this is true even if the wave function of the Universe were normalizable. Thus
expectationvaluesarewithout physicalsignificancein quantumcosmology,eventhough the conceptis
useful mathematically.

Similarly, although many treatmentsof quantum cosmology imagine the Universe to be in an
eigenstateof the Hamiltonian,thereis no way of measuringthe Universalwave functionto see if in fact
it is such an eigenstate.As shown above, the measurementsof positionwhich determinethe branchof
the Universe we happento be in would tell us that the branch is approximately in an eigenstate,
whateverthe initial spectralshapeof the Universalwave function.

I should add one caveatto this criticism of the use of expectationvalues.The evolution of each
branchof the Universeis closely modeledby the evolution of a single wave packet, by the process
describedabove.Thus the evolution of (R) where the expectationvalue is takenwith respectto the
wave packetnormalizablewave function, will give us a picture of how abranchevolves.But it will not
give a picture of the evolution of the Universalwavefunction.

If expectationvalues,which are the meansin standardquantummechanicsby which operatorsare
given a physicalinterpretation,haveno physicalmeaningin quantumcosmology,the questionarisesof
why the Hamiltonianoperatorshouldbe requiredto be self-adjoint.Self-adjointnessis usuallyrequired
in order to guaranteethe existenceof a completeset of operatoreigenstates,so the series(4.11) would
be defined. The reality of the eigenvaluesis assuredby Hermiticity; the vastly more powerful
assumptionof self-adjointnessis not needed to obtain real eigenvalues.The self-adjointnessof the
Hamiltonian is neededif the time evolutionit definesis to be unitary— if the wave function norm is to
be conserved.But again, if these norms cannot be measured,why should we require them to be
conserved?

I think the self-adjointnessrequirementshould be retainedin quantumcosmologyfor two reasons:
first, the completeset of stateswas very importantin determiningthat the Universeactuallysplit into
various branchesand for observingthe evolution of each branchby following the evolution of wave
packets—itis not clear that the Universewould split if this completeset did not exist. Second,without
the spectraltheoremfor self-adjoint operators,weshall be unableto definefunctionsof operators.For
example, on the domain (0, +cc) the momentumoperatorP can be defined as a uniqueself-adjoint
operatoronly via P = (P2)512, for P2 can be definedon this domain as a seif-adjoint operatoreven if
P = i d/dR is not a self-adjointoperator,andcannotbe extendedto one. If we giveup self-adjointness,
we give up uniqueness.Gotey and Demaret[71have discussedwhether the Universal Hamiltonian
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should be self-adjoint at some length. They considerthe time evolution of wave packetsevolvedby
variousnon-self-adjoint Hamiltonianoperators.

I havehitherto concentratedattentionon the radiation gas quantum cosmology.There is a major
difficulty in the interpretationif we try to quantizethedust modelor the two-fluid model (2.25): in both
casesthe Lagrangiancontainsa potential term which is not conformally invariant.The potentialterm
containsa scale constantC(t~twhich doesnot comefrom the branchinginteraction,but exists in the
underlyingFriedmannmodel. The Green’s functions for the dust and two-fluid Lagrangianscan be
written in closedform; for example,if we choosethe scaleto be the Plancklength,the Green’sfunction
at the origin for dust is

O(R,0, r) = (3~I4Lpiancksin T)
t12 exp[(3ir/4i)q~]

where

= (RILptanct~)2cot T — (R/Lptanck) (1 — cosT)/sin r — T.

The scalefactor doesnot appearin the modulus.This meansthat it is impossibleto choosethe scale
factor so that the secondsingularity occursat T = 2ir, as it must if the quantizationprocedureis to be
consistent.The secondsingularityoccursat r = ir, as in the radiationgasuniverse.This couldjust show
that my quantizationprocedureis incorrect,but I fear the trouble is deeperthanthat. Any quantization
procedureappliedto a Lagrangianwith an intrinsic lengthscalewould singleout thislength in the wave
function evolution; it would be impossibleto retain the nice democracyof branchuniverseswhich is
permittedin the interpretationof the radiation gas wave function. A QuantumCopernicanPrinciple
would be impossible.

I thereforesuggestthat whateverthe quantizationprocedure,the only allowed otherfields mustbe
radiation fields; the scalesmust ariseby the branchinginto worlds, and must not be in the basic
quantizedphysical fields.

It is well-known that classically,the Universecannot now be radiation dominated,for a radiation
dominatedUniversetodaywould causethe expansionat the nucleosynthesiserato be too slow to give
the correcthelium abundance.However, the expansionrate in a branchcould appearto be that of a
dustdominatedclassicaluniverseeventhoughthe quantumHamiltonian which is controlling the overall
evolution is a radiationgas Hamiltonian.

To see this, recall that the observedtime evolution in a branchis roughly the sameas the time
evolution of the position expectationvalue of a wave packetscatteredby an “apparatus”interaction
site, the cosmologicalanalogueof an atom in the cloud chamberarray. The time evolution of (R) is
given by Ehrenfest’sequation,modifiedby the boundaryconditionsimposedat R = 0 in order to make
the SHO Hamiltonian a self-adjoint operator.This equationcan be written

d2(R)/dr2= —(1/rn)(dV/dx)+ F(R = 0). (4.12)

The F term in (4.12) is an extraterm which arisesfrom havingthe boundaryat a finite distancerather
than infinity. The detailedfunctionalform of this term is not important for our presentpurposes;it
dependson the form of the boundaryconditionsat the origin. It is sufficient to notethat the term acts
as a repulsiveforce on wave packetsat the origin to keep them from passing through R = 0. If a
normalizedwave packet were to passthrough R = 0, the norm could not be preserved,which a
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self-adjoint Hamiltonian would preserve.The motion of KR) would still be sinusoidalfor a harmonic
oscillatorpotentialif F wereconstant,but the sinecurvewould beshiftedabovethe R = 0 line with the
effect that the time evolution of (R) would look morelike a cycloid than asine curve, and a cycloid is
the shapeof a dust dominated universe as opposedto the sine shapeof the radiation dominated
universe.

Whether this suggestionas to how dust dominatedevolution would be observedin a radiation
dominatedquantumuniversewould actually work would require a detailedanalysisof the interaction
betweenthe apparatusand the Universe,and is beyondthe scopeof the presentpaper. I offer it as a
suggestiononly. If the suggestionpansout it could provide anotherargumentfor self-adjointness,for
this requirementis the sourceof the boundaryterm.

5. Conclusions and suggestionsfor further research

I have attemptedin this paper to give a systematictreatment of how the quantumtheory of
measurementshould be applied to quantum cosmology. The ideas were illustrated with a specific
quantizedFriedmannmodel, but theyare sufficiently generalto tell us what to expectin most models
obtainedby otherquantizationtechniques.In summary,my analysisshowsthat whateverthe modeland
whateverthe initial wave function of the Universe,the Universeat very early timescannotbe said to
havea radius.At somepoint in the early universe,the Universeis split into a largenumberof branches,
in eachof which an essentiallyclassicalevolutionis seenby the observersin thatbranch.At this stagein
the evolution of the Universe,the Universecan be said to havenot merelyone radius,but ratherall
radii consistentwith the support of the wave function and the resolution of the forcesresponsiblefor
the split.

I have beenrathervagueabout the details of theseforces. This is, I am afraid, inevitable in the
presentstageof physics,for thesplitting forceswould havedonetheir work in thevery earlyuniverse,
whereour knowledgeof the interactionsis quite limited. Nevertheless,the existenceof the split andthe
subsequenttime evolutionof the branchesshouldnot dependon the detailsof theforcesresponsiblefor
the splits, any more than the splitting of an atomic array into various worlds in the Wilson cloud
chamberdependson the details of the atoms.

But the detailsare obviously crucial in understandingthe future evolution of the atoms.Since the
analogueof theatomic arrayis the inhomogeneousmaterial in the Universe,for only such materialcan
record scales,the details which havebeenignoredin this paperaregoing to determinethe origin and
subsequentevolutionof the PerturbationSpectrum.It would appearthatone of the majorproblemsin
cosmology,accountingfor the amplitude andshapeof the initial perturbations,would be solvedif one
understoodthe detailsof the initial split. It could bethat thesplit would not occurif theinhomogeneous
perturbationswere sufficiently large, and this could be the solutionof the Horizon Problem.Another
possiblesolution is that a quantumcosmologywith moredegreesof freedomput in would leadto the
isotropic worldsbeing having a probability of essentiallyone. Such a solution hasbeenproposedby
Narlikar and Padmanabham[40], and Hawking and Luttrell [421.This solution is analogousto the
solution of the FlatnessProblemfirst proposedby Narlikar and Padmanabham,and defendedin this
paper.

This solution to the Flatness Problem requires that the density parameter11 must be only
infinitesimally greaterthan 1. As shown at length in the body of this paper, such a prediction is a
consequenceof any quantumcosmologywhich hasa non-normalizablewave function. Thus it is not
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necessaryto invoke inflation in order to accountfor 11 = 1. In principle, 11 = 1 arisingfrom quantum
gravity could be distinguishedexperimentally from that arising from inflation, for the effective
cosmologicalconstantin inflation doesnot quite inflate the Universecompletelydown to 0 = 1; in the
new inflationary universe,for example,the densityparameterwould actuallybe 1 + 106. In practice,it
is quite impossibleto distinguishthesetwo casesby astronomicalobservation.However,the inflationary
universehascomeundersevereattack recently;it seemsthat inflation cannotafter all explain isotropy
[411,and it is not at all clear that a spontaneoussymmetry-breakingscalarfield will lead to inflation
[43]. Thus quantum gravity may be the only remaining candidatecapable of solving the above
cosmologicalproblems.

The Many Worlds cosmologydoesn’tseemto throw any light on the Magnetic MonopoleProblem.
Thus it would appearthat if a non-normalizablewave function is responsiblefor the densityparameter
being1, thenthe explanationfor the absenceof hugenumbersof monopolesin theUniversemustcome
from a study of local interactionsin particlephysics,not cosmology.

A Many-Worldsquantumcosmology doesput one powerful restrictionon the matter content:the
fundamentalLagrangianmust beconformally invariant,becausethe scaleof the universewe seemust
arise from the splitting into branches.It cannotbe presentin the Lagrangian.This is quite different
from the point of view arising from classical cosmology and indeed from other interpretationsof
quantummechanics,in which the Universe as a whole defines a scale, the present radius of the
Universe.In the MW! view, the universewe seeis but oneof manybranches,each beingequally real.
The requirementthat all theseclassicalbranchesincluded in the wave function governsthe choice of
time parameters,the boundaryconditions on the wave function, and the way the constraintsare
handled.Thus aMW! approachto quantumgravity yields a classof modelswhich arephysicallydistinct
from the cosmologicalmodelssuggestedby other interpretations.Compare,for example, my model
with thatof Narlikar[40].Furthermore,I shallshowin theAppendixthattheMW! cansingleout apreferred
timefor theADM quantizationprocedure.Sincethemodelsimpliedby theinterpretationaredifferent,it
becomespossiblein principle to distinguishtheinterpretationsexperimentallyin cosmology.

I haveprovidedin this papera very roughpictureof what aquantumUniversewould look like from
the Many Worlds point of view. I havediscusseda numberof estheticreasonsfor preferringthe Many
Worlds Interpretationover other interpretations,most notably the fact that with the Many Worlds
Interpretation,which assumesthe various branchesare real, the problemof the boundaryconditions
restrictingthe classicalUniverseis obviated.I hopeotherswill be encouragedto think aboutcosmology
from the Many Worlds point of view.
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Appendix: The many-worlds interpretation in the ADM formalism

I shalldemonstratein this appendixthat if thetime coordinateis chosento beconformaltime,thenthe
ADM formalism also implies that for quantizedradiation-filled closed Friedmannuniverses,the
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evolution is governedby eq. (2.28), whereH is, up to unimportantnumericalconstants,the SHO
operatord2/dR2+ R. In otherwords,I shallshow thatthequantizationmethodof section2 yieldsexactly
the samequantumequationas the more standardADM method of handling the general relativity
constraints. In the ADM method, however, one does not obtain the initial boundary condition
~1’(0,0) = 6(R), whichmustbe put in by hand.My discussionwill follow that of LapchinskiiandRubakov

[441,who were the first to show that the quantummechanicsof radiation-filled closed Friedmann
universeswas that of the SHO.I shall pointout that thisresultcanprobablybe extendedto all isentropic
perfectfluids, providedthe MWI is usedto determinethe quantizationvariables.In particular,I shall
show that Misner’s quantizationof the radiation-filled Friedmannuniverseis not allowedby the MWI.

The ADM formalism for the Friedmannuniverse is basednot on the metric (2.2), but ratheron

ds2 = —N2(t) dt2 + R(t) [d~2+ sin2 x (do2+ sin2 0 d~2)] (A.1)

wherethefunction N(t), calledtheshift, ultimatelywill bedeterminedafterthevariation by thechoiceof
time variable.The shift cannotbe fixed prior to thevariation becausein theADM formalism,it playsthe
role of a Lagrangemultiplier. Furthermore,in standardADM theory thetwo boundarytermsin (2.1) are
setequalto zero. In the presenceof matterin the form of a perfectfluid, the ADM action is written:

S=J(R+p)(~)d4x=JLADMdt (A.2)

wherep is the pressureof the fluid [71.The matterLagrangian is thus Lm = p, ratherthan —~ as in
Hawking andEllis (seeeq. (2.10)).For simplicity, thefactor (l6ir)t hasbeensuppressed.Now perfect
fluids aredifficult to handlein avariationalprinciple formulationof generalrelativity, becauseif onetries
to useonly the usualfluid variables,the variationmustbeconstrained.In section2, theconstraintwasthe
conservationof the currentvector:the variationwas restrictedby eq. (2.11). As I discussedin section2,
one wishesin action principles to minimize the constraints.For this reason,it has becomestandard
practicewhendealingwith perfectfluids in theADM formalismto regardtheperfectfluid variablesp~and
p asfunctionsof scalarfields 4’, 0 ands. The variables is the specificentropy,but 4’ and0 haveno direct
physicalsignificance.The variables4’, 0, s arecalled the Schutzvelocity potentials,afterB. Schutzwho
showed[45,46] that perfectfluids which dependon ~, p, andthe specific enthalpyh havean elegant
Hamiltonian formulation if the independentvariablesare 4’, 6, s. These fields are called velocity
potentialsbecausethe four-velocity u5 of the fluid is written in termsof thesepotentials:

= h~t(4’a+ Os~). (A.3)

The equationof stateis assumedto beof theform p = p(h, s), andthespecificenthalpyh is determinedas
a function of the threeSchutzpotentialsvia the normalizationcondition ~fubg~~= —1.

Using the first andsecondlaws of thermodynamics,it can be shown [44] that the perfectisentropic
equationof statep = (y — 1) = p(h, s) can be written

p = (‘y — l)(h/y)~ exp[sI(1 — y)] . (A.4)

The canonical variablesare (R, 4’, 0, s), with conjugatemomenta (PR’ p
4, p5,p~)respectively.
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However,thereare two initial value constraints

p~=0’ p5=op4~ (A.5)

on the fluid variables,which can be usedto eliminatethecanonicalpair (0, p0) from theLagrangian.The
ADM Lagrangianwith the pair (0, p6) removedis thus [7,441:

LADM ..PRR +p44” +p~s’~N(Hg+Hm) (A.6)

wherethe prime denotesthe time derivative,

Hg = —[p~I(24R)+ 6kRl (A.7)

is the purely gravitationalsuper-Hamiltonian,and

Hm = N
2R3[(p +p) (u°)2+pg°°]=p~R3~t~& (A.8)

is both the coordinateenergydensitymeasuredby a comovingobserver,andthe super-Hamiltonianof
thematter.The momentumconjugateto the radiusof the universeR hasasimpleexpressionin termsof
R andR’:

PR = —12RR’IN. (A.9)

The constraintequationfor theFriedmannuniverseis obtainedby substituting(A.6)—(A.8) into (A.1)
andvarying the lapse N. The result is the super-Hamiltonianconstraint:

~= Hg + Hm = 0 = —p~/(24R)—6kR+p~R3~1~es. (A.10)

In the caseof the Friedmannuniverse,all the informationon the time evolutionis containedin the
super-Hamiltonianconstraint(A.10); in fact the ADM analogueof Schrödinger’sequation(2.28)is the
so-calledWheeler—DeWittequation:

*c11(Elg+f(m)4i0. (A.11)

In the ADM formalism,somecombinationof the canonicalvariablesis chosento bePT’ the momentum
conjugateto thetime T, andacanonicaltransformationof (A.10) is carriedout to anewset of canonical
variablesof which (T, PT) is onepair. The ADM HamiltonianHADM is thenequatedtO PT~ Quantization
is accomplishedby treatingthetime variableon an equalfootingwith the spatialvariables,andreplacing
PTwith —i 9/oT. The trick is to choosethe timevariableso that (A.11) becomes(2.28)with H beingthe
ADM Hamiltonian.In general— with apoor choiceof the time variable— Pr could appearin (A.10) to
secondorder,andthenwewould be facedwith quantizingeither a Klein—Gordonequationor a first
orderequationin which the spatialmomentaappearin a squareroot. Needlessto say,the solutionsto
suchanequationwould beexceedinglydifficult to interpret.In the general case,it maynot bepossibleto
find a canonicaltransformationto a time variable which avoids this problem.

However,in thecaseof the radiation-filledclosedFnedmannuniverse,thereis a suitablechoiceof the
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time which reduces(A.11) to (2.28), with HADM being the Hamiltonian for the SHO. With y
Hm = p~3&IR, and thusthe naturalchoicefor the momentumconjugateto the time is

4/3
PrP

4 e (A.12)

which involves the matter variablesalone.Thus we want the canonicaltransformationto involve the
matter variablesalone. If for simplicity we retain the original momentump as a canonicalmatter
momentum— that is, the canonical transformationfor the momentais (PR, P~p5)—~(PR, Po,Pr)’
wherep4 = p,1~— we obtain from the so-calleddirect conditionsof a canonicaltransformationthe new
variables

T= —p~e~p
413, R= R, cP = 4’ + 4p~I3p (A.13)

and the super-Hamiltonianconstraint (A.10) takesthe form

~=0= —p~I24R—6kR+p~IR (A.14)

which from HADM = Pr gives

HADM = p~I24+ 6kR2 (A.15)

which is the SHO Hamiltonian.
The lapseN is fixed by solving the Hamilton’s equationT’ = 1 = 8(N[Hg + Hm1)IôP~= NIR, which

gives N = R; i.e., the time coordinateT is just conformaltime.
With thestandardquantizationmethodpT—’JT= —i ôIôTandpR—~J.5R= —i 91oR,(andareversalof

the direction of time T—÷— T) (A.l1) and (A.14) give us the Schrödinger equation of the SHO, as I
wished to show.

In the ADM approach, in contrastto the approachI developedin thebodyof thispaper,theconstraint
equationgives us no informationaboutthe boundaryconditionsto beimposedon the wave function of
the Universe. However, asI discussedin thebodyof thispaper,Hartle andHawking[1] havepresenteda
very strongargumentthatwe shouldregarda quantumuniverseas coming out of, or exploding from,
“nothing”. This meansthatat T = 0, the wavefunction of the Universewas concentratedat the initial
singularity: that is, the initial boundaryconditionis just 1I’(R = 0, T = 0) = 6(0), where6 is the delta
function. Thus with the Hartle—Hawking boundary condition, the entire discussion in section 4 is
reproducedin the ADM formalism.

This equivalencedepends,of course,on the choiceof time parameterin the ADM formalism. If a
different timecoordinatehadbeenchosen,I wouldnot haveobtainedthe SHO oscillatorHamiltonian;
the quantum mechanicswill be different for different choicesof the time parameter. (This ambiguity is
equivalent to the so-calledfactor ordering problem in quantum mechanics;see[1], [7], [17]an4[47]for a
discussion.) However, as I remarked at the end of section 4, the MW! strongly suggeststhat the
fundamentalHamiltonian ought not to pick out a lengthscalewhich is specialto onebranchuniverse.
This suggestion can be used in the ADM to rule out certain choices of the time parameter for
radiation-filled Friedmann universes.

For example,it rules out Misner’s choice of the time parameterin his quantummodel of a closed
radiation-filled Friedmann universe [48].Misner expressedthe scalefactor as R = et’, andhe chose11 as
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his timeparameter.By (2.16),we havefor the matterdensity~ = FR4 = F e~2,whereus aconstant.
It is easyto show [48] that with this matterdensityand the time parameter(2, (A.10) becomes

+ (e4°— F e2~i = 0. (A.16)

The problem with this equationfrom the MW point of view is that it contains the constant F.
Classically, this constantis determinedin a time-independentmannerby measuringthe densityof
radiation at the time of maximum expansionand setting/.L(tmax) = FR~4(tmax).But this would give a
differentvalueof F for eachclassicaluniverse,andthusF cannotbe the samefor all branchuniverses.
But it mustbe the samefor all branchuniversesby (A.16) andthe MWI. Hence(A.16) is inconsistent
with the MWI. This is the samescale factor problemI discussedin section 4. For radiation-filled
Friedmannuniverses,the only choice of time parameterthat treatsthe branchuniversesthe same is
conformal time, and the choiceof conformal time fixes the momentumconjugateto the time to be
(A.12), howeverthe scalefactor R is parameterized.

It is likely that in the ADM formalism,acanonicaltransformationinvolving the scalefactor R can be
found which transforms(A.11) for anyvalueof the polytropicindexy into aform whichtreatsall branch
universesequally. To seethat sucha canonicaltransformationmight exist,notethat by (2.16), the mass
density is ~i = FR3~.If we define a new scalefactor y by

y = R~3~2~2 (A.17)

then it is easyto showthat the super-Hamiltonianconstraint(A.10) can be written

1{= 0 = —6R3~t~[21(3y— 2)]2 [(y’)2 + k {(3y — 2)/2}2 y2 — {(3y — 2)/2}2 F] (A.18)

providedthetime variableis conformaltime (N = R); the primedenotesdifferentiationwith respectto
conformaltime. (I amgrateful to Dr. J.D.Barrowfor pointing out the coordinatetransformation(A. 18)
to me.) If (A.18) is differentiatedwith respectto conformaltime, thend~/dt= 0 and ~= 0 together
imply

y” + k[(3y — 2)/2]2 ~ = 0 (A.19)

which is the SHOif k= + 1. All the dynamicsis containedin (A. 19): if the spacevariableisy andthetime
variableis conformaltime,thenthe dynamicsis that of a SHO.This resultstrongly suggeststhat in the
ADM formalism it maybepossibleto reducethequantummechanicsof aFriedmannuniversefilled with
a perfectfluid of anypolytropic index to the quantummechanicsof a SHO.Note alsothat thereis no
referenceto thetroublesomeconstantFin (A.19); in the variabley, all branchuniversesareon an equal
footing. This means— if we acceptthe MW! — that the appropriatespatial coordinatefor quantizinga
Friedmannuniversewith generalFis not R buty (of course,y = R if, andonly if, y = ~). The detailsof
quantizinga Friedmannuniversewith generalpolytropic index y will be discussedelsewhere.As in the
caseof y = ~, the ideawill be to absorbthe constantF into the momentumconjugateto the time; i.e.,
into the ADM Hamiltonian.

For modelswith morethanonetypeof fluid — dustandradiation,say— then the argumentsI gaveat
the endof section4 showthat it will be difficult evenin the ADM formalism to find a time parameter
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whichtreatsthe branchuniversesequally; in particular,thoseargumentsshow thatconformaltime is not
an appropriatechoice.The existenceor non-existenceof such a time parameteris a subject for future
research.Nevertheless,the reasonswhich I gave in section 4 for believing that the fundamental
Hamiltonianmustcontainno fundamentallengthscalesalsoapplyto theADM Hamiltonian:if theMWI
is true, then the ADM Hamiltonian must not single out a classof branchuniverses.


