CAUSALLY SYMMETRIC SPACETIMES

Abstract

Causally symmetric spacetimes are spacetimes with J+(S) isometric to
J (S) for some set S. We discuss certain properties of these spacetimes,
showing for example that if S is a maximal Cauchy surface with matter
everywhere on S, then the spacetime has singularities in both J+(é) and
J (S). We also consider totally vicious spacetimes, a class of causally
symnetric spacetimes for which I+(p) =1 (p) = M for any point p in M. Two
different notions of stability in General Relativity are discussed, using
various types of causally symmetric spacetimes as starting points for

perturbations.
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1. Introduction

The concept of symmetry is basic to physics. Symmetry in General Relativity
is usually based on a local one-parameter group of isometries generated by a
vector field: a Killing vector field. In this paper I shall develop a notion
of symmetry which is based on the global causal structure of spacetime. The
reasons for analyzing §pacetimes with causal symmetries are in part the same
as the reasons for considering spacetimes with Killing symmetries: first, the
spacetimes having such symmetries mimic important known features .of the actual
Universe while simplifying the problem of solving the field equations; and
seéond,the mathematical simplicity of such spacetimes allows them to be used
as easily understood examples of exotic spacetime structures - structures
which may form a part of the actual Universe% |

I shall discuss both applications of symmetries in this paper. After setting
down the definitions and basic relations between the various types of causal
symuetries in Section 2, T shall show in Section 3 that all time symmetric
universes which contain matter everywhere are singularity symmetric. That is,
these universes have singularities both to the past and to the future of the
spacelike hypersurface about which the universe is time symmetric. Many writers

2,3,4 that .the actual Universe is closed, .and the evidence suggests

believe

that it is isotropic and homogeneous. This implies the existence of a surface

of time symmetry. Thus if we assume that this surface of time symmetry is a

Cauchy surface, then it follows that the Universe can exist for only a finite

time. In general, Section 3 will be devoted to a discussion of the conditions

which must be imposed on a spacetime in order to make it singularity symmetric.
In Section 4 I shall briefly discuss some of the properties of totally

vicious spacetimes, the class of causally symmetric spacetimes for which

+ -
I (p) =1 (p) =M, the entire spacetime, for any point p in M. These spacetimes



provide a counter-example to a theorem by Hawking and Sachs: A causally simple
spacetime is stably causal.

Causally symmetric spacetimes have one advantage over Killing symmetric
spacetimes. Causal symmetries are quite amendable to analysis by the global
techniques developed by Hawking and Penrose, and using these methods it is easy
to prove that many of the properties of these spacetimes are "stable'. I have
placed “stable" in quotes because there are two notions of stability used in
General Relativity. First, a spacetime property is said to be stable if it
still occurs when the initial data is perturbed. Second, a property is said to
be stable if it persists when the metric is changed slightly at every point in
the spacetime. I shall make these different notions of stability more precise
in Section 5, showing that the singularity symmetry of some of the spacetimes
considered in Section 3 is a stable property in the first sense, and that the
_total viciousness of the spacetimes of Section 4 is a stable property in the
second sense. |

The notation of this paper is the same as that of Hawking and Ellis6,

hereafter denoted HE. I shall assume that the cosmological constant is zero.



2. Definitions and Basic Relationships

The three basic causal sets, J+(S), I+(S), and D+(S) give rise to the
following three definitions of symmetry:

Definition: A spacetme (M,g) will be called causally symmetric about a

set § it J+(S) is isometric to J (S), written
IY(s) = 57(s)

Definition: A spacetime (M,g) will be cailed chronologically symmetric

about a set S if
17(s) = 17()

Definition: A spacetime (M,g) will be called Cauchy symmetric about a set

S if
DT(S) = D(S)
Since all spacetimes have the above symmetries if S = M, some restriction
will have to be placed on S for the definitions to be useful. In Section 3,
we will require S to be a partial Cauchy surface, and on this structure we can
define another notion of "Cauchy" symmetry:

Definition: A spacetime (M,g) is called time symmetric if there exists a

partial Cauchy surface at each point of which the extrinsic curvature Xab
vanishes.

This is the definition of time symmetry as given by Misner, Thorne, and
Wheeler7. There are other definitions of time symmetry in the literatures.
For example, in Harrison, Thorne, Wakano, and Wheeler we find the following
definition of time symmetry: "A spacelike hypersurface is said éo be a hyper-
surface of time symmetry when the dynamical history and the 4-geometry on the
future side of this hypersurface is the time-reversed image of the dynamical
history and the 4-geometry in the past"g. As 1 interpret this statement, the
above authors claim that a spacelike hypersurface S is a surface of time

symmetry if the spacetime is both Cauchy symmetric and causally symmetric
3



about S. (The time reversal of the dynamical history gives rise to the Cauchy
symmetry and the time reversal of the 4-geometry gives rise to the causal
symmetry.) Note, however, that neither D+(S) = D (S) nor J+(S) = 3 (8) imply
Xap = 0. For exaﬁple, let S have the topology R3 and let (x,y,z) be a Euclidean
coordinate system on S, with initial data set (hab’xab) on S. (hab is the metric
on S) Then if hab(x,y,z) = hab(x,y,-z) and xab(x,y,z) = - xab(x,y,—z) with

Xap # 0 except at points for which z = 0, we can evolve this data so that
D*(s)

n

D (S) and J+(S) = J (S). In other words, this initial data set is
globally time symmetric (i.e., J+(S) = J (S) and D+(S) = D-(S) ) but not
locally time symmetric (i.e., for any point p in S with z # 0, we have J+(p)
not isometric to J (..

Furthermore, Xap = 0 on a partial Cauchy surface S does not imply any of
the three causal symmetries. For example, remove the point (x =y =2z = 0,

t = +1 ) from Minkowski space. In the resulting spacetime the hypersurface

(a4
"

0 has Xap = 0, but D+(S) is not isometric to D (S). We do, however, have
the following:

Proposition 1: If the spacetime (M,g) is time symmetric about S and if

D(S) = D+(S) U D (S) is the maximal Cauchy development from S, then D+(S) =
D (S).

This result follows immediately from the existence and uniqueness of the
maximal development from S, proven in Chapter 7 of HE. In a similar manner,
we prove

Propostion 2: If S is a time symmetric Cauchy surface, then S is causally

symmetric about S.

In the next section we will show that singularities develop both to the
past and to the future of a maximal hypersurface10 S provided there is matter
present everywhere on S. Intuitively, the notion of "matter present everywhere

"

on S" means " the energy density is non-zero at each point of S." We can make



this intuitive notion precise via one of the following conditioms:

Definition: The weak ubiquitous energy condition is said to hold on a set

S if Tab ve Vb'> 0 for all timelike or null vectors V° at each point p in S.

Definition:‘The strong ubiquitous energy condition is said to hold on a set

S if (Tab - l-gab T) V? v 0 for all timelike or null vectors V° at each
2

point p in S.

All observed matter fields obey both of the above conditions at a point p
if Tab # 0 at p. However, there are certain fields which are often used as
approximations to actual fiel&s that do not satisfy one or both of the above
conditions if Tab # 0. For example, a null fluid moving entirely in the ve

direction would give Tab ve Vb = 0 with Ta # 0. Furthermore, a massive scalar

b
field could violate the strong ubiquitous energy condition while satisfying
the weak ubiquitous energy condition. (see page 95 of HE) Since it is unlikely
that the matter at a given point would consist entirely of radiation moving
in one direction, and since a massive scalar field with Tab # 0 could violate the
strong ubiquitous energy condition only at such extremely high densities
that we cannot trust the matter equations, it is reasonable to assume that the
above energy conditions hold at a point p whenever Tab # 0 at p.

The condition Tab # 0 for all p ¢ M was apparently originally proposed
by Aristotle (Nature abhors a vacuum), and later defended by numerous authors,
among them G. W. Leibniz, who supported it with an argument which is cogent
even in the world-view of General Relativity: at any point in spacetime we
expect there will be a little randomly oriented radiation present, even in
what would otherwise be a perfect vacuum. The microwave background radiation
for example, is expected to be present everywhere in spacetime, except perhaps

where there is matter to shield it out. This random background radiation

would be sufficient to satisfy both of the ubiquitous energy conditions; even



in radiation‘shielded regions there would be quantum mechanical zero-point
radiation which would in itself be sufficient to satisfy the condition. Thus
the above ubiquitous energy conditions seem to be eminently reasonable
conditions to impose on the whole of spacetime, though for our purposes we

will need to impose them only on an initial spacelike hypersurface.



3. Singulatity Symmetric Spacetimes

We will now show that any spacetime which is time symmetric about a space-
like hypersurface S (or more generally, for which S is a maximal hypersurface)
and which has matter everywhere on S hés singularities both to the future and
to the past of S. The first two theorems will apply to the case in which § is
compact, and they require no global causality assumption. The third theorem,
which handles the non-compact case, will require a causality assumption: S
is required to be a Cauchy surface. The first theorem is really a special case
of the second. It is included separately for two reasons. First of all, it
facilitates comparison with a similar theorem by Brill and Flahertyll, and
second, since its conclusions depend explicitly on the initial data and not
on a more general global-generic condition, it will be used to prove the stability
of a class of singularity symmetric spacetimes.

Theorem 1l: Suppose that a spacetime (M,g) contains a maximal spaceliké
hypersurface S which is compact and edgeless. Then there is at least one time-
like geodesic which is incomplete to the future of S, and at least one timelike
geqdesic which is incomplete to the past of S, provided:

(1) The Einstein equations hold on (M,g);
(2) The strong energy condition holds on (M,g);

(3) The strong ubiquitous energy condition holds on S.

‘Theorem 2: Suppose that a spacetime (M,g) contains a maximai spacelike
hypersurface S which is compact and edgeless. Then there is at least one time-
like geodesic which is incomplete to the future of S, and at least one time-
like geodesic which is incomplete to past of S, provided:

(1) The Einstein equations hold on (M,g);
(2) The strong energy condition holds on (M,g);

(3) For every timelike geodesic y with y j S # ¢, there are points
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+ -
P, @ in J (S) and J (S) respectively such that at p and q,

a.b

vV v # 0 , where v? is the unit tangent vector

[c Rd]ab[e Vf]
to yv.

Proof: Clearly Theorem 1 is a special case of Theorem 2, for let p = q

be a point in y y S. Then R, »Va v >0 at p = q by conditions (1) and (2) of

b
Theorem 1. But this implies ve vb V[c Rd]ab[e Vf] #0at p=gq (gee page 540

of reference 12), so condition (3) of Theorem 2 holds. Thus we need only prove
Theorem 2. (The proof is a modification of the proof of Theorem 4 in HE, p.273.)
It can be shown (HE, pp. 204-205) that there exists a covering manifold ﬁ_

to M such that each connected component of the image of S is diffeomorphic

to S and is a partial Cauchy surface in ﬁ. If there are incomplete timelike
geodesics both to the future and to the past of any one connected component

é of the image of S, then there will be incoﬁplete timelike geodesics both to
the future and to the past of S in M. Therefore, the proof can be carried out
in ﬁ. We first show that any timelike geodesic y which intersects é orthog-
onally will have a point conjugate to é botb to the future and to the past

of g, provided y can be extended that far. Recall that a point p on vy is

said to be conjugate to S along y if there is a Jacobi field along Yy which

is not identically zero but vanishes at p and satisfies the initial condition

v (3-1)

a;b = Xab

at S (HE, pp. 96-100). The Jacobi fields along y(t) which satisfy the above

initial condition can be written (HE, p. 99):

Q - B
YA AaB(t) yA q



where «,8 = (1,2,3), t is the proper time along y(t) [with t = 0 at q],

and q is the point at which y intersects S. At q, A is the unit matrix, and

aB
the point p will be conjugate to S along y(t) if and only if the determinant

of A _ vanishes at p. If we define

afB

3

X = det (AO.B)

6 = 3dx (3-2)
x dt

o = at d A - 168 .6

aB Y(B'EE a)y 3 oB

then it can be shown (HE, pp. 96-101) that AaB satisfies

s _ a b 2 1 _
T - RyVV -20- 36 (3 -3)
2
where 2 o0 = oaﬁ)omB > 0, Using 6 = (3/x)dx/dt, (3-3) can be written
dzx
—5 + F(x = 0 (3-4)
dt
where
_ 1 ' a b 2
F(t) = 3 (R,VIV + 20 ) (3-5)

Since x3 = det (Aas) , det (AaB) will be zero at p if and only if x = 0 at p.

At q, we have (HE, p. 100):



Thus, showing that any future-complete timelike geodesic y(t) orthogonal

to S has a point conjugate to S to the future of S is equivalent to showing

that the solution to (3-4) which satisfies the initial conditions
x=1 , dx = 0 (3-6)

at t = 0 has a zero in (0, + « ),
By conditions (1) and (2), F(t) > 0 in [0, + =), and condition (3) implies
that there exists a value ty in [0, + @) for which F(t) > 0. Thus, from

equation (3-4), we have a value t, for which

éxl o . F(t) x(t) dt < 0 (3-7)

Since F(t) > 0, this means implies a zero of x for some t in [0, + =). A
similar argument shows that any past-complete timelike geodesic y(t) orthog-
onal to § has a point conjugate to g to the past of é.

By Proposition 7.24 of Penrosel3, the location of the first conjugate
point to g on y varies continuously with the point at which y intersects é
and y. Thus the proper time length to the first conjugate point of ; along
the future-directed timelike geodesics orthogonal to é is a continuous function
defined on é, provided all y are future-complete. Thus it attains its maximum
value b on the compact set é: if ﬁ were timelike geodesically complete to the
future of é, there would be a point conjugate to é on every future-directed

geodesic orthogonal to S within a proper time distance b. But to every point

+ - P
q € D (S) there is a future-directed geodesic orthogonal to S which does not
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contain any point conjugate to S between S and q (HE, p. 217). Let
g : S X [0,b] » M be the differential map which takes a point p € S a proper

time distance t ¢ [0,b] along the future-directed geodesic through p orthog-

onal to S. Then B(S X [0,b]) would be compact and would contain D+(S). Since

the intersection of a compact set and a closed set is compact, this implies

that D+(§) and hence H¥(§) would be compact.

Consider now a point q ¢ H+(§). The function d(é,q) would be less than
or. equal to b, since every past-directed non-spacelike curve from q to é
would consist of a (possibly zero) null geodesic segment in H+(§) followed
by a non-spacelike curve in D+(§). (see HE, p. 215 for the definition of
‘ d(é,q).) Since d is lower semi-continuous, there would exist am infinite
sequence of points r € D+(§) converging to q such that d(é,rn) converged to
d(é,q). There would correspond to each r at least one element Bnl(rn) of
é X [0,b]. Furthermore, there would be an element B-l(p,t) which would be a
limit point of the Bhl(rn) since é X [0,b] is compact. By continuity we would
have t = d(é,q) and B(p,t) = q. Hence to every point q ¢ H+(§) there would
be a timelike geodesic of length d(é,q) from é. Now let q; € H+(§) be a point
to the past of q on the same null geodesic generator A of H+(§). If we were
to join the geodesic of length d(é,ql) from é to qq to the segment of A
between q and q, we would obtain a non-spacelike curve of length d(é,ql)
from é to ¢ which could be varied to give a longer curve between these end-
points. (HE, p. 112). Thus the function d(é,q), with q ¢ H+(§), would strictly
decrease along every past-directed generator of H+(§). Now these generators
have no past endpoints; (HE, p. 203). But this contradicts the fact that d(é,q)a
qe H+(é), would have a minimum ;n the compact set H+(§) since d(é,q) is

lower semi- continuous in q. Thus some future-directed timelike geodesic

11
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orthogonal to S must be incomplete. A similar argument with the past-
directed geodesics orthogonal to S will show that .there is at least one time-

like geodesic from S which is incomplete in the past direction. A

Condition (3) of Theorem 2 is a very weak condition to impose on a space-

. a_b- + . b
time. We can have V- V' V[ Ryy.. . Vi = 0 along y N J7(S) only if Rabvav

vanishes at every point of v [} J+(S), and then only if the Weyl tensor is

b,c _ .
abcdv V™ = 0) at every point of

YN J+fS). Hawking and Penrose have pointed out12 that for any physically

related in a very particular way to y (C

realistic spacetime, this would not even occur at any point of any vy!

In order to prove singularity symmetry about a maximal non-compact
spacelike hypersurface, we will need to impose stronger conditions on the
spacetime than were necessary in the compact case. We shall need a causality
assﬁmption - S will be assumed to be a Cauchy surface - and we shall need
to assume that the matter density is bounded away from zero for some finite
proper time for all observers which travel on geodesics hitting S 6rthogonally.
A stroﬁger initial condition on the matter than that imposed in the compact
case is a necessary condition for singularity symmetry: there are spacetimes
for which TabVaVb > 0 everywhere on a maximal Cauchy surface S and which is
singularity-free.An example would be a static, spherical star which carries an
electric charge. Thus the following theorem will not apply to asymptotically
flat spacetimes. However, we would expect its condition (3) to hold fog a
spacetime for which the matter density is roughly constant on S.

Theorem 3: Suppose that (M,g) contains a maximal Cauchy surface S. Then

there is at least one timelike geodesic which is incomplete to the future of

S, and at least one timelike geodesic which is incomplete to the past of S,

12



provided:

(1) The Einstein equations hold on (M,g);
(2) The strong energy condition holds on (M,g);

(3) There exist positive constants a, b such that

a

. 1 a._b
f (Tab -3 gabT) vV© VvV dt > b |
0

for every timelike geodesic segment vy [ J+(S) and
Y0 J (S), where vy is a geodesic intersecting S orthogonally

and the proper time t along y is zero at S.

Proof: We first show that every future-directed timelike geodesic vy
orthogonal to S has a conjugate point to S within a proper time distance

(a + 3/87b). Suppose not. Then we have x > 0 in this interval and

a a

2
L g . T) VaVb + 20 ]x dt
2 ®ab ‘é—ﬂj

"
1
| oo
=
e
o
~
=3
w
o
1

dx - J F(t) x(t) dt
0

a

- 8 a_b
3 x(@) J Tap ~ 7 8pT) V'V dt 2 - %’1 x(a) b
0

| A

Since dx/dt < dx/dtlt=a for all t > a before the first zero of x, there
must be a zero of x within a distance ¢ of t = a, where ¢ 1s defined by
dx = - x(a)

dt
t=a c

13



Thus

_ _ x(a) < . x@ _3
€= dxfac| . = T _ g 8mb
=a 3—-x(a) b

Hence a zero of x occurs within a distance (a + 3/8nb) from S, and this means
a point conjugate to S along Y.

From this result and the fact that to each point q ¢ D+(S) there is a
fﬁture—directed timelike geodesic orthogonal to S of proper time length d(S,q)
which does not contain any point conjugate to S between S and q, it follows
that there is in D+(S) no future-directed timelike curve from S with proper
time length greater than (a + 3/81b). However, all future-directed timelike
curves from S remain in D+(S) since S is a Cauchy surface. Furthermore, all
timelike curves intersect S. Thus, all timelike geodesics are incomplete in the
future direction, and their lengths from S are less than or equal to (a + 3/8wb).
A similar result holds for the past direction. Since the maximum proper time
distance from S in either time direction is (a + 3/87nb), no timelike curve

has a length greater than 2(a + 3/87wb).

We have also proven:

Corollary: All timelike geodesics are both future and past incompleté, and

no timelike curve has a proper time length greater than 2(a + 3/8ub).

Note that Theorem 3 and its Corollary apply to all spacetimes with a maximal
Cauchy surface S. If S is compact and Conditioms (1) - (3) of Theorem 1 hold,

Then conditions (1) - (3) of Theorem 3 hold.

14



4, Totally Vicious Spacetimes

Definition: A spacetime (M,g) will be called totally vicious if

f+(q) N I (q) =M for some point q ir M. (Notice that if I+(q) N I =
M is true for one point q in M, it will be true for all points q in M; every
point in M can be connected to every other point by both a future-directed and
a past-directed timelike curve.)

The Goedel Universe, the Kerr-Newman solution with a2 + e2 > m2 (a#0),
and Minkowski space with the hyperplanes t=0 and t=1 identified are examples
of totally vicious spacetimes. Totally vicious spacetimes are causally and
chronologically symmetric\about any point and any set in the spacetime. One
property of such spacetimes is given by:

Proposition 3: A totally vicious spacetime is causally simple.

Proof: Recall that a spacetime is said to be causally simple if for every
compact set K contained in M, J+(K) and J (K) are closed. (HE, p.206). Let q
. + + + + .
be a point in K. Then we have I (q) =M =1 (K) =J (K), so J (K) is closed.
Similarly, J (K) is closed. Hence, totally vicious spacetimes are causally simple.
This Proposition constitutes a counter-example to a theorem of Hawking
and SachslA: A causally simple spacetime is stably causal. The stable

causality condition is said to hold on (M,g) if there are no closed timelike

lines in both the metric g originally placed on M and in all metrics g' on
M which are '"near" g. (For a precise definition of "near" see Section 5)
Clearly totally vicious spacetimes are not stably causal.

The proof of the Hawking-Sachs Theorem as given by those authors assumes

that causally simple spacetimes are distinguishing (a spacetime is said to be

distinguishing if for all points q and p, I (q) = I (p) or I+(q) = I+(p)

implies q = p.) However, this condition is not included in the usual definition

15



of causally simple, which is apparently the one used by Hawking and Sachs.
Proposition 3 is really a defect in the usual definition of causally simple,
for we have

Proposition 4: A spacetime (M,g) which contains closed timelike lines

but which is not totally vicious is not causally simple.

Proof: Since (M,g) contains closed timelike lines, there is a point q ¢
M for which I+(q) N I (q) # ¢. Since (M,g) is not totally vicious,
3+(q) U 3_(q) is non-empty. Suppose 3+(q) # ¢ and let p ¢ 3+(q). If (M,g)
E+

were simply causal, then J+(q) =E (q) = J+(q) - I+(q), so q < p, but not

q << p. However, we have q << q and q < p, which imply q << p. Similarly, we
can deduce a contradiction between the assumptions J_(q) # ¢ and causal

simplicity. Thus if (M,g) were causally simple, J+(q) U J (q) would have to be

empty, and this is impossible.

16



5. Stability

As mentioned in the Introduction, there are two notions of stability in
General Relativify. The first is the continued existence of a spacetime
property under perturbations of the initial data. To be more precise,

Definition: A spacetime property will be said to be D - stable (for
development stability) about a spacelike hypersurface S with initial data
(h;b, X;b’ Wzi)) if the property exists in all spacetimes maximally developed

from initial data (hab’ X W(i)) in some neighborhood of the initial data

ab’
(h;b, X;b’ Wzi)) on S in the original spacetime, where W(i) denotes the other
fields and their derivatives on S. We use the original metric h;b on S to define
a distance function and hence.a topology on the space of initial data om S.
(i.e., we use the c” open topology on this space - see HE, p. 198 and reference
15 for more details). All sets of initial data are required to satisfy the

constraint equationsl6. (A1l ha are required to be positive definite.)

b
We have:
Theorem 4: Singularity symmetry is a D - stable property of the initial

data described in Theorem 1.

That is, given a compact maximal spacelike hypersurface S with RabVaVb >0
everywhere, we can perturb the initial data slightly (so that S is no longer
maximal, but still lxaal < ¢, for some ¢ > 0.) and still obtain incomplete

timelike geodesics both to the past and to the future of S.

Proof: A change in the metric will change RabVaVb, but it still will be
bounded away from zero on S for a change sufficiently small. Then there is an
€ > 0 such that when Ixaal < g, every timelike geodesic intersecting S orthog-
onally still has a point.conjugate to S both to the past and to the future of

S, provided every geodesic is both past and future complete. The existence of

17



a geodesic which is incomplete to the future of S and one which is incomplete

to the past of S then follows as in the proof of Theorem 2.

Similarly, we can show that singularity symmetry still occurs if we relax
the maximal hypersurface condition of Theorem 3 to lxaa[ < ¢ on S for some
e >0, tﬁe precise value of ¢ being determined by the constants a and b.
However, it is not possible to prove D - stability with the initial data of
Theorem 3 because we do not know if S would still be a Cauchy surface when
the initial data is perturbed: it is not known if global hyperbolicity is a
D - stable property about an S with the initial data of Theorem 3. It probably
is not; an arbitrarily small amount of electric field added to Schwérzschild
initial data can convert the resulting spacetime from Schwarzschild to
Reissner-Nordstrom, and the former is globally hyperbolic while the latter
is not.

The second notion of stability in General Relati&ity is the continued
existence of a spacetime property under arbitrary, sufficiently small varia-
tions in the metric. To make this notion precise, we follow Geroch17 and
introduce a topology on the collection G of all Lorentz metrics on M. Let

e G. We will write g;b < if every vector which is timelike or

[] ~ -~

Eab’ Eab €ab

null with respect to g;b is timelike with respect to gab. That is, the light
" " \

cones of gab are 'larger” than those of &b The set of 8.1 e G such that_

\J

€ab
(reference 15; HE, p. 198).

< .1 < gab forms a basis for a topology for G: the CO open topology

Definition: A property of spacetime is said to be G - stable (for global
stability) if given any M, the collection of Lorentz metrics on M which have
the given property forms an open set in G,

Theorem 5: Total viciousness is a G - stable property of spacetime.
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Proof: Let (M,g) be a totally vicious spacetime. Clearly any metric gab

with 8. < gab is also totally vicious: if we "expand" the light cones at each
point, then any closed timelike line in g1 is also a closed timelike line in
-~ s v : \ \]
B.p To show that there exists a metric 8.1 with a1 < 84 for which (M,g'")
is totally vicious we proceed as follows. Suppose there is no such metric
g;b. Then there exists a point p ¢ M through which no closed timelike line
1] n
passes for any 8.1 < Bap* For if there were no such point p then the chronology
. . ] t 1
violating sets would cover (M,gab) for some a1 < 8.p° But the set of points
at which the chronology condition is violated is the disjoint union of open
sets of the form I+(q, g;b) nidq, g;b), q ¢ M (HE, p. 189). Thus if these
sets covered M they could not be disjoint unless they consisted only of one
+ -
set; i.e., I'(q, g;1) N I (q, g,) = M.

However, the existence of such a point p is impossible, because given any
closed timelike line y (timelike in gab) through p, there is always a metric
g;b with g;b < 8. for which y is still everywhere timelike. (Given a timelike
curve y of finite time length, we can always "shrink" the light cones at all
the points of y such that y is still everywhere timelike.)

We have a contradiction, and so there must exist a totally vicious space-

' 1
time (M,g') with &b < Bap*
Totally vicious spacetimes are in a real sense mirror images of stabiy

causal spacetimes: both classes are G - stable, and both are defined by closed

timelike lines - the former by their presence, and the latter by their absence.
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from M,I.T. in 1969, I became a graduate student at the University
of Maryland, where I am now working toward a Ph.,D. in General
Relativity with Dieter Brill as thesis supervisor.

My outside interests include hiking, reading Russian literature

and science fiction, and studying history and philosophy.

Frank J. Tipler



