Department of Resources, Energy and Tourism (DRET)

PROPOSED COMMONWEALTH RADIOACTIVE WASTE MANAGEMENT FACILITY, NORTHERN TERRITORY

Geology and Geotechnical Investigation Report

Proposed Commonwealth Radioactive Waste Management Facility, Northern Territory

GEOLOGY AND GEOTECHNICAL INVESTIGATION REPORT

13 March 2009

Department of Resources, Energy and Tourism (DRET)

06-0807-04-2145479A

Parsons Brinckerhoff Australia Pty Limited ABN 80 078 004 798

PPK House 101 Pirie Street Adelaide SA 5000 GPO Box 398 Adelaide SA 5001 Australia Telephone +61 8 8405 4300 Facsimile +61 8 8405 4301 Email adelaide @pb.com.au

NCSI Certified Quality System ISO 9001

©Parsons Brinckerhoff Australia Pty Limited (PB) [2009].

Copyright in the drawings, information and data recorded in this document (the information) is the property of PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by PB. PB makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Author:	N Hannaway
Signed:	
Reviewer:	M Drechsler
Signed:	
Approved by:	D Howard
Signed:	
Date:	13 March 2009
Distribution:	

Please note that when viewed electronically this document may contain pages that have been intentionally left blank. These blank pages may occur because in consideration of the environment and for your convenience, this document has been set up so that it can be printed correctly in double-sided format.

Contents

		Page number
Exec	cutive summary	vii
G1.	Introduction	1
	G1.1 Previous investigations	2
G2.	Site characteristics	3
	G2.1 Mount Everard	3
	G2.2 Harts Range	3
	G2.3 Fishers Ridge	4
	G2.4 Muckaty Station	4
G3.	Pre-field work	7
	G3.1 Desktop studies	7
	G3.2 Site visits	7
G4.	Field investigation	9
	G4.1 Test Pit program	9
	G4.2 Drilling program	11
	G4.3 Survey	13
	G4.4 Groundwater monitoring program	14
	G4.5 Permeability tests	15
G5.	Laboratory testing	17

Contents (Continued)

				Page number			
G6.	Tect	onics an	nd seismicity	21			
	G6.1	Tectonic	setting	21			
	G6.2	Seismic	activity	22			
	G6.3	Volcanic	activity	23			
G7.	Subs	surface o	conditions	25			
	G7.1	Mount E	verard	25			
		G7.1.1 G7.1.2 G7.1.3 G7.1.4 G7.1.5	Regional geology Site geology Mineralogy and petrology Groundwater Permeability	25 26 27 28 28			
	G7.2	Harts Ra	ange	29			
		G7.2.1 G7.2.2 G7.2.3 G7.2.4 G7.2.5	Regional geology Site geology Mineralogy and petrology Groundwater Permeability	29 29 31 32 32			
	G7.3	Fishers	Ridge	33			
		G7.3.1 G7.3.2 G7.3.3 G7.3.4 G7.3.5	Regional geology Site geology Mineralogy and petrology Groundwater Permeability	33 34 36 36 37			
	G7.4	Muckaty	Station	37			
		G7.4.1 G7.4.2 G7.4.3 G7.4.4 G7.4.5	Regional geology Site geology Mineralogy and petrology Groundwater Permeability	37 38 41 42 42			
	G7.5	Geologic	cal modelling	42			
	G7.6	Surface	processes	43			
G8.	Geot	Geotechnical conditions					
	G8.1	Geotech	nical profile	45			
	G8.2	Site clas	sification	47			
	G8.3	Earthqua	ake and liquefaction	47			
	G8.4	Durabilit	У	47			

Contents (Continued)

	Page number				
G8.5 Footings	48				
G8.6 Excavations	48				
G8.7 Pavements	48				
G8.8 Construction materials	49				
G8.9 Subsurface migration	50				
G9. Summary	51				
G10. References					
G11. Limitations of geotechnical site investigation					

List of tables

Page number

Table G4.1	Summary of test pit locations	10
Table G4.2	Summary of borehole locations	13
Table G4.3	Summary of monitoring well installations	14
Table G5.1	Summary of laboratory test results – chemical/physical	17
Table G5.2	Summary of laboratory test results – rock core	18
Table G5.3	Summary of laboratory test results – soil	19
Table G6.1	Source to site distance for earthquake damage	22
Table G7.1	Summary of Mount Everard geology profile	26
Table G7.2	Summary of recorded groundwater levels – Mount Everard	28
Table G7.3	Summary of FHT results – Mount Everard	28
Table G7.4	Summary of Harts Range geology profile	32
Table G7.5	Recorded groundwater levels – Harts Range	33
Table G7.6	Summary of FHT results – Harts Range	33
Table G7.7	Summary of Fishers Ridge geology profile	35
Table G7.8	Recorded groundwater levels – Fishers Ridge	36
Table G7.9	Summary of FHT results – Fishers Ridge	37
Table G7.10	Muckaty Station Subsurface Profile (Province 1 and 2)	38
Table G7.11	Recorded groundwater levels – Muckaty Station	42
Table G7.12	Summary of FHT results – Muckaty Station	42
Table G8.1	Summary of geotechnical parameters – Mount Everard	45
Table G8.2	Summary of geotechnical parameters – Harts Range	46
Table G8.3	Summary of geotechnical parameters – Fishers Ridge	46
Table G8.4	Summary of geotechnical parameters – Muckaty Station	46
Table G8.5	Summary of potential construction materials – four sites	49
Table G9.1	Summary of subsurface conditions – four sites	52
Table G9.2	Summary of permeability results (m/s) – four sites	53

List of photographs

Photograph G2.1	Typical surface layout and vegetation at Mount Everard site	3
Photograph G2.2	Typical surface layout and vegetation at Harts Range site	4
Photograph G2.3	Typical surface profile and vegetation at Fishers Ridge site	5
Photograph G2.4	King River immediately west of the Fishers Ridge site	5
Photograph G2.5	Roper Creek immediately east of the Fishers Ridge site	5
Photograph G2.6	Muckaty Station looking north from Bootu Creek haul road	5
Photograph G2.7	Extensive sand plains to north of Muckaty Station nominated site	6
Photograph G2.8	Regional studies site on northern perimeter of Muckaty Station	6
Photograph G4.1	John Deere 315D backhoe used to excavate test pits at	4.0
Dhotograph C4.0	Mount Everard and Harts Range site (photographed at Harts Range)	10
Photograph G4.2	Komatsu PC75UU tracked excavator used to excavate test pits at Fishers Ridge site	10
Photograph G4.3	Investigator Mark V drill rig on MACK truck at Fishers Ridge. Trailer	
0	with drilling supplies (drill rods, sand gravel, standpipe, etc) behind rig	11
Photograph G4.4	Recovered rock core retained on PVC splits, wrapped in PVC tubing	
0	and stored in metal core boxes	11
Photograph G4.5	Installation of groundwater monitoring well with Class 18 PVC standpipe	12
Photograph G4.6	Installation of well head cover (FRBH03A)	12
Photograph G4.7	Completed groundwater monitoring wells FRBH02 (foreground) and	
	FRBH02A (background)	12
Photograph G4.8	50 mm non-slotted PVC standpipe used for the FHT tests at HRBH01	15
Photograph G7.1	Typical soil profile of calcareous sandy gravel overlying weathered	
	sandstone	27
Photograph G7.2	Occasional Conglomerate beds encountered within the rock profile at	
	Mount Everard	27
Photograph G7.3	Black veining (carbonaceous) encountered within the weathered	
	Sandstone and occurred throughout the profile at Harts Range,	
	beginning at approximately 25.5 m depth	30
Photograph G7.4	Outcropping Gneiss approximately 1 km to south of Harts Range site	31
Photograph G7.5	Large quartz vein exposed within Gneiss outcrop south of Harts Range.	
	Vein had a maximum width of 3 m	31
Photograph G7.6	Numerous smaller quartz veins were noted throughout the outcrop at	
	Harts Range	31
Photograph G7.7	Foliations noted throughout outcrop at Harts Range	31
Photograph G7.8	Minor Conglomerate, with brecciated and in-filled clasts, within	
	Sandstone sequences in FRBH01, Fishers Ridge	35
Photograph G7.9	Laterite caprock at Fishers Ridge	35
Photograph G7.10	Low rocky ridges to west of Province 1, Muckaty Station	39
Photograph G7.11	Sandy valley between rocky ridges, Province 1, Muckaty Station	39
Photograph G7.12	Sandy plain, Province 2, Muckaty Station	39
Photograph G7.13	Recovered core of slightly weathered, fractured basalt, Province 2, Muckaty Station	40
Photograph G7.14	Quartz sandstone with mud clasts in rocky ridge, southern boundary of	10
	nominated site, Muckaty Station	40
Photograph G7.15	Quartz sandstone in rocky ridge, western boundary of nominated site,	ΨU
	Muckaty Station	40
Photograph G7.16	Rocky outcrop along Gearbox Hill ridgeline, Muckaty Station	41
Photograph G7.17	Quartzite outcrop along Gearbox Hill ridgeline, Muckaty Station	41

List of figures

		Page number
Figure G1.1	Proposed repository sites	2
Figure G2.1	Mount Everard location map	4
Figure G2.2	Harts Range location map	4
Figure G2.3	Fishers Ridge location map	4
Figure G2.4	Muckaty Station location map	4
Figure G4.1	Mount Everard field investigations	10
Figure G4.2	Harts Range field investigations	10
Figure G4.3	Fishers Ridge field investigations	10
Figure G4.4	Muckaty Station field investigations	10
Figure G6.1	Northern Territory geological regions	22
Figure G6.2	Mount Everard tectonic setting	22
Figure G6.3	Harts Range tectonic setting	22
Figure G6.4	Fishers Ridge tectonic setting	22
Figure G6.5	Muckaty Station tectonic setting	22
Figure G6.6	Earthquake epicentres within Northern Territory	22
Figure G6.7	Earthquake epicentres within 200 km of Mount Everard	22
Figure G6.8	Earthquake epicentres within 200 km of Harts Range	22
Figure G6.9	Earthquake epicentres within 200 km of Fishers Ridge	22
Figure G6.10	Earthquake epicentres within 200 km of Muckaty Station	22
Figure G6.11	Earthquake data within 200 km of Muckaty Station	on Page 23
Figure G7.1	Mount Everard geology	26
Figure G7.2	Mount Everard generalised cross section	28
Figure G7.3	Harts Range geology	30
Figure G7.4	Harts Range generalised cross section	30
Figure G7.5	Fishers Ridge geology	34
Figure G7.6	Fishers Ridge generalised cross section	34
Figure G7.7	Muckaty Station geology	38
Figure G7.8	Muckaty Station magnetic TMI	38
Figure G7.9	Muckaty Station magnetic depths	38
Figure G7.10	Muckaty Station geological investigations	38
Figure G7.11	Muckaty Station generalised cross section Province 1	40
Figure G7.12	Muckaty Station generalised cross section Province 2	40
Figure G7.13	Muckaty Station generalised cross section regional studies site	42

Appendices

Appendix A Engineering test pit and borehole logs and photographs with explanatory notes

- Appendix B Laboratory test results
- Appendix C Falling head permeability test results

Follows

Executive summary

Parsons Brinckerhoff Australia Pty Ltd (PB) has been commissioned by the Department of Resources, Energy and Tourism (DRET) to undertake preliminary multi-disciplinary site assessments at four locations in the Northern Territory with regard to their suitability for use as a low to medium level radioactive waste management facility. The facility is to be known as the Commonwealth Radioactive Waste Management Facility (CRWF).

Three Commonwealth owned and Defence-managed sites were selected for the studies which formed part of a larger assessment process involving the collection, collating and provision of site suitability assessments. The studies will provide a basis from which the Commonwealth Government can consider the future project requirements. The three initial sites are listed below:

- Mount Everard Approximately 25 km north-west of Alice Springs
- Harts Range Approximately 100 km north-east of Alice Springs
- Fishers Ridge Approximately 40 km south-east of Katherine.

During the investigations of these three sites, an additional fourth 'volunteer' site – Muckaty Station (located approximately 110 km north of Tennant Creek) was nominated by the Traditional Owners (the Ngapa clan) and added to the scope of the investigations.

Desktop studies were undertaken to compile all geological and geotechnical information available for the four proposed repository sites. Based on this information field investigations were then conducted to determine the subsurface conditions at all four sites which included field mapping, test pitting and drilling programs. Test pits were excavated at each site to provide information on the soil profile, potential excavation conditions to 3–4 m depth and to obtain bulk samples for laboratory testing. The drilling program used a combination of diamond coring and open hole methods to provide information on soil and rock profiles to a maximum depth of 100 m. Boreholes were logged and samples collected for laboratory testing of representative units. All investigation sites were surveyed by a licensed surveyor to provide accurate coordinates and reduced levels.

All but one borehole were converted to groundwater monitoring wells and analysed for hydrogeological conditions. Additional boreholes were also conducted to provide information on potential shallow aquifers as well as to conduct falling head permeability tests in the upper 10 m of the soil/rock profile.

The regional geology of the Northern Territory indicates that the four sites have recorded very little tectonic activity during the Quaternary Period (last 1.7 million years). Seismic activity in the Northern Territory is also considered low. The largest earthquake within 200 km of any of the four sites, with a magnitude of 6.7 occurred in 1988 and was located approximately 130 km to the south of Muckaty Station, to the south-west of Tennant Creek. The area to the south-west of Tennant Creek has recorded over 400 seismic events since 1985 and the likely effects from any of these earthquakes on Muckaty Station may be limited to vibrations like a passing truck, hanging objects swaying, windows and doors

rattling and crockery clashes. There has been no recorded volcanic activity and geological maps report no potential volcanic sources in the vicinity of all four sites.

Mount Everard

Mount Everard is underlain by Quaternary sediments comprising a thin surface of red brown fine silty Sands (SM) above sand Clay (CL) and clayey Sands (SC) to a depth of about 2.5 m and then a poorly to well cemented calcrete layer to about 5 m depth. Tertiary sediments were encountered to the full depth of the investigation (approx 70 m) and were comprised of fine to coarse Sandstones and Quartzites to a depth of about 53 m which grades below to a highly to extremely weathered Claystone. Groundwater was encountered in all the boreholes and ranged in depth from 33.2 m to 25.0 m below ground level (mbgl). The permeability of the underlying soils at Mount Everard may be classified as low to very low.

Mount Everard is located within the Armadeus Basin, an intracontinental structural sedimentary basin which covers an area of approximately 170,000 km², containing Neoproterozoic (>800 Ma) to Devonian (~350 Ma) sediments. The basement geology of the area is complex derived from the underlying and nearby metamorphic sequences which form the MacDonnell Ranges.

Harts Range

Harts Range is underlain by Quaternary sediments comprising a thin surface of red brown fine silty Sands (SM) above clayey Sands (SC) to a depth of about 7 m. Tertiary sediments were encountered to the full depth of the investigation (approx 100 m) and were comprised of fine to coarse Sandstones and Siltstones. Groundwater was encountered in all the boreholes and ranged in depth from 15 m to 28 m below ground level (mbgl). The permeability of the underlying soils at Harts Range may be classified as low.

Harts Range is located within the Harts Range complex, lower to middle Proterozoic aged volcanosedimentary rocks deposited in a possible continental rift or failed rift of basement. The Alice Springs Orogeny (Devonian to Carboniferous, 300–400 million years ago) is responsible for the latest major uplift which has brought these rocks sufficiently close to the surface for their ultimate exposure through erosion.

Fishers Ridge

Fishers Ridge is underlain by Quaternary sediments comprising a thin veneer of silty Sand (SM) overlying fine to coarse gravelly Sands and sandy Gravels with lateritic gravels to a depth of about 4.5 m. A sequence of Cretaceous to Cambrian Siltstones, Sandstones and Conglomerates were encountered to a depth of about 77 m which overly the Cambrian Tindall Limestone. Groundwater was encountered in most of the boreholes and ranged in depth from 6.5 m to 25 m to greater than 80 m depth. The permeability of the underlying soils at Fishers Ridge may be classified as low to very low.

Fishers Ridge is located within the Daly Basin which is a result of extensive marine transgression across the central and northern Australian craton, beginning in the early Middle Cambrian.

Muckaty Station

The Muckaty site is underlain by Quaternary aeolian fine Sand (SP) and silty Sand (SM) with some minor outcrops of laterite. Two distinct provinces were identified at Muckaty. Province 1 consisted of a sand valley with sandy soils and some laterite underlain and surrounded by rocky ridges of Mudstone, Siltstones, Sandstone and Quartzite bedrock of the Hayward Creek Formation. Province 2 consisted of

an extensive sand plain on the north eastern section of the site which is underlain by Sandstones and Siltstones of the Cambrian Gum Ridge Formation overlying basalts of the Helen Springs Volcanics. A regional studies site at a rocky ridgeline north of Muckaty Station homestead encountered extensive Quartzite in outcrop and extending to a depth greater than 50 m. Groundwater was encountered in all boreholes and ranged in depth from 5.3 m to 39.5 m depth. The permeability of the underlying soils at Muckaty may be classified as medium for the upper sands and very low for the bedrock.

Muckaty Station is located within the Tomkinson Group which is a thick sequence of siliclastic units that alternate with six mixed siliclastic-carbonate intervals (between 1805–1710 Ma). This Group is a succession of shallow marine and continental sedimentary rocks, which the Hayward Creek Formation is the lower part of the sequence.

Geological and geotechnical considerations

The geological profiles for the first three sites described above are very similar, shallow Quaternary sandy and clayey sand soils overlying laterite or calcrete layers overlying Tertiary or earlier sedimentary sequences. The profile for the fourth site, Muckaty Station consists primarily of Quaternary sandy soils over Cambrian volcanic basalt and Proterozoic sedimentary sequences.

Mount Everard has the most consistent geological profile whilst Fishers Ridge has the most complex profile to model. Mount Everard is relatively flat where surface processes such as flooding, landsliding and erosion is unlikely to occur. Harts Ranges is located on the western banks of the Ongeva Creek and may be subject to some flooding but landslides and erosion is unlikely. Fishers Ridge is located on a ridgeline, and whilst not subject to nearby flooding of the King River and Roper Creek, may be subject to erosion of the lateritic caprock and soils. Muckaty Station is relatively elevated and within prominent rocky ridges where surface processes such as flooding, landsliding and erosion is unlikely to occur.

All four sites would be classified as Class S (less than 20 mm movement) in accordance with AS2870 with rocky outcrops classified as Class A. Liquefaction is not considered to be likely at any of the four sites due to the deep, competent dry soils and deep water tables. Earthquake loading parameters range from 0.07 to 0.09 for the four sites.

Conventional excavation machinery is considered suitable for most sites to varying depths, ranging from 5 to 7 m for Mount Everard and Harts Ranges to less than 2 m at Muckaty Station. Rocky outcrop and bedrock at Muckaty Station will require drill and blast methods, whilst laterites at Fishers Ridge may require large excavation equipment and rock breaking methods.

Many of the construction materials expected to be required for the proposed facility may be sourced on site, with Mount Everard having the widest range of suitable materials located on-site, and Fishers Ridge limited to the laterites and underlying clay materials. Materials for pavements, hardstand areas, building pads, engineered fill and impermeable barriers may be acquired and utilised (with conditioning) on most sites.

G1. Introduction

Parsons Brinckerhoff Australia Pty Ltd (PB) has been commissioned by the Department of Resources, Energy and Tourism (DRET) to undertake preliminary multi-disciplinary site assessments at four locations in the Northern Territory with regard to their suitability for use as a low to medium level radioactive waste management facility. The facility is to be known as the Commonwealth Radioactive Waste Management Facility (CRWF).

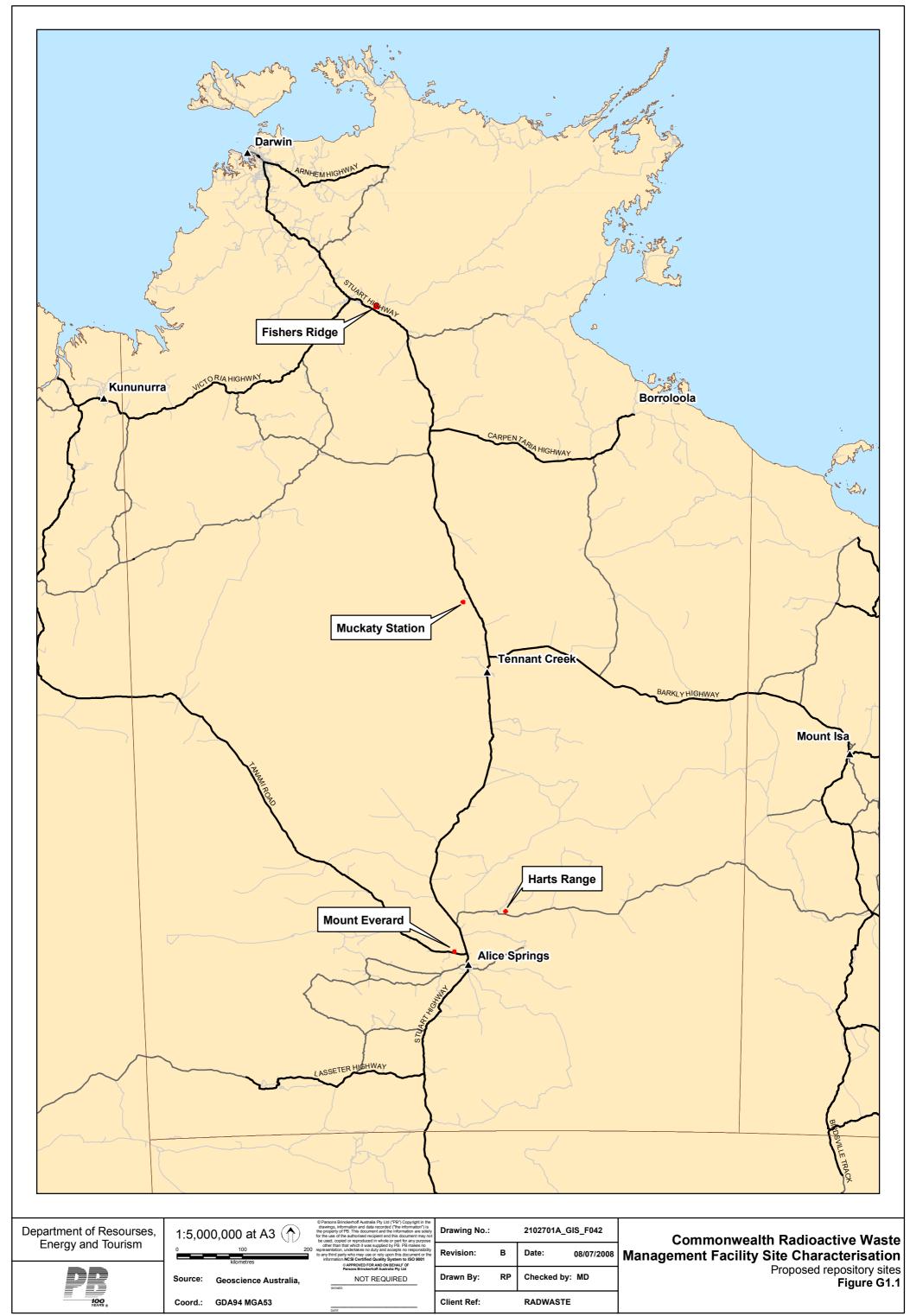
Three Commonwealth owned and Defence-managed sites were selected for the studies which formed part of a larger assessment process involving the collection, collating and provision of site suitability assessments. The studies will provide a basis from which the Commonwealth Government can consider the future project requirements. The three initial sites are listed below:

- Mount Everard Approximately 25 km north-west of Alice Springs
- Harts Range Approximately 100 km north-east of Alice Springs
- Fishers Ridge Approximately 40 km south-east of Katherine.

During the investigations of these three sites, an additional fourth 'volunteer' site – Muckaty Station (located approximately 110 km north of Tennant Creek) was nominated by the Traditional Owners (the Ngapa clan) and added to the scope of the investigations.

The four proposed sites are shown in Figure G1.1.

The purpose of the geological and geotechnical investigation is to assess the existing ground conditions within the proposed sites. This factual report outlines the procedures used to undertake the investigations and presents a summary of the encountered subsurface conditions as well as result of in-situ testing.


Site location plans, geological maps and representative photographs taken throughout the text. Detailed descriptions of the encountered sub-surface conditions are presented on the engineering test pit and borehole logs in Appendix A with laboratory test results from samples collected during the investigation are presented in Appendix B. In-situ permeability tests are presented in Appendix C.

G1.1 Previous investigations

Woodward-Clyde/URS have prepared Environmental Program Reports and Environmental Management Plans for both the Mount Everard and Harts Range sites. These reports detail physical characteristics of the site and their groundwater monitoring well installation programs. Information from these reports has been collated as part of the PB investigation. PB is not aware of any previous investigations undertaken on either the Fishers Ridge or Muckaty Station sites.

- Jindalee Environmental Program Report, Mount Everard, NT, 2 June 1999.
- Environmental Management Plan, Mount Everard Radar Receiving Site, NT, 7 June 1999.
- Jindalee Environmental Program Report, Harts Range, NT, 2 June 1999.
- Environmental Management Plan, Harts Range Radar Transmitter Site, NT, 7 June 1999.

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\Drawings_Figures_Sketches\2102701A_GIS_F042_B.mxd

G2. Site characteristics

G2.1 Mount Everard

The Mount Everard site is a receiver station for an over-the-horizon (OTH) high frequency radar, and is located approximately 25 km north-west of Alice Springs (Figure G2.1). The existing facility occupies an area of approximately 12 km².

The area of interest (the site) for the geotechnical investigation is located immediately to the south east of the existing facility and associated buildings in an area covering approximately 1.5 km^2 .

The site is currently owned by the Department of Defence (DOD) and is under the management of the No.1 Radar Surveillance Unit of the Royal Australian Air Force. The site is understood to be operated by British Aerospace.

Access to the radar facility is via the Tanami Road, a sealed road. However, access to the test locations and the site is along existing dirt tracks and firebreaks.

The site is generally flat with elevations within the site's boundaries from 726 m AHD to 732 m AHD. No major water courses or major overland flow paths were noted within the site.

Vegetation within the site includes native grasses and shrubs as well as weeds with some areas being cleared of all vegetation to accommodate some of the facilities infrastructure (Photograph G2.1).

PHOTOGRAPH G2.1 Typical surface layout and vegetation at Mount Everard site

G2.2 Harts Range

The Harts Range site is a transmitter station for an OTH high frequency radar, and is located approximately 100 km northeast of Alice Springs (Figure G2.2). The existing facility occupies an area of approximately 12 km^2 .

The area of interest (the site) for the geotechnical investigation is located immediately to the east and southeast of the existing facility and associated buildings and covers an area of approximately 1.5 km^2 . The site is owned by DOD and the management and operation arrangements are similar to that of the Mount Everard facility.

Access to the radar facility is via the Plenty Highway, a sealed road. However, access to the test locations and the site is along existing dirt tracks and firebreaks.

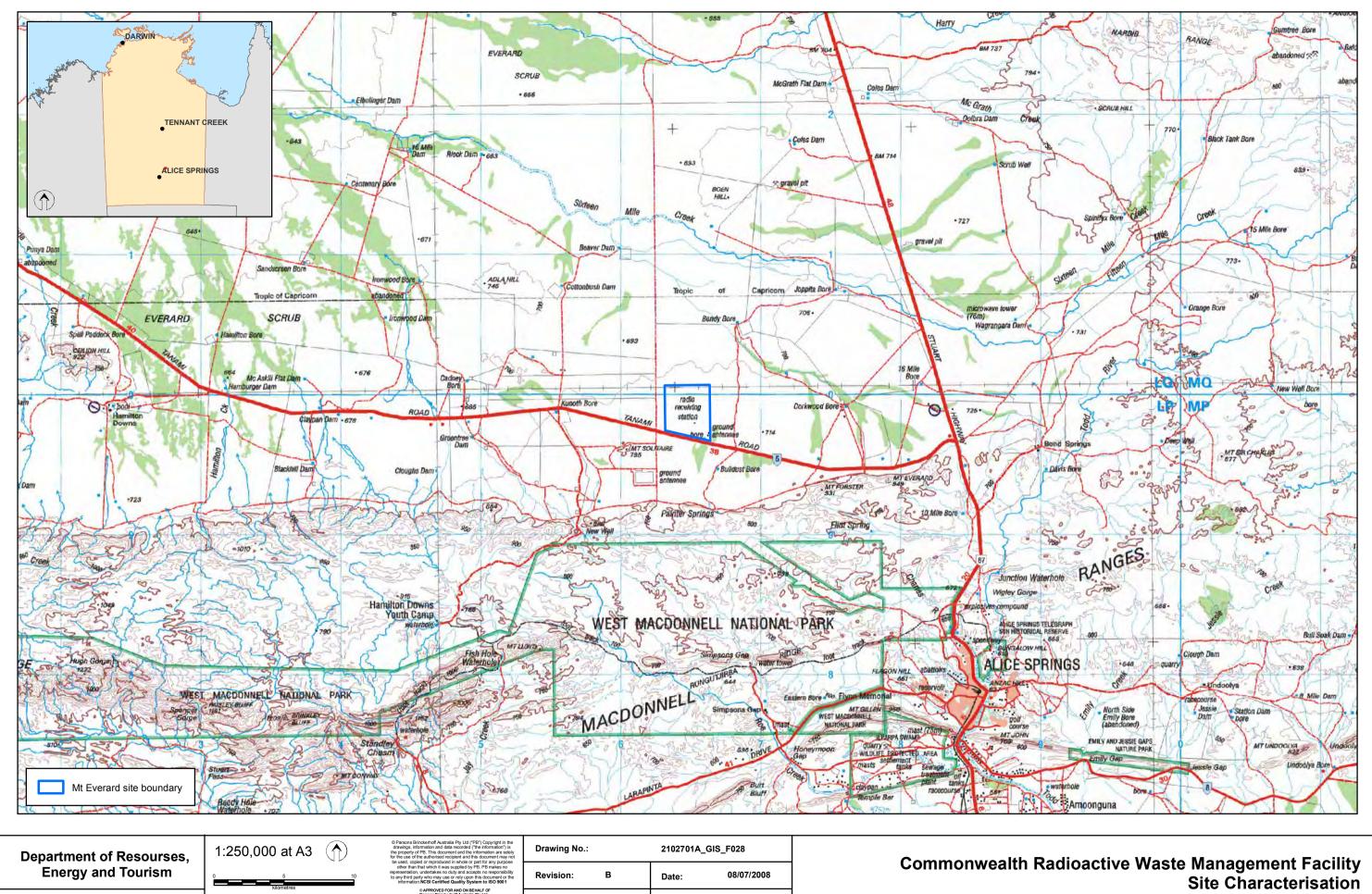
The site is generally flat with elevations within the site's boundaries ranging from 652 m AHD to 660 m AHD. Surface drainage tends to migrate towards Annamurra Creek to the west and Ongeva Creek to the east. A minor drainage channel was noted trending approximately north-south in the central northern part of the investigated site. The channel was dry at the time of the investigations.

Vegetation within the site includes native grasses and shrubs as well as weeds with some areas being cleared of all

PHOTOGRAPH G2.2 Typical surface layout and vegetation at Harts Range site

vegetation to accommodate some of the facilities infrastructure (Photograph G2.2).

G2.3 Fishers Ridge


The Fishers Ridge site is located approximately 40 km south-east of Katherine and 5 km along an unsealed track to Banatjarl indigenous community (located at Charlie Toms Yards) on the northern side of the Stuart Highway (Figure G2.3).

The area of interest (the site) for the geotechnical investigation is bounded by the King River and Roper Creek on the west and east respectively and covers an approximate area of 36 km^2 (6 km x 6 km). The site is currently under Commonwealth ownership and management and is leased to local pastoralists for grazing of livestock.

Recorded elevations across the site range from 191 mAHD to 219 mAHD. The site drains to the southwest as indicated by the general flow direction of the adjacent King River and Roper Creek (Photographs G2.3 to G2.5). Numerous wash-outs were encountered along the access track within the site with a maximum depth of approximately 0.3 m.

G2.4 Muckaty Station

Muckaty Station is located approximately 110 km north of Tennant Creek (Figure G2.4). Muckaty Station is under the guardianship of several clans and is currently being leased by Mr. Ray Aylett. The property covers an area of approximately 2200 km² and is predominately used as a cattle station.

RP

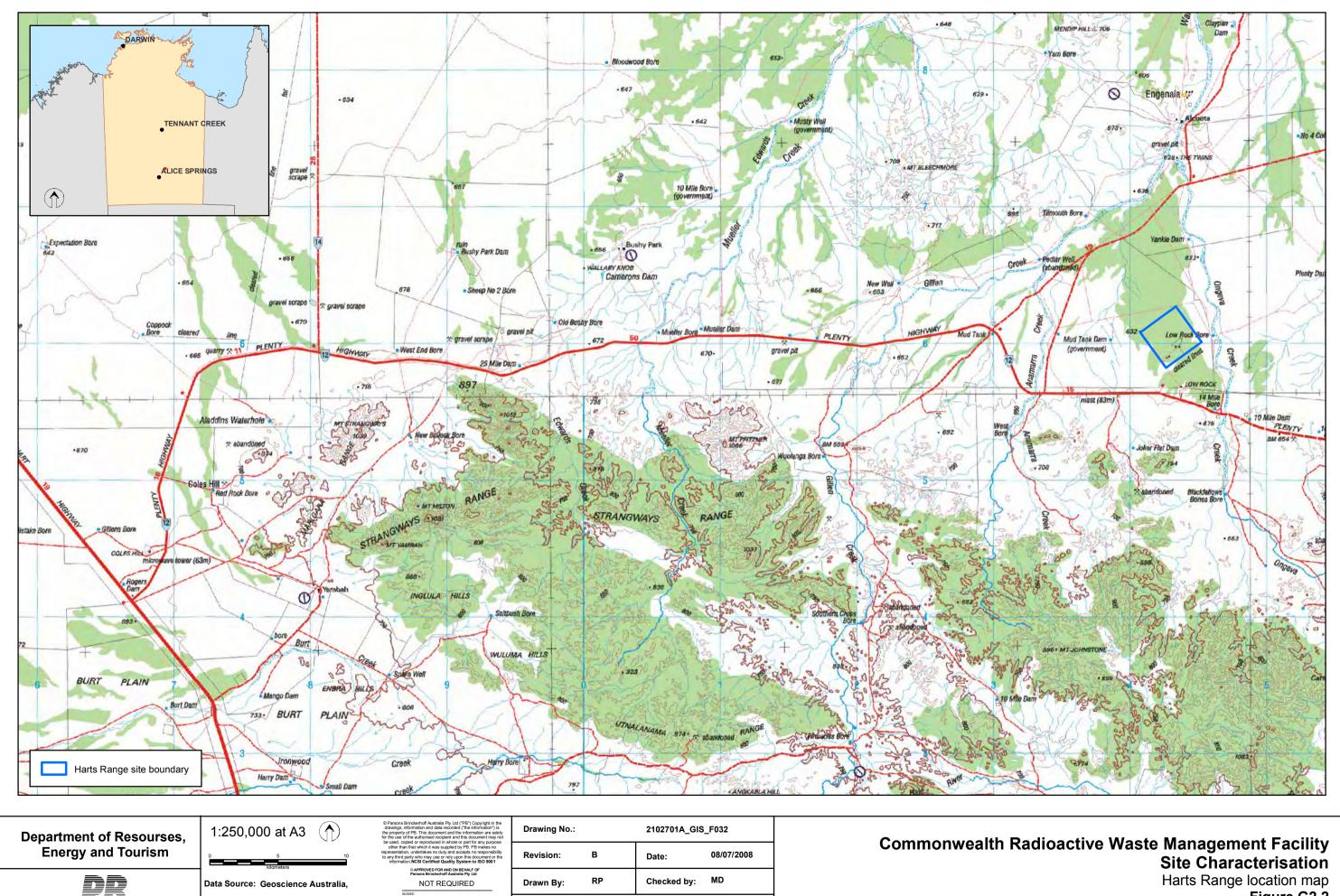
Drawn By:

Client Ref:

NOT REQUIRED

SIGNE

Checked by: MD


RADWASTE

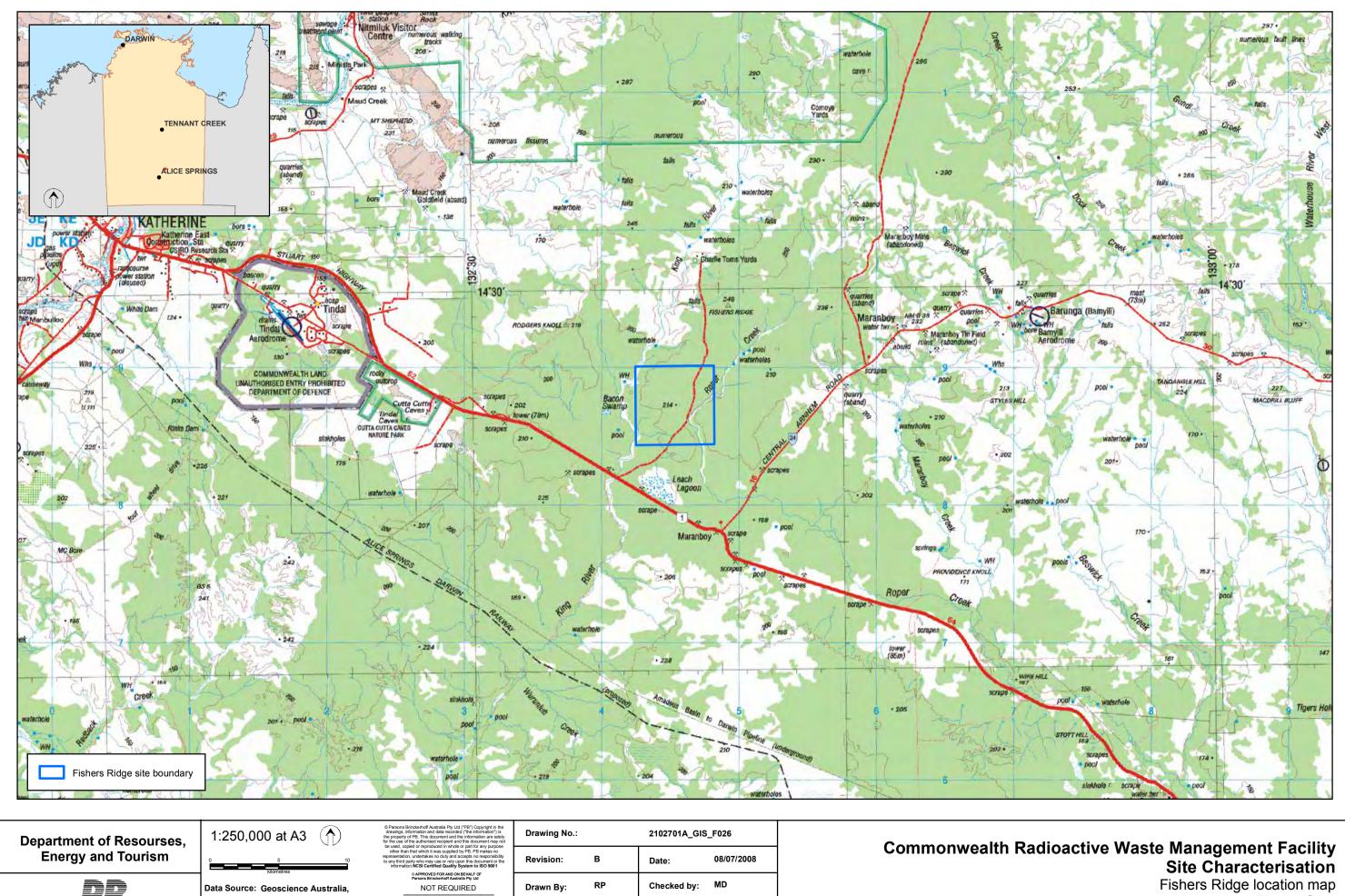
100

Data Source: Geoscience Australia,

Coord. Sys.: MGA53 GDA94

Site Characterisation Mount Everard location map Figure G2.1

RADWASTE


Client Ref:

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F032_B.mxd

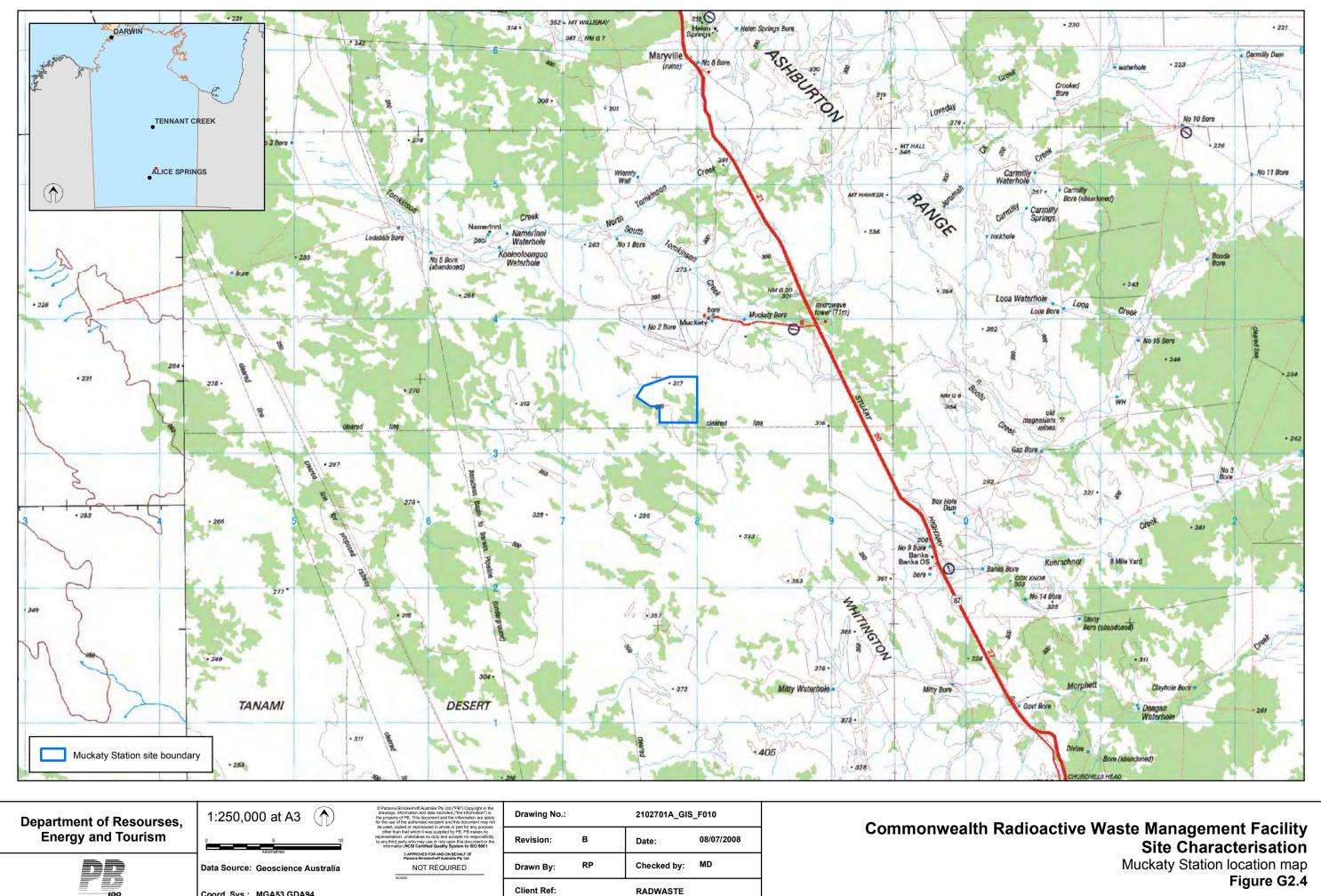
100 YEARS ®

Coord. Sys.: GDA94 MGA53

Figure G2.2

RADWASTE

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F026_B.mxd


100 YEARS ®

Coord. Sys.: MGA53 GDA94

SIGNE

Client Ref:

Fishers Ridge location map Figure G2.3

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F010_B.mxd

100 YEARS ®

Coord. Sys.: MGA53 GDA94

Figure G2.4

The area of interest (the nominated site) for the geotechnical investigation is located immediately north of the Bootu Creek Mine haul road on the west side of the Stuart highway on traditional land under the guardianship of the Ngapa clan. The site is south of Muckaty Station homestead and covers an area of approximately 1166 Ha. A second area, approximately 12 km north of the main site, has been included in the investigation as part of regional studies on Muckaty Station in areas under the guardianship of the Ngapa clan.

Access to the nominated site is limited as the area is covered with scrub, rocky outcrops, sand valleys and plains and dry creeks (Photographs G2.6 and G2.7). Tracks were constructed for access, by means of grading, during the initial stages of the geotechnical investigation. Access to the regional studies site is via an existing track to the west of the Stuart Highway which follows the rocky ridgeline (Photograph G2.8).

The nominated site is gently undulating with some rocky outcrops and intermittent creek beds throughout whilst the regional studies site is a rocky ridgeline. Elevations for both sites range from 295 mAHD to 325 mAHD.

PHOTOGRAPH G2.4 King River immediately west of the Fishers Ridge site

PHOTOGRAPH G2.3 Typical surface profile and vegetation at Fishers Ridge site

PHOTOGRAPH G2.6 Muckaty Station looking north from Bootu Creek haul road

PHOTOGRAPH G2.5 Roper Creek immediately east of the Fishers Ridge site

PHOTOGRAPH G2.8 Regional studies site on northern perimeter of Muckaty Station

PHOTOGRAPH G2.7 Extensive sand plains to north of Muckaty Station nominated site

G3. Pre-field work

G3.1 Desktop studies

At the commencement of the project desktop studies were undertaken on each of the four sites prior to site visits and investigations. The desktop studies investigated existing background data from all available sources and included the following data sets; airborne magnetic surveys, aerial photography, existing environmental reports, flora and fauna data, well data, Google Earth imagery, NT Strike, GIS and topographical, geological and hydrogeology maps.

The background data was collated and used to delineate the preliminary investigation areas and test locations based on the existing geology and hydrogeology data.

G3.2 Site visits

Prior to the site investigations, each site was visited by the project team to provide preliminary assessment of the target areas. This enabled the site investigations to be planned with a focus on the most suitable area.

The site visits allowed the number and locations of tests (boreholes and test pits) to be chosen in order to gain the maximum amount of information for each site, as well as providing logistical preparations for the fieldwork.

G4. Field investigation

The geological and geotechnical field investigation was conducted during two periods and included a test pitting and drilling program at each of the four sites. The investigations at Mount Everard, Harts Range and Fishers Ridge were undertaken from 20 July 2006 to 27 August 2006 which required close consultation with and ultimately approval from the Department of Defence. The field investigations at Muckaty Station were undertaken during 20 February 2008 to 5 March 2008 after the site was nominated by the Northern Land Council and gazetted by the Commonwealth in mid 2007.

The field work was supervised by an Engineering Geologist and a Hydrogeologist from the PB Adelaide and Perth offices, with support from other field staff, in general accordance with AS1726-1993. A Senior Engineering Geologist from the PB Adelaide office was present on site for the first week of the investigation in 2006.

Figure G4.1 presents the locations of field investigation at Mount Everard, Figure G4.2 Harts Range, Figure G4.3 Fishers Ridge and Figure G4.4 Muckaty Station.

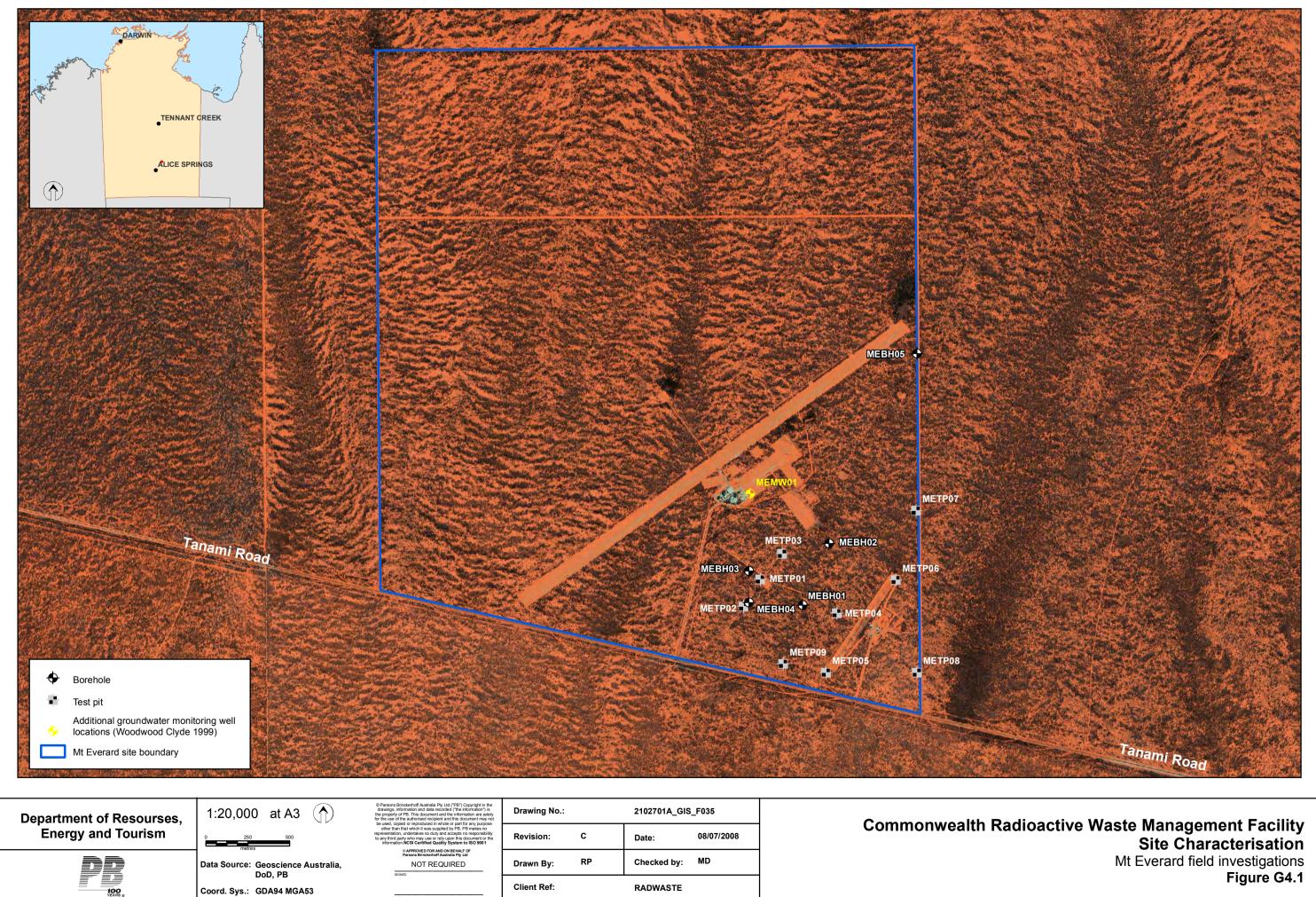
G4.1 Test Pit program

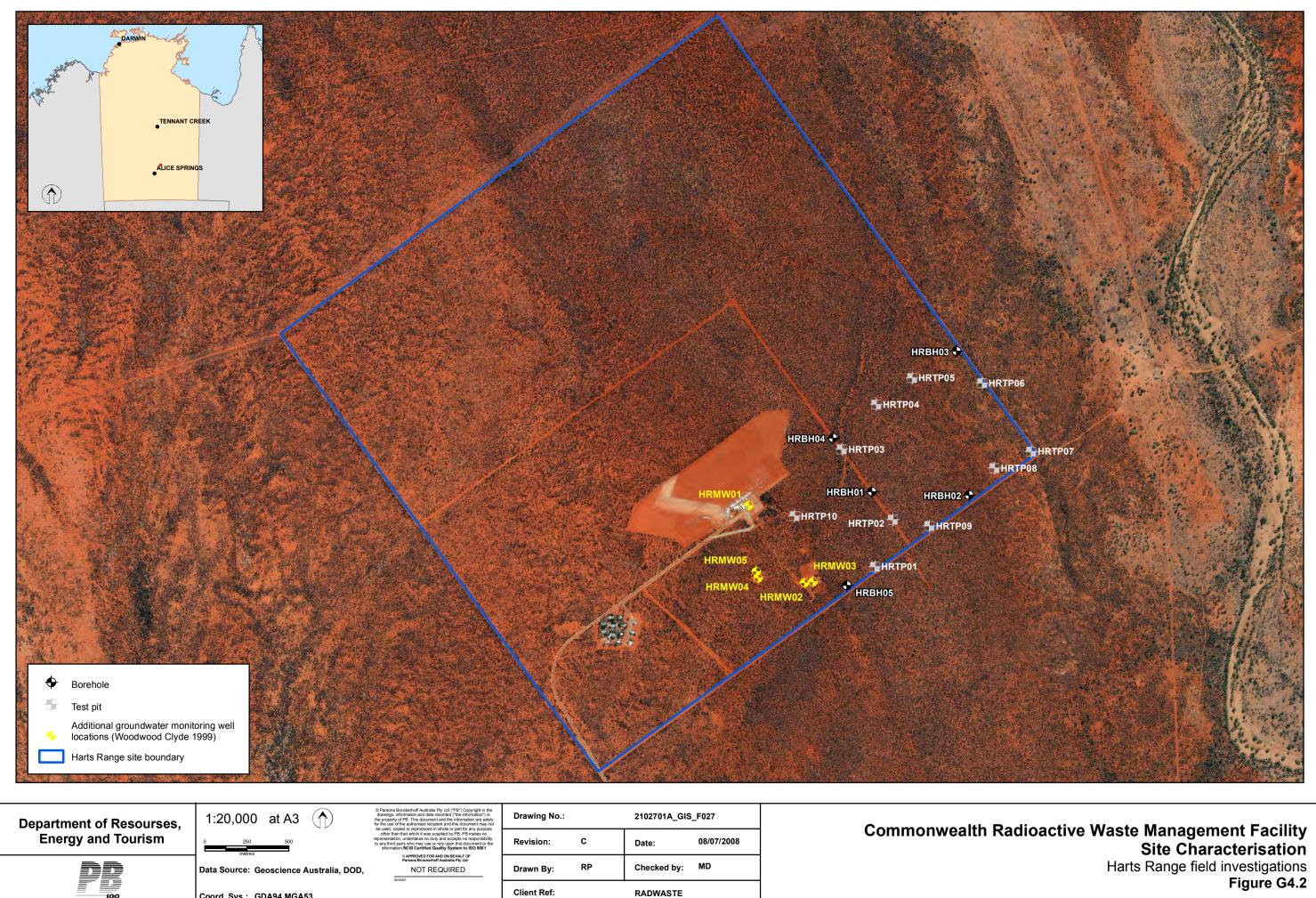
Test pits were excavated at each site to provide information on the soil profile and potential excavation conditions to 3–4 m depth (or refusal). Bulk samples of representative soil units were collected for laboratory testing.

The test pits at the Mount Everard and Harts Range sites were excavated using a John Deere 315D backhoe (Photograph G4.1), which was supplied and operated by SDA Plumbing Pty Ltd of Alice Springs. The test pitting program for Fishers Ridge was carried out using a Komatsu PC75UU 7.5t tracked excavator (Photograph G4.2) supplied and operated by Kens Plumbing Pty. Ltd of Katherine. Kens Plumbing also supplied a bobcat, which was used to construct firebreaks around the drilling locations. The test pits at Muckaty Station were excavated using a John Deere 400 backhoe supplied and operated by Philips Earthmoving Pty Ltd of Tennant Creek, who also supplied earthmoving equipment for the construction of the access tracks.

Both backhoes and the excavator were in generally good condition and equipped with 450 mm toothed buckets. In addition to the test pits the machines were also used to excavate sump pits used during the diamond core drilling program at Mount Everard, Harts Range and Fishers Ridge. The sumps pits at Muckaty Station were excavated using a front end loader from Philips Earthmoving.

Table G4.1 summarises the test pit locations for the four sites.

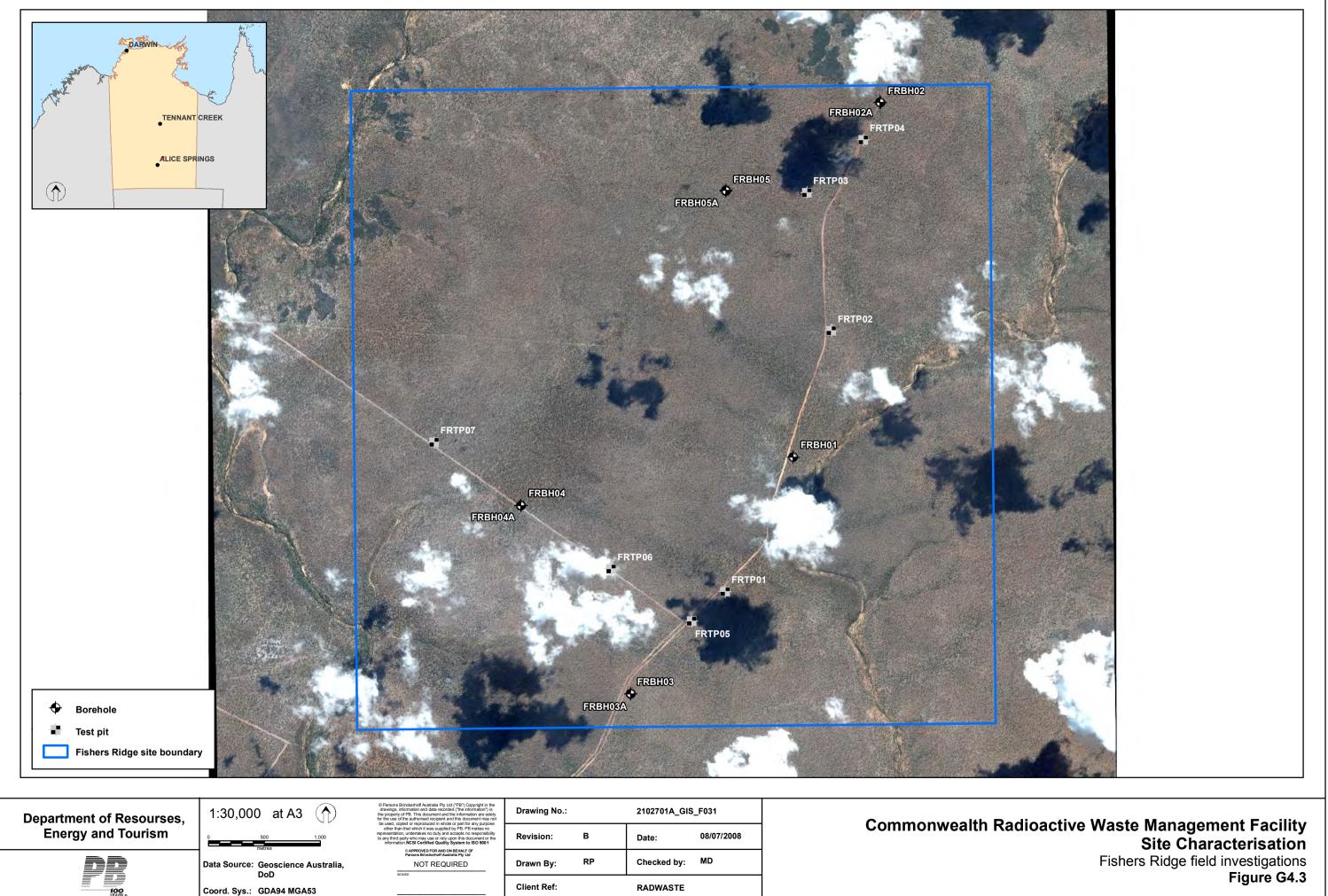

PHOTOGRAPH G4.2 Komatsu PC75UU tracked excavator used to excavate test pits at Fishers Ridge site


PHOTOGRAPH G4.1 John Deere 315D backhoe used to excavated test pits at Mount Everard and Harts Range site (photographed at Harts Range)

Site	Test pit	Date	Method	Final	Co-ordina	Co-ordinates GDA94	
	no.			depth (m)	Easting	Northing	(mAHD)
	METP01	20/7/06	backhoe	2.7	365436.694	7397477.026	730.911
	METP02	20/7/06	backhoe	2.6	365336.843	7397315.986	731.548
	METP03	20/7/06	backhoe	2.4	365567.054	7397628.786	730.307
	METP04	20/7/06	backhoe	2.7	365894.298	7397276.214	731.472
Mount Everard	METP05	20/7/06	backhoe	2.7	365829.293	7396921.637	732.638
	METP06	20/7/06	backhoe	2.3	366247.065	7397473.784	730.459
	METP07	20/7/06	backhoe	2.6	366366.558	7397886.806	729.096
	METP08	20/7/06	backhoe	2.3	366371.393	7396921.858	732.018
	METP09	20/7/06	backhoe	2.6	365573.989	7396974.013	732.517
	HRTP01	21/7/06	backhoe	3.0	444292.467	7459419.347	657.196
	HRTP02	21/7/06	backhoe	3.0	444400.186	7459697.772	656.473
	HRTP03	21/7/06	backhoe	3.0	444097.461	7460115.964	654.805
	HRTP04	21/7/06	backhoe	3.0	444302.436	7460383.040	654.497
Harts	HRTP05	21/7/06	backhoe	3.0	444515.243	7460540.438	652.795
Range	HRTP06	21/7/06	backhoe	2.8	444931.851	7460508.529	652.535
	HRTP07	21/7/06	backhoe	2.6	445223.866	7460103.256	653.190
	HRTP08	21/7/06	backhoe	1.7	445004.386	7460004.791	653.666
	HRTP09	21/7/06	backhoe	3.0	444617.071	7459661.497	656.633
	HRTP10	21/7/06	backhoe	2.3	443815.740	7459719.745	656.782
	FRTP01	28/7/06	excavator	1.6	245816.426	8385585.652	198.78
	FRTP02	28/7/06	excavator	1.25	246767.049	8387919.714	202.44
-	FRTP03	28/7/06	excavator	1.0	246547.248	8389154.113	213.10
Fishers Ridge	FRTP04	28/7/06	excavator	1.3	247053.930	8389626.786	216.79
	FRTP05	4/8/06	excavator	1.0	245517.219	8385321.580	204.56
	FRTP06	4/8/06	excavator	0.7	244794.274	8385787.981	202.65
	FRTP07	4/8/06	excavator	1.0	243209.501	8386921.930	191.59

Table G4.1Summary of test pit locations

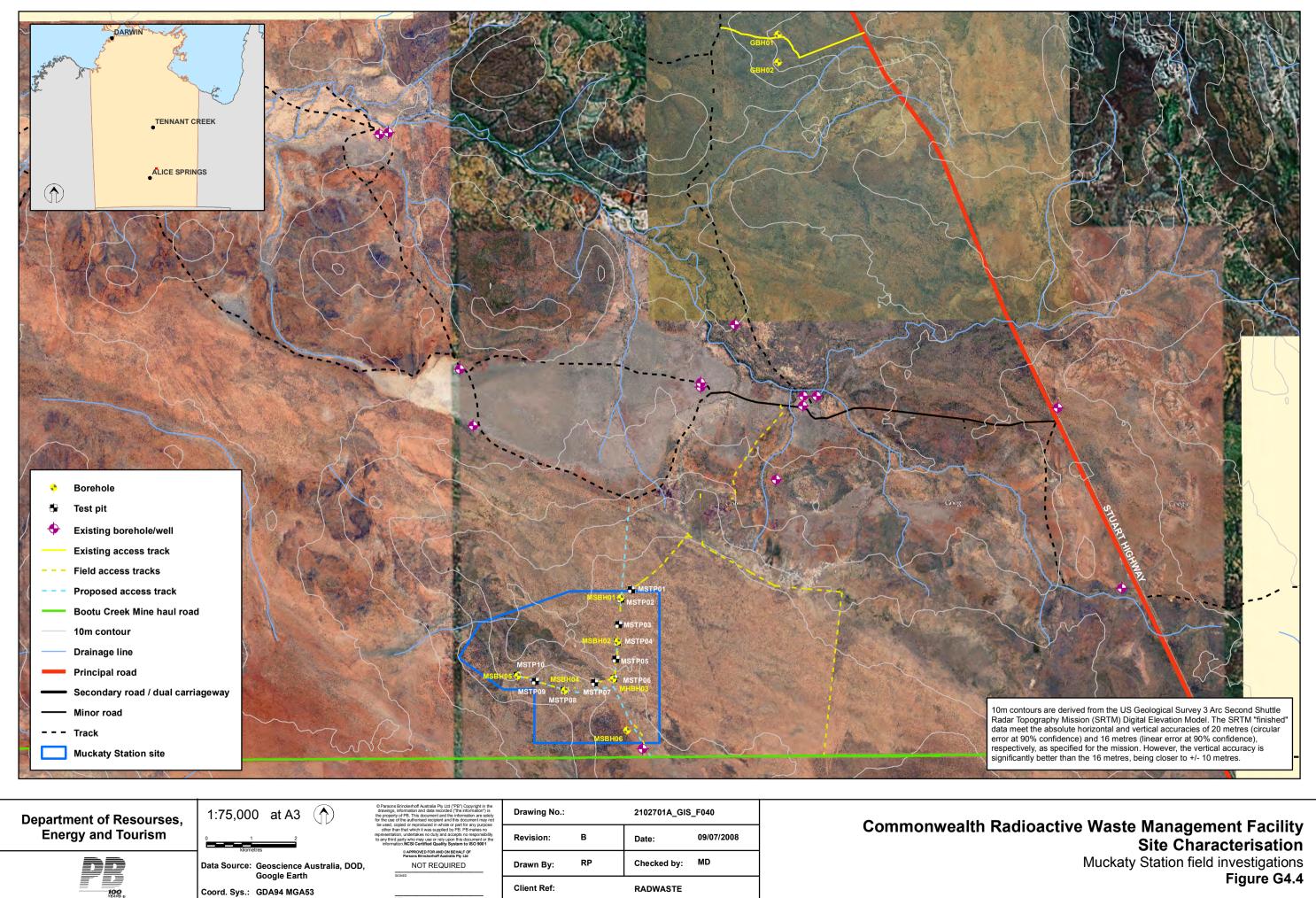
GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F035_C.mxd



GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F027_C.mxd

100 YEARS ®

Coord. Sys.: GDA94 MGA53


Figure G4.2

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F031_B.mxd

100 YEARS ®

Figure G4.3

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F040_B.mxd

	no.			Final depth (m)	Easting		Elevation (mAHD)
	MSTP01	05/03/08	backhoe	3.0	379377	7935738	322.613
	MSTP02	05/03/08	backhoe	3.1	379143	7935528	321.457
	MSTP03	05/03/08	backhoe	3.2	379094	7934954	325.619
	MSTP04	05/03/08	backhoe	3.0	379064	7934562	322.615
Muckaty Station*	MSTP05	05/03/08	backhoe	3.0	379031	7934180	318.917
	MSTP06	05/03/08	backhoe	2.4	378985	7933748	314.606
	MSTP07	05/03/08	backhoe	2.0	378556	7933649	309.958
	MSTP08	05/03/08	backhoe	2.6	377867	7933481	301.362
	MSTP09	05/03/08	backhoe	1.3	377226	7933687	305.493
	MSTP10	05/03/08	backhoe	1.2	376820	7933824	309.526

*Note: Coordinates for test pits at Muckaty Station based on survey line.

G4.2 Drilling program

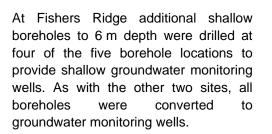
A drilling investigation program was undertaken using a combination of methods to provide information on soil and rock profiles at each of the site to a maximum depth of 100 m. Boreholes were logged and samples collected for laboratory testing of representative units.

The drilling program was carried out using a Mark V Investigator drill rig mounted on a MACK truck supplied and operated by Drilling Solutions (SA) Pty. Ltd of Adelaide, SA (Photograph G4.3). Drill holes were located based on the desktop studies and preliminary site visits at each site. Holes were located to give a representation of the geology and groundwater on each site based on the existing geology, hydrogeology and magnetic survey information.

Five investigation boreholes were drilled at Mount Everard, Harts Range and Fishers Ridge. Two holes at each of these sites were drilled using HQ3 diamond coring techniques to provide detailed information on the soil and rock strata profile at each location. The cored boreholes were drilled to a depth to intercept the underlying basement rock or to a maximum depth of 100 m. All recovered rock core was retained on PVC splits, sealed in clear PVC tubing and stored in metal sore trays (Photograph G4.4).

PHOTOGRAPH G4.3 Investigator Mark V drill rig on MACK truck at Fishers Ridge. Trailer with drilling supplies (drill rods, sand gravel, standpipe etc) behind rig

PHOTOGRAPH G4.4 Recovered rock core retained on PVC splits, wrapped in PVC tubing and stored in metal core boxes



The remaining three boreholes at each site were drilled using rotary air boring (RAB) methods to at least 5 m below the groundwater level to supplement the cored borehole information.

All five boreholes on each site were converted to groundwater monitoring wells using 50 mm diameter Class 9 and Class 18 PVC standpipe (Photographs G4.5 to G4.7).

PHOTOGRAPH G4.5 Installation of groundwater monitoring well with Class 18 PVC standpipe (MEBH01)

A total of eight boreholes were drilled at Muckaty Station, four HQ3 diamond boreholes and four RAB. Six boreholes were drilled at the nominated site, three open hole RAB boreholes and three HQ3 cored boreholes, covering the two provinces. The remaining two boreholes were drilled at the regional studies site,

PHOTOGRAPH G4.6 Installation of well head cover (FRBH03A)

PHOTOGRAPH G4.7 Completed groundwater monitoring wells FRBH02 (foreground) and FRBH02A (background)

comprising one open hole and one cored borehole to provide regional geological and hydrogeological information. All boreholes, with the exception of one, were converted to groundwater monitoring well, with installations of 50 mm Class 18 PVC. The cored borehole GBH02 collapsed on withdrawal of the drill rods and the PVC standpipe could not be installed. The borehole was subsequently grouted to surface.

Table G4.2 summarises the borehole locations for each of the four sites.

Site	Borehole	Date	Method	Final	Co-ordinates GDA94		Elevation
	no.	completed		depth (m)	Easting	Northing	(mAHD)
	MEBH01	21/7/06	HQ3	69.7	365691.050	7397324.975	731.474
	MEBH02	25/7/06	HQ3	40.0	365847.594	7397692.621	730.097
Mount Everard	MEBH03	25/8/06	RAB	38.0	365370.465	7397527.717	730.984
	MEBH04	25/8/06	RAB	38.0	365371.123	7397339.910	731.634
	MEBH05	27/8/06	RAB	38.0	364975	7398798	726.341
	HRBH01	21/7/06	HQ3	100.0	444275.823	7459866.446	656.550
	HRBH02	25/7/06	HQ3	35.0	444853.628	7459845.723	654.523
Harts Range	HRBH03	25/8/06	RAB	20.0	444779.970	7460699.872	652.433
•	HRBH04	25/8/06	RAB	32.0	444043.652	7460184.379	655.482
	HRBH05	27/8/06	RAB	35.0	444127.328	7459308.337	657.980
	FRBH01	6/8/06	HQ3	80.6	246425.501	8386789.992	197.00
	FRBH02	8/8/06	HQ3	31.0	247209.496	8389961.821	219.77
	FRBH02A	8/8/06	RAB	6.0	247204.632	8389963.567	219.80
	FRBH03	10/8/06	RAB	30.0	244973.814	8384672.521	203.73
Fishers Ridge	FRBH03A	10/8/06	RAB	6.0	244969.602	8384669.997	203.77
U	FRBH04	10/8/06	RAB	30.0	243989.553	8386358.218	191.30
	FRBH04A	10/8/06	RAB	6.0	243987.942	8386355.284	191.22
	FRBH05	9/8/06	RAB	30.0	245824.350	8389170.461	214.52
	FRBH05A	9/8/06	RAB	6.0	245825.131	8389177.289	214.52
	MSBH01	02/03/08	HQ3	40.2	379138.394	7935553.642	321.253
	MSBH02	23/02/08	RAB	41	379064.877	7934574.053	322.839
	MSBH03	04/03/08	HQ3	35.35	378968.453	7933736.591	314.606
Muckaty	MSBH04	24/02/08	RAB	28	377880.503	7933479.240	301.208
Station	MSBH05	04/03/08	HQ3	30.15	376822.611	7933801.398	309.227
	MSBH06	25/02/08	RAB	48	379275.294	7932584.685	314.925
	GBH01	20/02/08	RAB	46	382663.736	7948164.503	313.324
	GBH02	28/02/08	HQ3	50.2	382661.081	7947539.932	312.253

Table G4.2 Summary of borehole locations

G4.3 Survey

All test locations were initially surveyed using a hand held GPS with a horizontal accuracy of ±5 m. A more detailed follow on survey was then conducted at Mount Everard and Harts Range sites by GHD Pty. Ltd of Alice Springs and for the Fishers Ridge and Muckaty Station sites by Ausurv Pty Ltd of Darwin. The surveys were conducted to obtain elevations of the test locations and of the general site areas. The test locations are all reported in the GDA94 coordinate system to a sub metre horizontal accuracy and Australian Height Datum (AHD) to a vertical accuracy of 0.05 m. Additional survey points, tracks and traverses were also undertaken at each site to provide georeferencing points (for GIS aerial photographs) and cross sectional information. The collar locations and elevations of nearby wells and water bores were also surveyed.

G4.4 Groundwater monitoring program

The groundwater monitoring wells were installed at depths determined by the groundwater levels recorded at each of the sites. At two borehole locations (HRBH01 and FRBH01) the base of the deep cored boreholes was backfilled with grout to below the screen level which was installed at the groundwater level. Groundwater monitoring data loggers were installed in two of the boreholes at each site, to record potential fluctuations in the groundwater table from climatic and seasonal variations.

Table G4.3 summarises the monitoring well installations and locations of data loggers.

	,	0		
Site	Borehole no.	Borehole depth (m)	Well Installation (m)	Data logger installed
Mount Everard	MEBH01	69.7	0.0 - 69.7	
	MEBH02	40.0	0.0 - 40.0	Yes
	MEBH03	38.0	0.0 - 38.0	
	MEBH04	38.0	0.0 - 38.0	
	MEBH05	38.0	0.0 - 38.0	Yes
Harts Range	HRBH01	100.0	0.0 - 36.0	Yes
	HRBH02	35.0	0.0 - 35.0	Yes
	HRBH03	20.0	0.0 - 20.0	
	HRBH04	32.0	0.0 - 32.0	
	HRBH05	35.0	0.0 - 35.0	
Fishers Ridge	FRBH01	80.6	0.0 - 31.0	
	FRBH02	31.0	0.0 - 31.0	Yes
	FRBH02A	6.0	0.0 - 6.0	
	FRBH03	30.0	0.0 - 30.0	Yes
	FRBH03A	6.0	0.0 - 6.0	
	FRBH04	30.0	0.0 - 30.0	
	FRBH04A	6.0	0.0 - 6.0	
	FRBH05	30.0	0.0 - 30.0	
Muckaty	MSBH01	40.2	0.0 - 40.2	Yes
Station	MSBH02	41.0	0.0 - 41.0	
	MSBH03	35.35	0.0 - 35.35	
	MSBH04	28.0	0.0 - 28.0	Yes
	MSBH05	30.15	0.0 - 30.15	
	MSBH06	48.0	0.0 - 46.0	
	GBH01	46.0	0.0 - 46.0	

Table G4.3 Summary of monitoring well installations

G4.5 Permeability tests

Three falling head permeability tests (FHT) were performed adjacent to boreholes MEBH01, HRBH01, FRBH01 and MSBH03 on each site. Three boreholes were drilled to 1 m, 5 m and 10 m depths using RAB methods with the test being performed within a nonslotted 50 mm diameter PVC open ended standpipe (Photograph G4.8). were carried out in The tests accordance with BS 5930:1981 Hvorslev Method which involved the measurement of the falling water level with the standpipes over a period of time. Each standpipe was filled twice to

PHOTOGRAPH G4.8 50 mm non-slotted PVC standpipe used for the FHT tests at HRBH01

facilitate saturation of the surrounding soil prior to conducting the falling head test. The test results are presented in Appendix C.

G5. Laboratory testing

Soil and rock samples were collected from each site during the test pitting and drilling programs and submitted to Coffey Geotechnics NATA accredited testing laboratory in Adelaide.

Tables G5.1 to G.3 summarise the test results obtained from the scheduled samples from the three sites. Mineralogical x-ray diffraction (XRD) studies on selected rock samples were sent to specialist laboratory AMDEL whilst petrographic analysis was conducted by Pontifex & Associates. Additional rock testing for Muckaty Station was conducted by the University of Melbourne.

Soil and rock classifications/terms are presented in Appendix A and laboratory test certificates for all of the tested samples are presented in Appendix B.

Test Pit/ Borehole No.	Sample Depth (m)	Chloride (mg/kg)	Sulphate (mg/kg)	рН	Electrical conductivity (1:5 dS/m)	Resistivity (ohm m)
METP01	0.8 - 1.2	11	17	6.9		
METP07	0.4 - 0.8	3	4.8	7.2		
HRTP01	1.0-1.4	4.5	4.7	7.5	0.03	∞
						124
						81
Fishers Ridge	Not tested					
MSTP01	1.5-1.6				0.04	œ
						1000
						530
MSTP04	1.3-1.5				0.015	5500
						2030
						1150
MSTP09	0.5-0.8				0.015	∞
						1770
						1010

 Table G5.1
 Summary of laboratory test results – chemical/physical

able 05.2 Summary of laboratory test results – rock core						
Borehole No.	Sample depth (m)	Point load test (Is₅₀ MPa)	Uniaxial compressive strength (MPa)	Strength		
MEBH01	6.7-7.0	0.062		Very Low		
MEBH01	9.0-10.0		0.15 to 2.06	Very Low		
MEBH01	12.1-12.2	0.09		Very Low		
MEBH01	22.85-23.1	0.059		Very Low		
MEBH02	13.4-13.6	0.425		Medium		
HRBH01	9.0-10.0	0.031		Very Low		
HRBH01	20.5-21.5	0.038		Very Low		
FRBH01	9.8-10.2	0.03		Very low		
FRBH02	1.0-1.3	0.013		Extremely Low		
FRBH02	4.95-5.25		Insufficient sample	-		
FRBH02	11.1-11.6	0.0		Extremely Low		
FRBH02	15.5-15.8	0.061		Very Low		
FRBH02	23.7-24.0	0.096		Very Low		
MSBH01	6.0 - 6.18		36.43	High		
MSBH01	10.65-10.95		9.89	Medium		
MSBH03	19.0-10.25		55.63	High		
MSBH05	5.0-5.3		27.23	High		
MSBH05	10.85-11.25		6.44	Medium		

Table G5.2 Summary of laboratory test results – rock core

Table G5.3 Summary of laboratory test results – soil

Test Pit/ Borehole No.	Sample Depth (m)	Soil Classification	Sand Fraction (%<2.36mm, >75μm)	Silt & Clay Fraction (%<75µm)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Linear Shrinkage (%)	Maximum Dry Density (t/m ³)	Optimum Moisture Content (%)	Coefficient of Permeability (m/sec)	4 day soaked California Bearing Ratio (CBR %)	Unsoaked CBR (%)	Emerson No.
METP01	0.8-1.2	CL	45	52	38	16	22	10.5	1.83	13	-	-	-	6
METP07	0.4-0.8	CL	43	56	35	17	18	9.5	1.9	12.6	3.7 x E-10	7	40	6
HRTP01	0.5-0.8	SM	78	22	17	13	4	1	2.14	6.5	-	-	-	-
HRTP01	1.0-1.4	SM	76	24	20	12	8	3.5	2.14	7.1	6.2 x E-10	30	130	5
HRTP06	1.5-1.8	SM	66	32	32	12	20	7.5	-	-	-	-	-	-
FRTP01	0.6-1.0	SM	42	21	26	17	9	5	1.96	11.9	1.5 x E-8	-	-	6
FRTP01	1.5 – 1.8	-	-	-	-	-	-	-	2.07	9	-	-	-	-
FRTP04	0.4-0.8	GM	34	14	25	13	12	6	2.22	8	-	40	220	-
MSTP01	1.5-1.6	SM	82	18	-	-	-	0	1.93	7.8	6.3 x E-8	-	-	5
MSTP06	2.0-2.2	SM	76	22	17	12	5	1.5	-	-	-	-	-	5
MSTP09	0.5-0.8	SM	82	18	-	-	-	0	-	-	-	-	-	5

G6. Tectonics and seismicity

G6.1 Tectonic setting

Figures G6.1 to G6.5 present the regional geology of the Northern Territory and tectonic settings of the four subject sites. The figures show the controlling structural geology of the regions including faulting, folding, shear zones and general geological terrains. The four sites have tectonic settings that have recorded very little tectonic activity during the Quaternary period (last 1.7 million years).

Mount Everard and Harts Range sites are located within a region of extensive deformation (Figures G6.2 and G6.3). The deformation history is extremely complex but is understood to have culminated in the Alice Springs Orogeny between 335–312 million years ago (Ma). The Strangways Event (1730 Ma) is considered to have resulted in much of the major deformation noted in the Harts Range Group rocks.

The post Carboniferous period is considered to one of continuous erosion, epeirogenic (extensive earth movements), and rejuvenation of older faults. Later uplift is illustrated by the elevation of the mid-Tertiary erosion surface significantly above the present erosion surface and associated minor faulting, folding resulting in scree production from the Tertiary units. This uplift is considered to predate the present erosion level.

Minor reference has been made to possible uplift in the Harts Range and Strangways Range or rejuvenation due to subsidence within Lake Eyre Basin during the Holocene (0-10,000 years) period.

The Fishers Ridge site is located in an area with relatively few significant fault or fold features, however a major lineament has been identified passing through the general site area, located near the northern margin of the Daly Basin (Figure G6.4). Magnetic surveys of this area indicate the presence of a major fault with south-block-down movement of basement. It is paralleled by a second lineament to the south, which may indicate a fault at greater depth beneath the Daly Basin. Such faults are understood to predate the Cambrian sedimentary rocks of the Daly Basin.

Limited volcanism and plutonic activity appear to have minimal influence on the rocks of the Daly Basin and hence the subject site, with exception of the Cullen Batholith at the northwest corner of the Daly Basin.

The Muckaty Station site is located in an area of regional faulting and volcanic events during the PreCambrian Era (Figure G6.5). The majority of the regional faulting, tilting and erosion occurred during the Proterozoic, when the main geological groups were

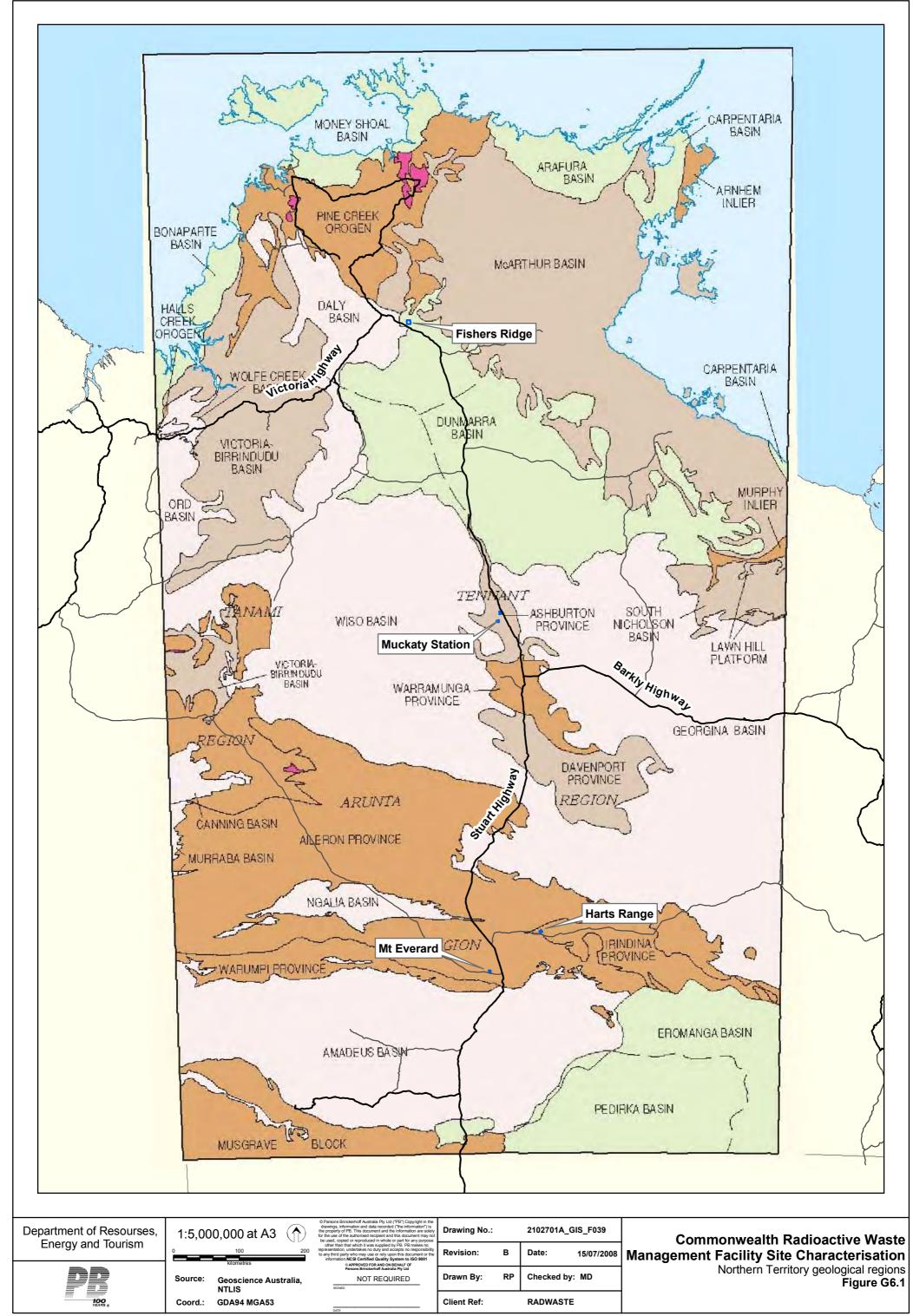
deposited. Volcanic activity associated with the Tomkinson Creek Group flood basalt occurred in the mid-Proterozoic.

Regional faulting and folding, erosion and peneplanation occurred during the Meso-Neoproterozoic. Minor faulting, tilting and erosion is thought to have occurred during the late Paleozoic. Some localised faulting occurred during the Miocene through to the present.

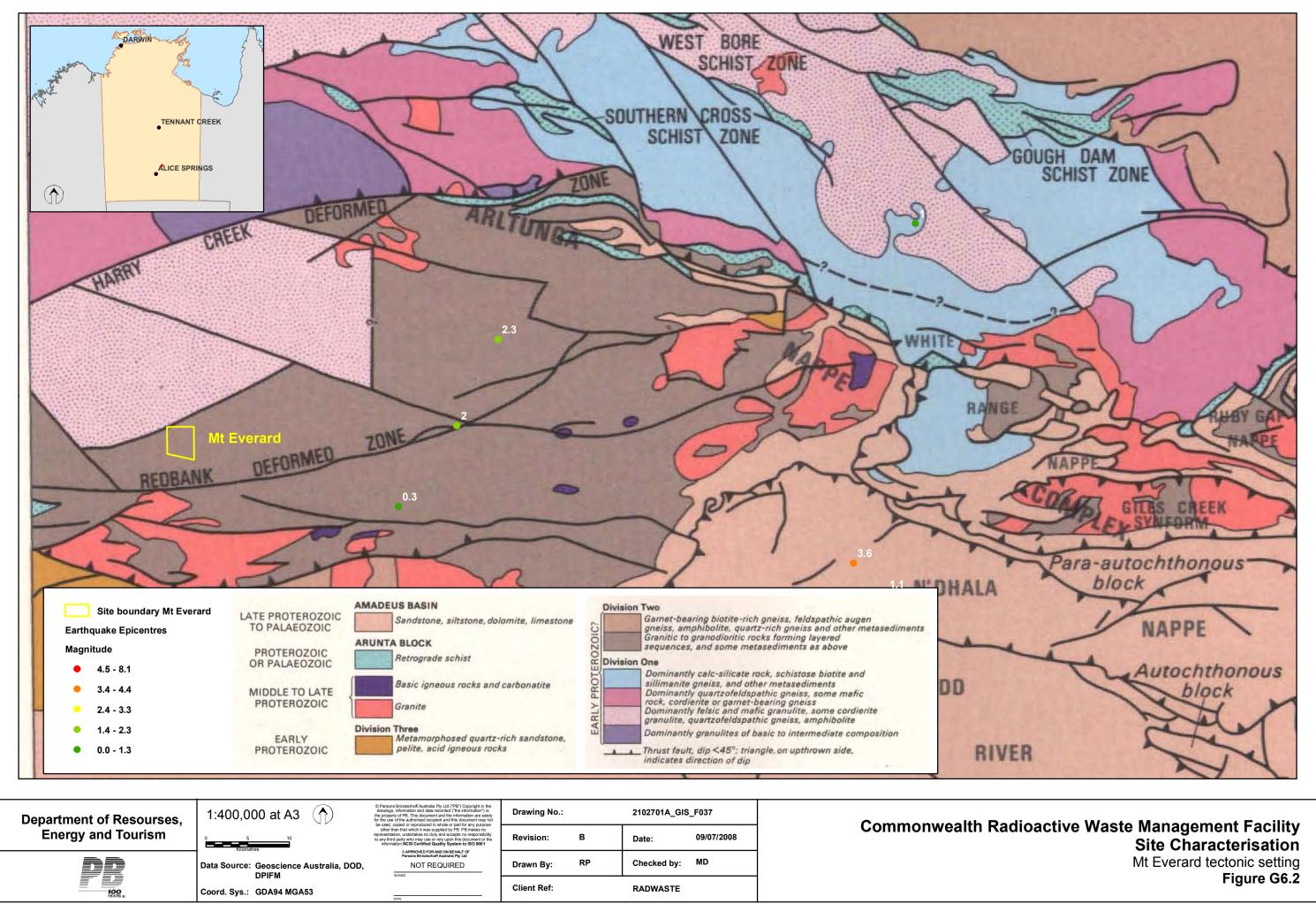
G6.2 Seismic activity

Seismic activity recorded in the Northern Territory is presented in Figure G6.6. Figures G6.7 to G6.10 show earthquake measurements taken from the Geoscience Australia Earthquake Database within a 200 km radius of each of the four sites. In general, seismic activity within the Northern Territory is low.

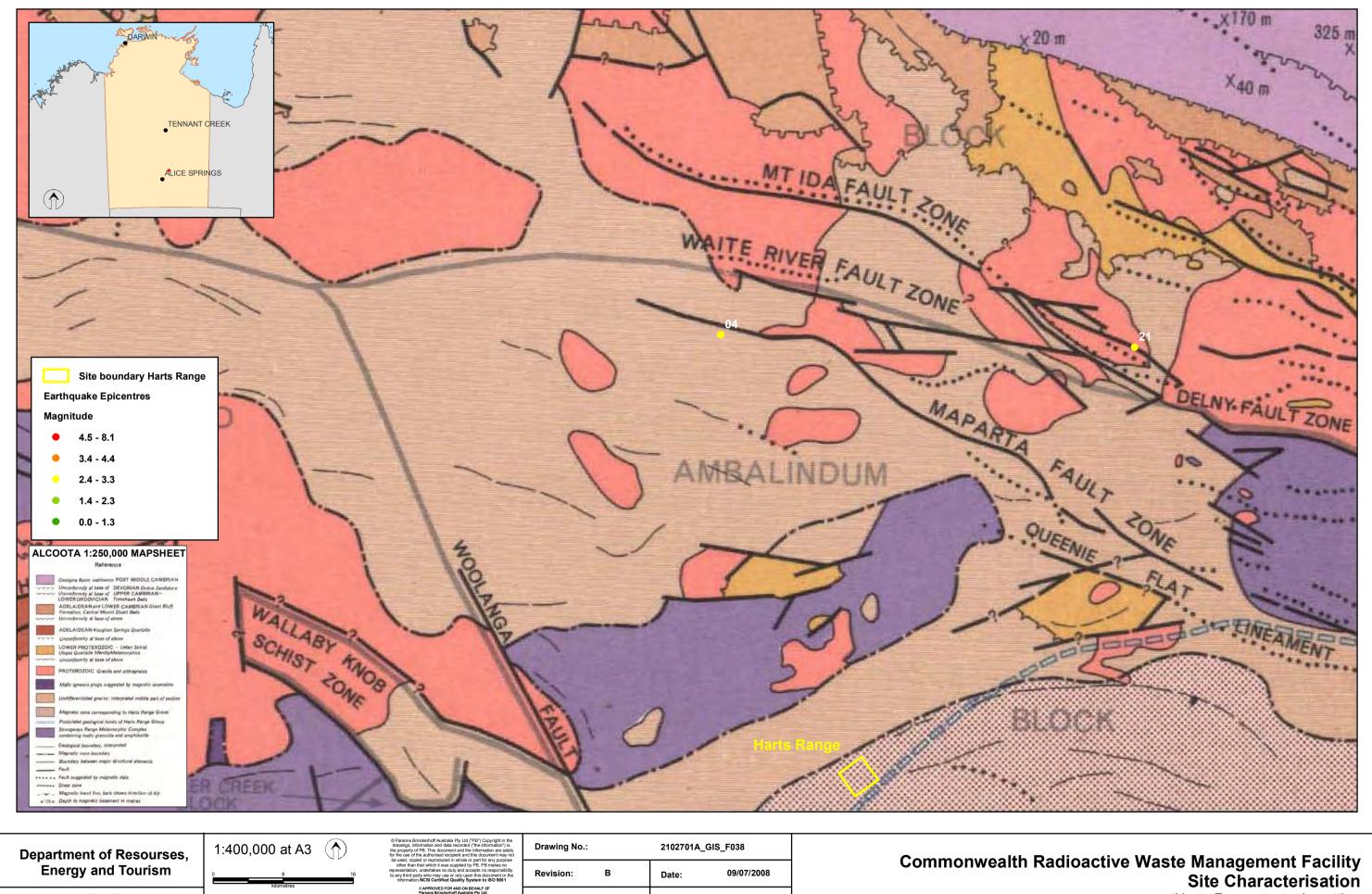
The largest earthquake within 200 km of any of the four sites, with a magnitude of 6.7 occurred in 1988 and was located approximately 130 km to the south of Muckaty Station, to the south-west of Tennant Creek. The area to the south-west of Tennant Creek has recorded over 400 seismic events since 1985.


Potential earthquake damage at the sites is related to the distance from the earthquake epicentre, its magnitude and intensity, with this relationship demonstrated in Table G6.1 below (Hunt, 2007). Magnitude is a quantitative value computed from seismograph data (such as the Geoscience Australia network), whilst intensity is a qualitative value based on how people and objects respond to an event.

Damage to	Minimum Site	Earth	quake	Maximum Distance
Construction	Acceleration (g)	Richter Magnitude	Modified Mercalli Intensity	Earthquake Source to Site (km)*
Stable foundation	0.15	6.0	VIII	20
	0.15	7.0	X	32
	0.15	8.0	XI	50
Soil liquefaction,	0.10	5.3	VII	1
permanent ground displacement	0.10	6.0	VIII	10
	0.10	7.0	X	50
	0.10	8.0	XI	150
Seismic-wave	0.05	7.0	X	230
amplification in soft soil	0.05	8.0	XI	400


Table G6.1 Source to site distance for earthquake damage

* Maximum distance for damage to good construction (mean excitation) in western United States. From *Civil Engineering*, ASCE, November 1993 referenced in Hunt, 2007.


Figure G6.11 below displays the recorded seismic events within a 200 km radius of Muckaty Station. The shaded zone indicates the maximum epicentre distance and minimum Richter Scale magnitude required for a seismic event to cause minimum site acceleration of 0.10 g or greater at Muckaty Station (based on Table G6.1 limits). It is

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\Drawings_Figures_Sketches\2102701A_GIS_F039_B.mxd

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F037_B.mxd

RP

Drawn By:

Client Ref:

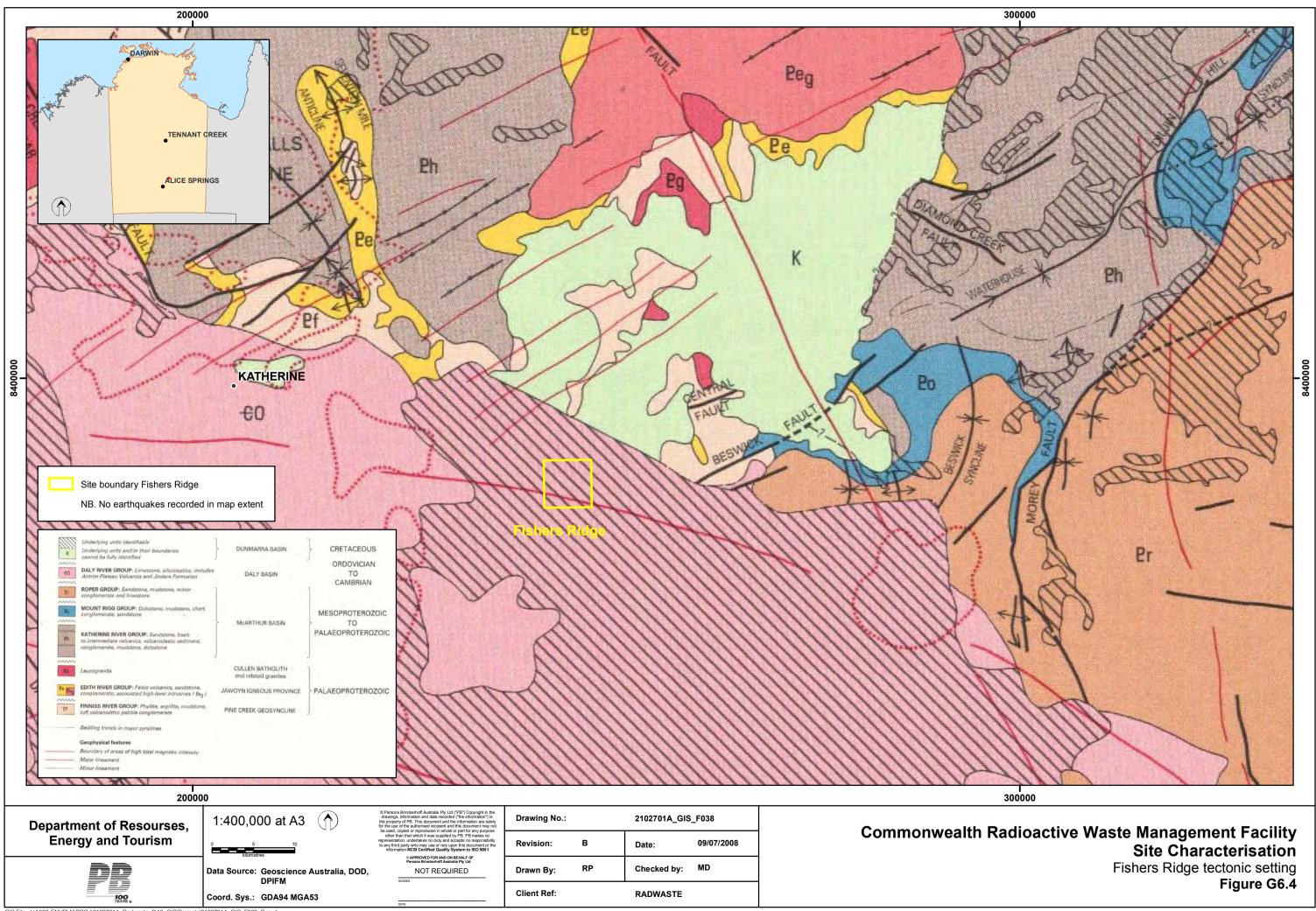
NOT REQUIRED

SIGNED

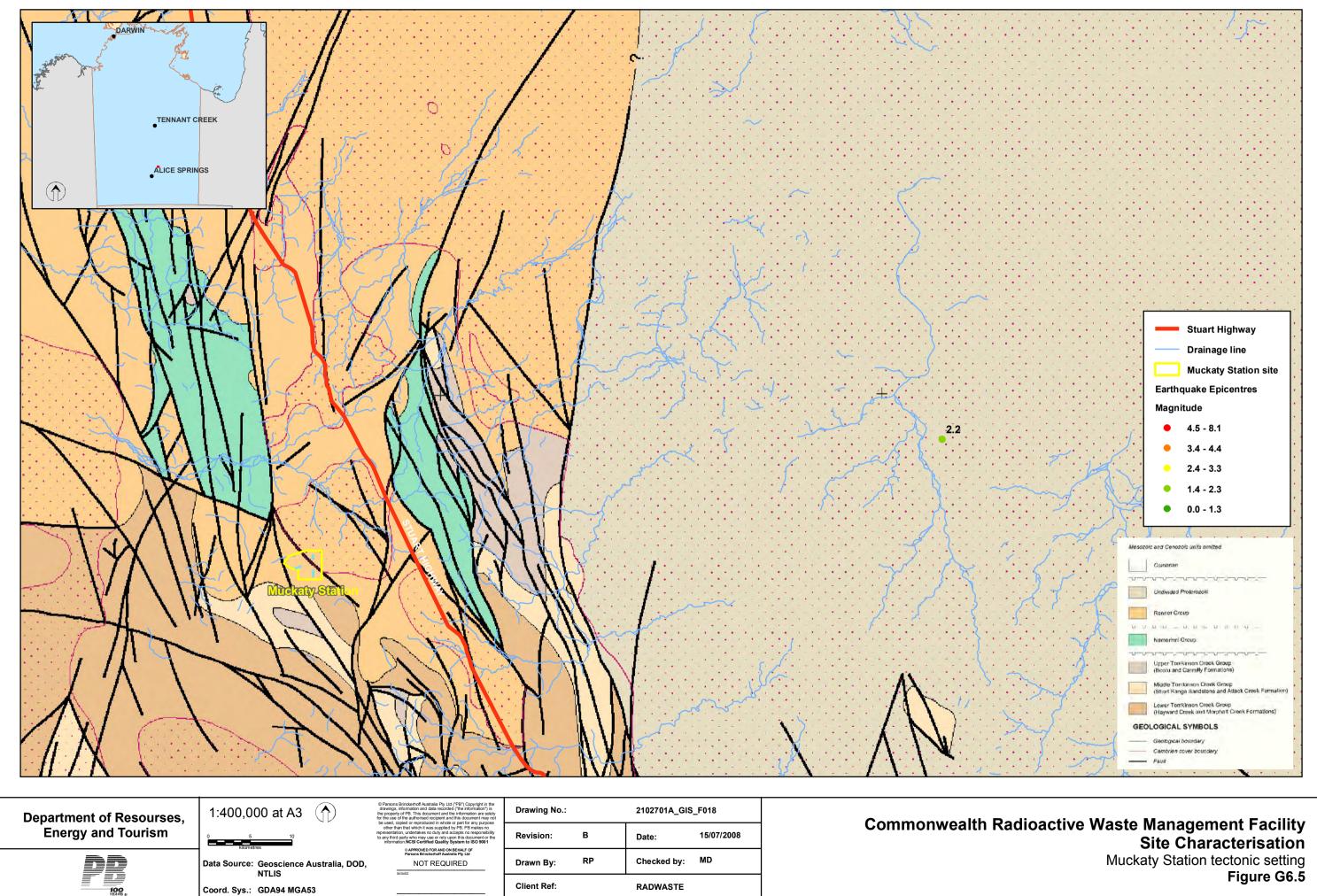
Checked by: MD

RADWASTE

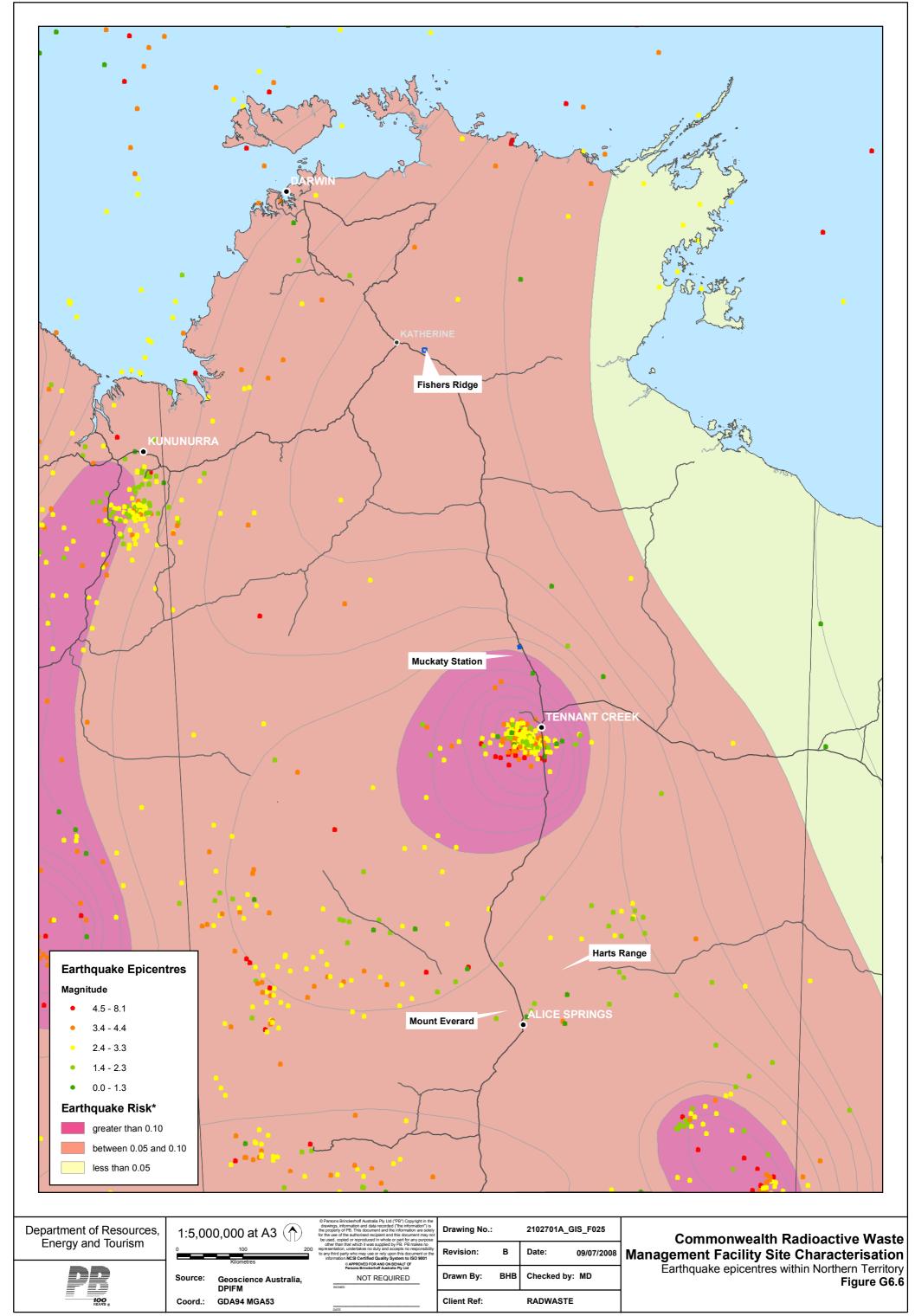
GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F038_B.mxd

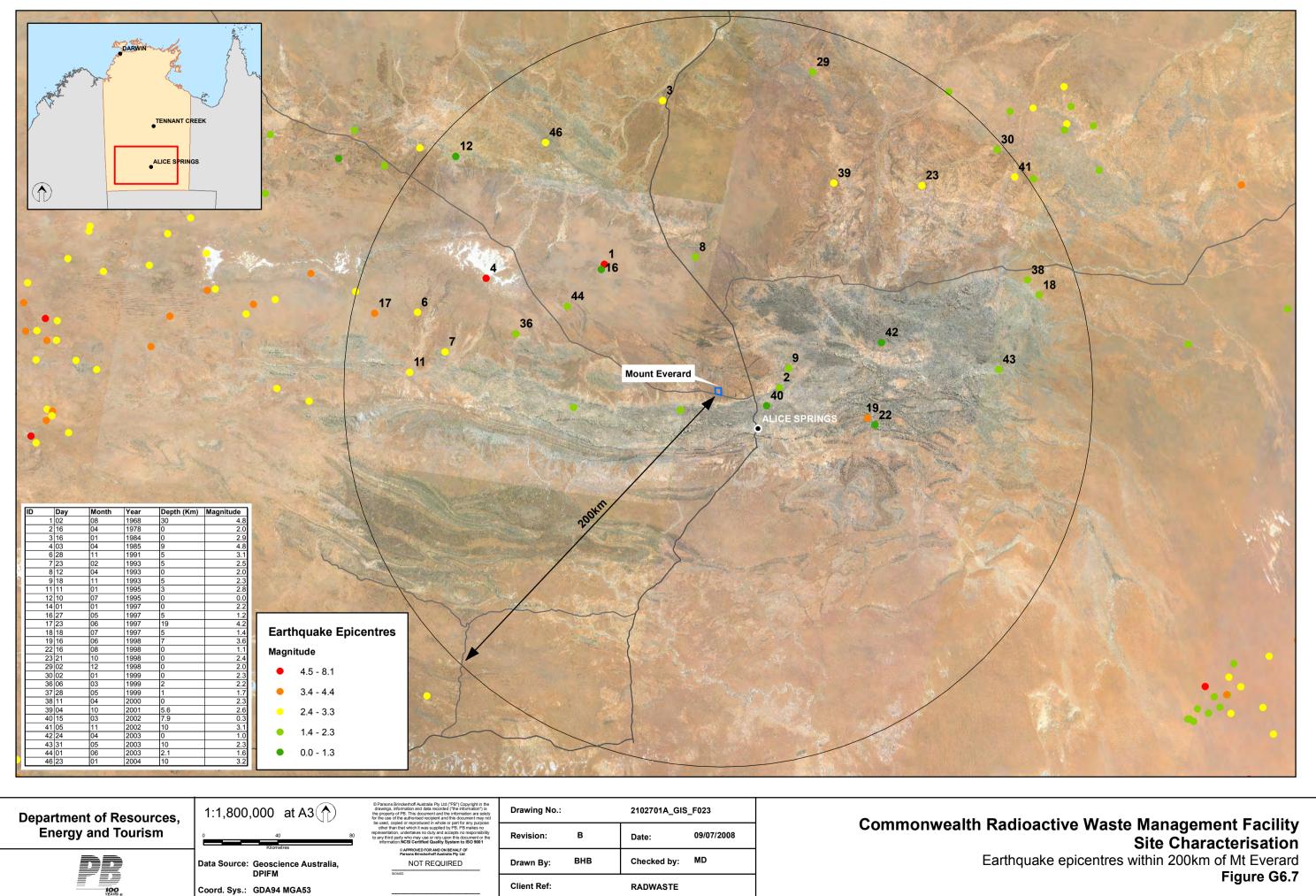

Data Source: Geoscience Australia, DOD, DPIFM

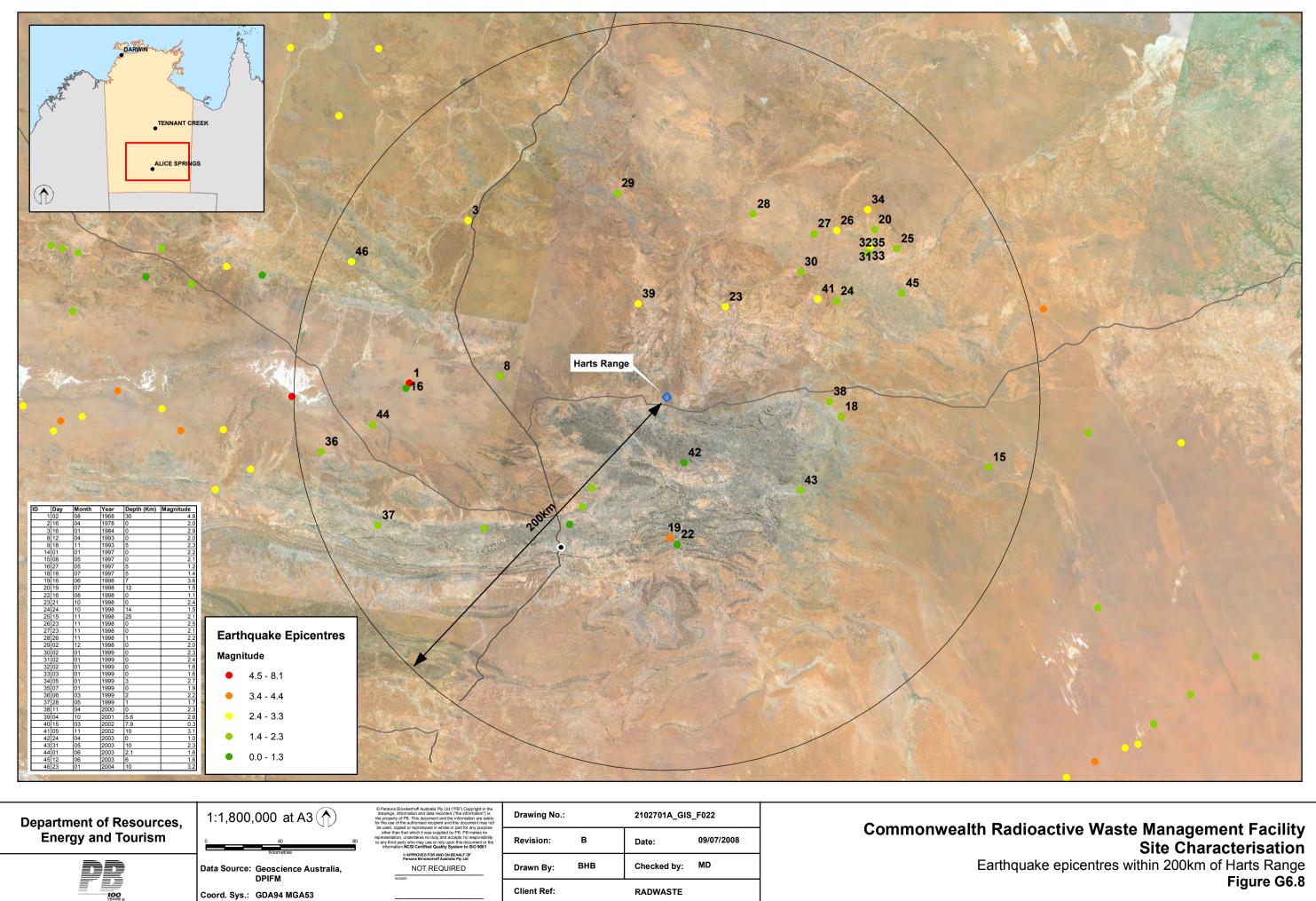
Coord. Sys.: GDA94 MGA53

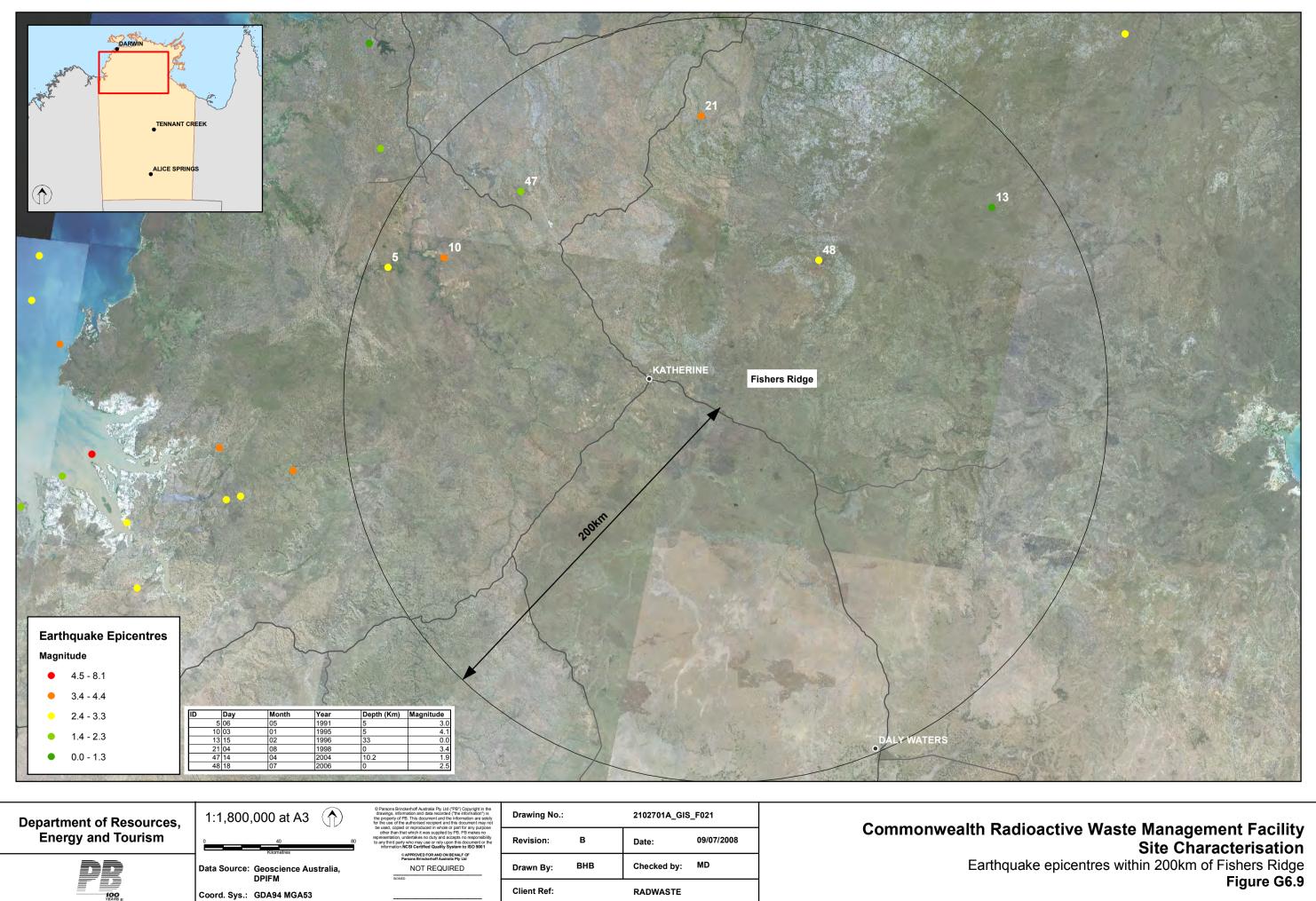

D

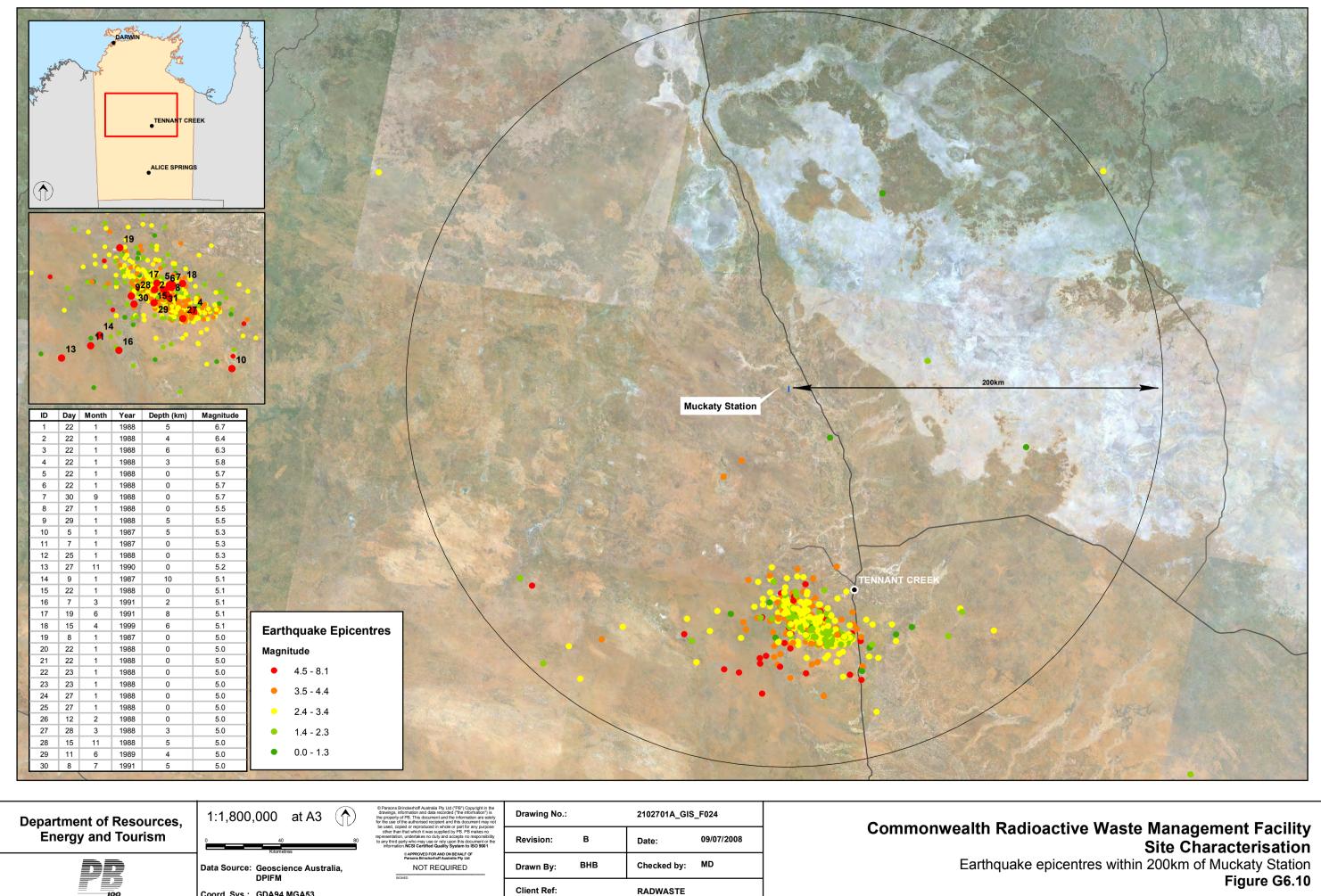
100


Site Characterisation Harts Range tectonic setting Figure G6.3


GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F038_B.mxd


GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F018_B.mxd


GIS File: J:\A303-ENVPLNIPROJ/2102701A_Radwaste_2\10_GIS\Projects\Drawings_Figures_Sketches\2102701A_GIS_F025_B.mxd


GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\Drawings_Figures_Sketches\2102701A_GIS_F023_B.mxd

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F022_B.mxd

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F021_B.mxd

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F024_B.mxd

100

Coord. Sys.: GDA94 MGA53

Figure G6.10

apparent that no recorded seismic events to date have caused greater than 0.10 g acceleration at Muckaty Station.

Given an Modified Mercalli Scale Intensity rating of *IV* (average peak ground acceleration 0.007–0.015 g), the likely effects from any earthquake located south-west of Tennant Creek on Muckaty Station may be limited to vibrations like a passing truck, hanging objects swaying, windows and doors rattling and crockery clashes (MM Scale 1956 Version, Hunt 2007).

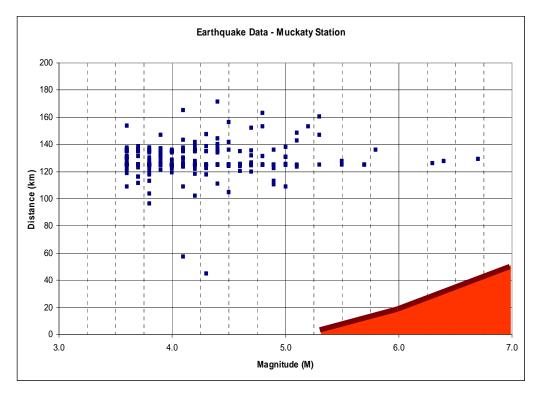


FIGURE G6.11 Earthquake data within 200 km of Muckaty Station

G6.3 Volcanic activity

There has been no recorded volcanic activity and geological maps report no potential volcanic sources in the vicinity of all four sites. However, persistent hydrothermal activity at Mataranka, approximately 50 km to the southeast of the Fishers Ridge site may indicate some 'hot rock' activity in the area associated with a deep plutonic heat source.

G7. Subsurface conditions

G7.1 Mount Everard

G7.1.1 Regional geology

Figure G7.1 presents the underlying geology of the Mount Everard area. The Alice Springs 1:250,000 Geological Series presents the site as underlain by a thick (up to 200 m) sequence of Quaternary and Tertiary sediments consisting of clay, silt, sand, gravel and conglomerates. The site is covered by a thin Quaternary layer of red clayey and sandy soil, red earth and oxidised clayey silty sand.

The underlying Tertiary rocks include siltstone, limestone, sandstones, pebbly sandstones with kaolinitic quartzose sandstone, siltstone and mudstones grading to poorly graded coarse grained conglomerate (Hale Formation) towards the base.

Mount Everard is located within the Amadeus Basin which covers an area of approximately 170,000 km² in the southern region of the Northern Territory. The Amadeus Basin is an intracontinental structural sedimentary basin, which forms part of what is known as the adjacent Centralian Superbasin which also includes the Officer, Ngalia and Georgina Basins.

The Amadeus Basin's sediments range from Neoproterozoic (>800 Ma) to Devonian (~350 Ma) and include dolostone, sandstone, limestone, quartzite, shale and evaporites deposited in a shallow marine environment. However, other sedimentary environments are also represented, including fluvial, glacial, barred basin, supratidal, shallow restricted carbonate shelves and open shallow to deep marine.

The basement geology of the area is complex, derived from the underlying and nearby metamorphic sequences which form the MacDonnell Ranges. To the immediate southwest is Mount Solitaire, composed of Charles River Gneiss. The metamorphics of the McDonnell Ranges are highly folded and deformed, with the main structural discontinuities steeply dipping to the north and associated with an anticline located to the south. Dykes, migmatites, pegmatitic seams and intense folding and faulting are common in the metamorphics. These metamorphics are likely to underlie the Tertiary sediments on the site.

G7.1.2 Site geology

The geology of the site as determined by the investigation program is summarised in Table G7.1. The test pitting program encountered a thin veneer of red-brown Clayey Silty Sand (SM) covering the entire site which is considered to be of aeolian in origin.

Table G7.1	Summary of Mount Everard geology profile
------------	--

	······································	
Average depth (m)	Material description	Age/Formation
0 – 0.15	Clayey Silty Sand (SM), red-brown, dry, loose	Quaternary
0.15 – 0.5	Sandy Clay (CL/CI)/Clayey Sand (SC), red-brown, dry very stiff-hard	
0.5 - ~2.5	Sandy Gravelly Clay (CL/CI), purple-brown, dry very stiff- hard	
2.5 – 5	Calcrete, recovered as clayey Gravel and gravelly Clay, poorly to well cemented.	
5.0 – 49	Sandstone, fine to coarse grained with some pebbly zones and abundant fines throughout, extremely low to low strength with occasional moderate strength layers, generally highly weathered with extremely weathered zones, noticeable porosity in upper 30 m, variable fracture spacing averaging 100 mm – 300 mm. Indistinct bedding to massive, however noted fining upwards sequences in upper 30 m	Tertiary (Arltunga Beds grading towards Hale Formation at depth)
	Conglomerate, occasional beds (max 3.5 m – MEBH02), matrix supported, angular, max clast size 50 mm, polymictic, no orientation noted, clasts fractured and infilled	
49 – 53	Quartzite, coarse grained, extremely low to low strength, extremely to highly weathered, fracture spacing 30 mm – 300 mm, massive	
53 – 62	Claystone, some fine to medium grained sand visible with some sandy layers throughout, very low strength, extremely to highly weathered, massive, fracture spacing generally >1 m	
62 - 69.7	Interbedded Sandstone and Claystone. Sandstone fine to coarse grained, very thinly bedded, very low to moderate strength, highly to moderately weathered, fracture spacing 300 mm	

Underlying the surficial soils, all test pits, except test pit METP01, encountered very stiff to hard Sandy Clay (CL/CI))/Clayey Sand (SC), at depths ranging from 0.3 m to 0.8 m below existing surface levels.

Underlying this material, very stiff to hard Sandy Gravelly Clay (CI/CH) was encountered in all the test pits. A slight increase in sand content was noted in test pits METP06 and METP07. A distinct colour change was noted from red-brown to purplebrown with an increase in strength and occasional calcrete gravel inclusions with depth. Excavation rates generally decreased notably at approximately 2 m depth. Photographs from the test pits of the encountered soil profile at Mount Everard are presented in Appendix A.

Calcrete excavated as fine to coarse grained angular sandy gravel was encountered in test pits METP01, METP02 and METP08. All three test pits were terminated within the calcrete due to difficult excavation by the backhoe.

Department of Resources,	1:20,000	at A3		© Parsons Brinckerhoff Australia Pty Ltd ("PB") Copyright in the drawings, information and data recorded (the information") is the property of PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, cogied or reproduced in whole or part for any purpose	Drawing No.:		2102701A_GIS	6_F034	
Energy and Tourism	0 400) 25	800	other than that which it was supplied by PB. PB makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.NCSI Certified Quality System to ISO 9001	Revision:	В	Date:	09/07/2008	Commonwealth F
	Data Source: Geose NTLIS		lia, DOD,	© APPROVED FOR AND ON BEHALF OF Parsons Bricketoff Australia Pry Ltd NOT REQUIRED	Drawn By:	BHB	Checked by:	MD	
	Coord. Sys.: GDA9			DATE	Client Ref:		RADWASTE		

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F034_B.mxd

Radioactive Waste Management Facility Site Characterisation Mt Everard geology Figure G7.1

Close correlation can be made between the five boreholes (MEBH01–MEBH05) drilled across the site. The cored boreholes MEBH01 and MEBH02 provided details on stratigraphy and the rock characteristics encountered, whilst boreholes MEBH03–MEBH05 provided confirmation of the consistency of the rock type over the remainder of the site.

In general, the calcrete extended to 5.0 m depth and overlies directly on a thick sequence of extremely to moderately weathered, extremely low to low strength Sandstone and Pebbly Sandstone with some Conglomerate beds grading below to extremely to highly weathered, extremely low to low strength Quartzite (Photographs G7.1 and G7.2). Very low to low strength Claystone underlies the Quartzite and grades into interbedded Claystone and Sandstone. These sediments are interpreted as being the Arltunga Beds.

PHOTOGRAPH G7.1 Typical soil profile of calcareous sandy gravel overlying weathered sandstone

PHOTOGRAPH G7.2 Occasional Conglomerate beds encountered within the rock profile at Mount Everard

Based on the boreholes logs from the earlier investigation conducted by Woodward-Clyde, it was expected to encounter basement rock similar to that of the nearby outcropping Gneiss (Charles River Gneiss, at Mount Solitaire). However, the deepest borehole extended to 69.7 m below existing surface and did not encounter any rock which was interpreted to be basement rock. The borehole was terminated at 69.7 m depth due to encountering claystone for over 15 m depth which would effectively provide an impermeable barrier to any infiltration from above.

Figure G7.2 provides a generalised geological cross section of the Mount Everard site. Table G7.1 summarises the soil and rock profile encountered at Mount Everard.

G7.1.3 Mineralogy and petrology

Mineralogical and petrographic analysis of the upper sandstones/quartzitic rocks (5.0 m-49 m) determined a composition of up to 75% of unsorted angular quartz (dominant) with plagioclase and k-spar (trace/accessory), with muscovite/illite (15%) with minor kaolinite occurs as a weak clay cementing agent. Analysis of the underlying Claystone (53 m-62 m) reported crudely layered, pisolitic/nodular texture, predominantly composed of muscovite/illite (60%) with inter-particle carbonate (calcite, 25%). Minor, weakly layered, medium sand sized quartz grains occur throughout.

G7.1.4 Groundwater

Groundwater was encountered in all of the Mount Everard boreholes and ranged in depth from 33.2 m to 35.0 m below ground level (mbgl). Table G7.2 summarises the groundwater information available from the boreholes on site.

Borehole No.	Date re	corded	Recorded d	epth (mbgl)
_	Installation	Sampling	Installation	Sampling
MEBH01	24/7/06	16/10/2006	34.2	34.15
MEBH02	26/70/6	16/10/2006	33.2	33.17
MEBH03	25/8/06	16/10/2006	33.2	33.81
MEBH04	25/8/06	16/10/2006	-	34.46
MEBH05	27/8/06	16/10/2006	-	30.38
MEMW01	21/01/03	18/10/06	32.57	-
MEMW02	21/01/03	18/10/06	34.94	34.75
MEMW03	21/01/03	18/10/06	34.81	34.89
MEMW04	21/01/03	18/10/06	34.65	34.60

 Table G7.2
 Summary of recorded groundwater levels – Mount Everard

G7.1.5 Permeability

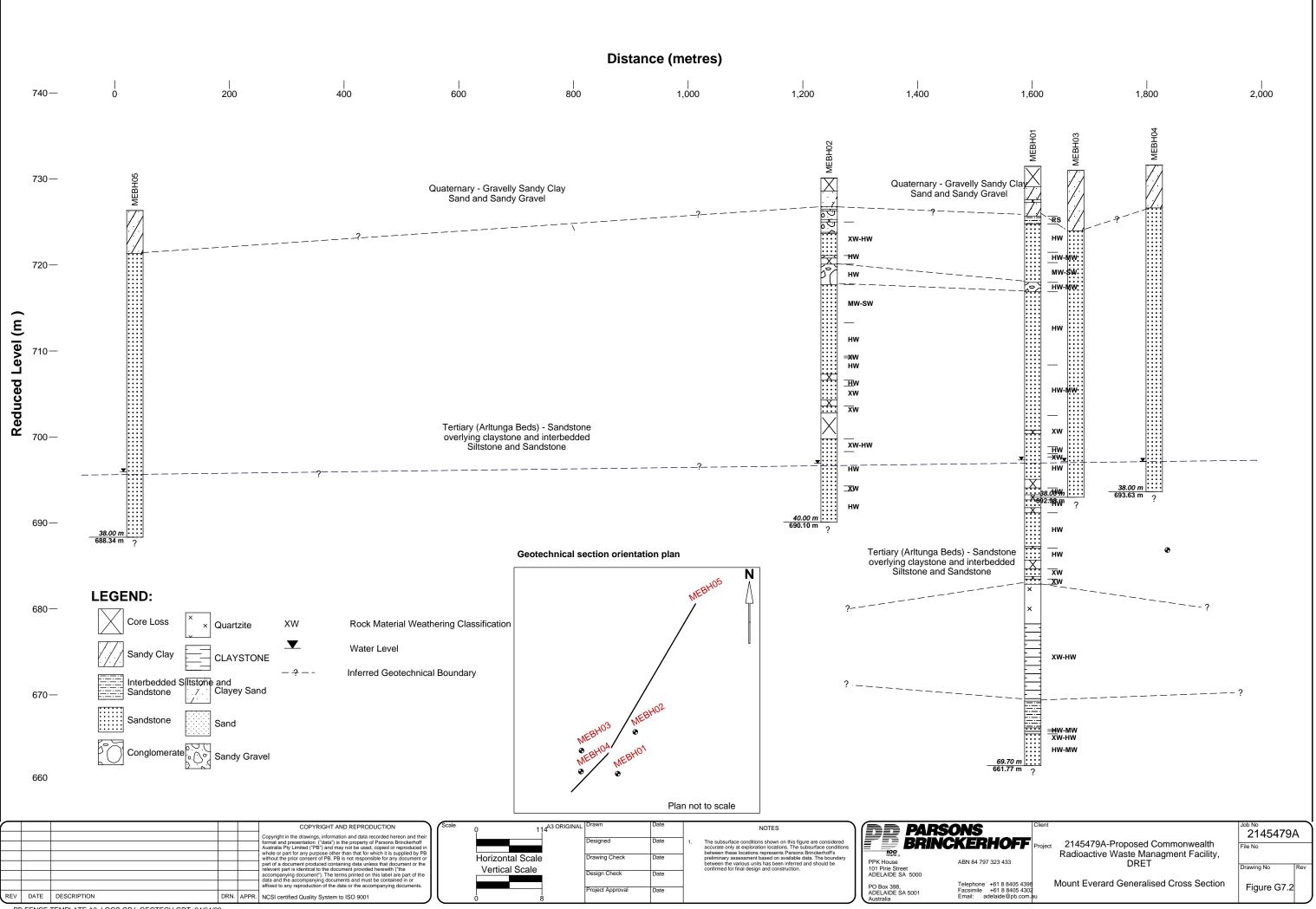

Three Falling Head Tests (FHT) were performed adjacent to borehole MEBH01 at 1.0 m. 5.0 m and 10.0 m depth. The FHT tests results are summarised in Table G7.3 below.

 Table G7.3
 Summary of FHT results – Mount Everard

Test location	Depth (m)	Permeability (k) (m/s)
MEBH01–1m	1.0	7.5 x 10 ⁻⁸
MEBH01–5m	5.0	2.0 x 10 ⁻⁷
MEBH01–10m	10.0	1.5 x 10 ⁻⁷

A falling head test was conducted by Woodward Clyde in borehole MEMW01 between 28.0 m and 49.0 m below surface levels (the total length of slotted section of installed standpipe). Initial groundwater level was at 32.85 m and after the addition of 100 L of water at the start of the test, the estimated permeability (k) was 2.6 x 10^{-7} m/s at 21.8 m depth.

The permeability of the underlying soils at Mount Everard may be classified as low to very low in accordance with Terzaghi & Peck (1967). Laboratory permeability testing on compacted clay samples recovered from METP01 reported $K = 3.7 \times 10^{-10}$ m/s, which is classified as very low to practicably impermeable.

PB FENCE TEMPLATE A3 LOGS.GPJ GEOTECH.GDT 24/04/08

G7.2 Harts Range

G7.2.1 Regional geology

Figure G7.3 presents the underlying geology of the Harts Range area. The Alcoota 1:250,000 Geological Series presents the site is underlain by Quaternary red earth clayey and sandy soils and aeolian sands with Quaternary/Recent alluvial sediments associated with watercourses to the west (Annamurra Creek) and east (Ongeva Creek).

The underlying Tertiary (Lower) deeply weathered (leached, mottled, ferrunginised and in part kaolinitic and pisolitic) rocks include siltstone, sandstone and pebbly sandstone with minor conglomerate.

The basement geology of the area is complex, derived from the underlying and nearby metamorphic sequences which form the Harts Range Complex. These lower to middle Proterozoic aged rocks have a complicated structural and metamorphic history typical of the Arunta Block. The Harts Range Complex has been described as forming a cover-basement relationship with the Irindina Gneiss forming the lowest part of the sequence.

The Arunta Block is located to the north and northeast of the Amadeus Basin and is contained within the Centralian Superbasin. The relations between rock units in the Arunta Block (crystalline basement) are complex.

The Harts Range Complex rocks are thought to be a volcano-sedimentary suite deposited in a possible continental rift or failed rift of the basement about 1780 million years ago. Basic and ultrabasic volcanism and/or plutonism followed the initial rifting and sandstones, mudstones and some limestones were also deposited in the resultant basin. These sediments then underwent heating and deformation resulting from compression of the crust caused by the continuation of the Strangways event, ending at around 1730 million years ago. This later amphibolite facies metamorphism (involving folding and faulting) virtually destroyed the original characteristics of the rock except for the gross lithological variations which are now recognisable as compositional layering.

Other later orogenic events recorded elsewhere in the Arunta Block played a minor role in this area. The numerous crosscutting pegmatites are much younger and represent the conclusion of a tectonothermal phenomenon that occurred about 520 million years ago (Cambrian Period). The interaction of the pegmatites and the surrounding meta-sediments and meta-igneous rocks provides the right conditions for the formation of large, high-quality mineral specimens.

The Alice Springs Orogeny (Devonian to Carboniferous, 300–400 million years ago) is responsible for the latest major uplift which has brought these rocks sufficiently close to the surface for their ultimate exposure through erosion.

G7.2.2 Site geology

The investigation program encountered a thin veneer (<0.3 m) of red-brown Clayey Silty Sand (SM) covering much of the site which is considered to be aeolian in origin.

Clayey Sand (SC) was encountered underlying the surface soils in all the test pits and in general extended to the limits of the test pit excavations. Observations made during the excavations indicate that the material encountered was generally medium dense to very dense with moisture contents ranging from damp to dry.

Medium dense Sandy Gravel (GP) was encountered in test pit HRTP06 at 2.4 m depth and appeared to be alluvial in origin, possibly associated with the nearby Ongeva Creek located to the east. The test pit partially collapsed below 2.4 m and was terminated at 2.8 m depth.

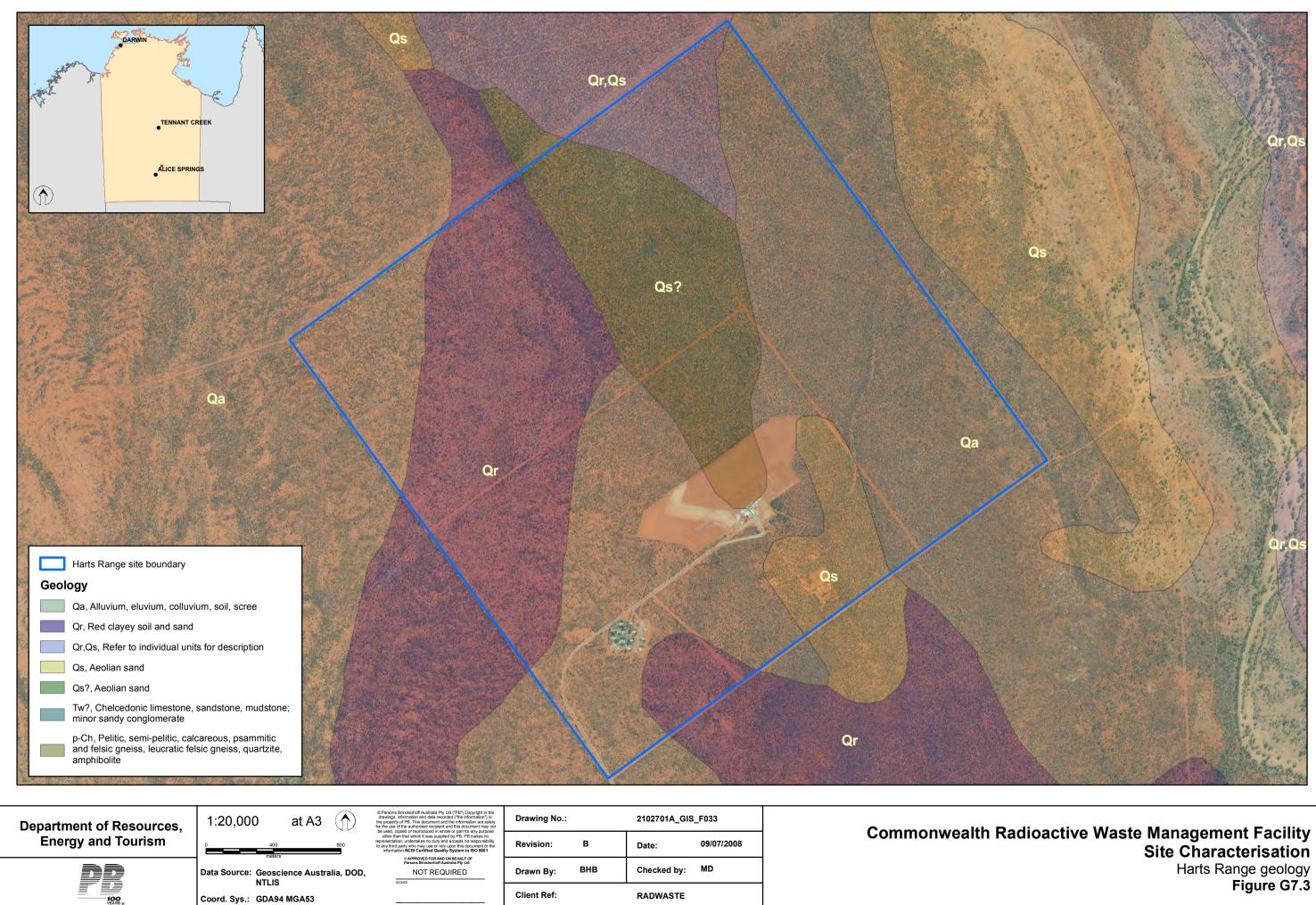
A layer of fine to coarse grained (gravel) angular rock fragments was encountered at 2.1 m depth in test pit HRTP07. This material was dense to very dense, easily excavated and remained stable throughout the excavation.

Calcrete/silcrete material was encountered at 1.6 m depth in test pit HRTP08. This material was excavated as very dense fine to coarse grained angular gravel with the excavation ending in refusal at 1.7 m depth. Photographs from the test pits of the encountered soil profile at Harts Range are presented in Appendix A.

Close correlation can be made between the five boreholes (HRBH01–HRBH05) drilled across the site. The cored boreholes HRBH01 and HRBH02 provide the most detail on the rock characteristics encountered, with boreholes HRBH03–HRBH05 providing confirmation of the consistency of the rock type.

In general, the rock within the site consists of a thick sequence of extremely to moderately weathered, extremely low to low strength Sandstone and Pebbly Sandstone with some Conglomerate beds overlying extremely to highly weathered, extremely low to low strength interbedded Siltstones and Sandstones. Some black veining, interpreted to be of possible carbonaceous in composition, was encountered within the weathered Sandstone at 25.5 m depth (Photograph G7.3).

Based on the previous studies basement rock was expected to be encountered above 100 m depth.



PHOTOGRAPH G7.3 Black veining (carbonaceous) encountered within the weathered Sandstone and occurred throughout the profile at Harts Range, beginning at approximately 25.5 m depth

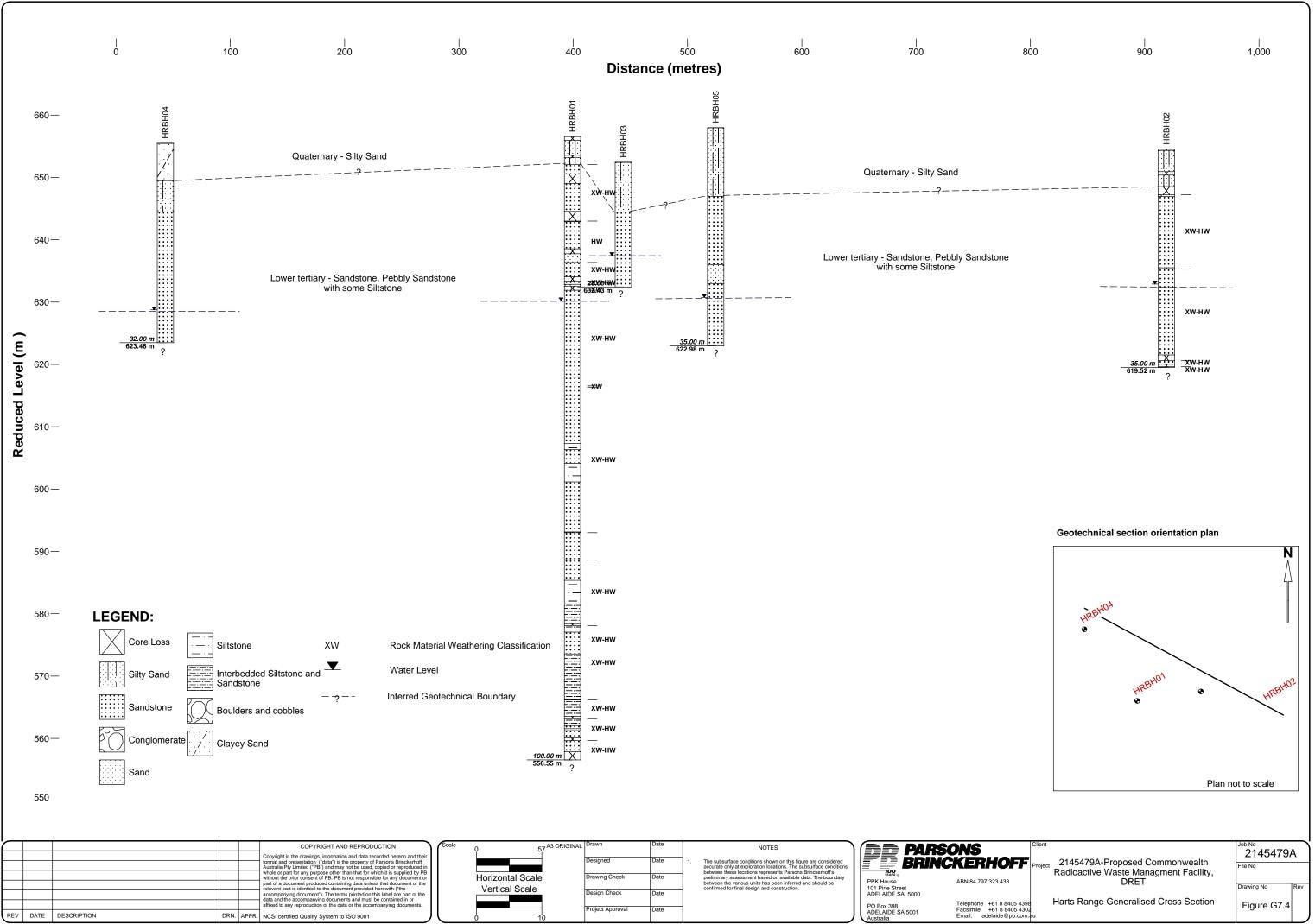

However, borehole HRBH01 was terminated at 100 m within interbedded highly weathered, clay rich Siltstones and Sandstones. Outcrops of Gneiss were noted within approximately 1.5 km to the south of HRBH01 (Photographs G7.4 - G7.7).

Figure G7.4 provides a generalised geological cross section of the Harts Range site.

Table G7.4 summarises the soil and rock profile encountered at Harts Range.

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F033_B.mxd

PB FENCE TEMPLATE A3 LOGS.GPJ GEOTECH.GDT 24/04/08

PHOTOGRAPH G7.4 Outcropping Gneiss approximately 1 km to south of Harts Range site

PHOTOGRAPH G7.5 Large quartz vein exposed within Gneiss outcrop south of Harts Range. Vein had a maximum width of 3 m

PHOTOGRAPH G7.7 Foliations noted throughout outcrop at Harts Range

PHOTOGRAPH G7.6 Numerous smaller quartz veins were noted throughout the outcrop at Harts Range

G7.2.3 Mineralogy and petrology

Mineralogical and petrographic analysis of the sandstone determined the mineralogy is dominated by angular to rounded quartz with abundant plagioclase, k-spar and detrital micas. Cementing in upper sequence is predominantly muscovite/illite with an increase in kaolinite cement with depth. Quartz content also decreases with depth. Various heavy mineral species were noted in the upper 10 m sequence to unknown depth.

Average depth (m)	Material description	Age/Formation
0 – 0.25	Clayey Silty Sand (SM)/Sand (SW), red-brown, dry, loose (HRTP02, HRTP03, HRTP04, HRTP06, HRTP07)	Quaternary
0.25 – 3.0	Clayey Sand (SC), red-brown, generally dry, medium dense to very dense	
3.0 – 7.0	Clayey Sand, Sand with some Calcrete and alluvial deposits (as encountered in test pits)	
7.0 – 20	Pebbly Sandstone (HRBH01), fine to coarse grained with variable composition and grain size throughout, extremely low to low strength, extremely to highly weathered, defect spacing generally 1000 mm with some core loss and occasional highly fractured sections, maximum particle size 50 mm, massive, clast supported in upper portion, clasts include quartz, gneiss, sandstone	Lower Tertiary
	Minor Conglomerate, fine to coarse grained, maximum particle size 30 mm, angular to sub-rounded clasts, matrix supported, massive.	
20 – 49	Sandstone, fine to coarse grained with some pebbly zones and abundant fines throughout, extremely low to low strength, generally highly weathered with extremely weathered zones, variable fracture spacing averaging 300 mm – 1000 mm. Indistinct bedding to massive, black veining throughout (organic)	
49 – 55	Siltstone, very low to low strength, extremely to highly weathered, fracture spacing generally 1000 mm.	
	Interbedded with Sandstone (as above)	
55 – 71	Sandstone, fine to coarse grained with some pebbly zones and abundant fines throughout, extremely low to low strength, generally highly weathered with extremely weathered zones, variable fracture spacing averaging 300 mm – 1000 mm. Indistinct bedding to massive, black veining throughout (organic)	
71 – 100	Interbedded Sandstone and Siltstone, extremely low to low strength, extremely to highly weathered, fracture spacing generally 300 mm-1000 mm	

Table G7.4 Summary of Harts Range geology profile

G7.2.4 Groundwater

Table G7.5 below lists the recorded groundwater levels at Harts Range during installation of the groundwater monitoring wells and during the groundwater sampling program carried out approximately eight weeks after installation. The groundwater levels ranged from approx 15 m to 28 m below ground level.

G7.2.5 Permeability

Three FHT's were performed adjacent to borehole HRBH01 at 1.0 m. 5.0 m and 10.0 m depths. The tests results are summarised in Table G7.6 below.

Borehole No.	Date re	corded	Recorded depth (mbgl)				
	Installation	nstallation Sampling		Sampling			
HRBH01	16/80/6	20/10/06	23.5	26.38			
HRBH02	17/8/06	19/10/06	21.4	21.69			
HRBH03	20/8/06	19/10/06	14.9	14.98			
HRBH04	19/8/06	19/10/06	26.3	27.1			
HRBH05	21/8/06	20/10/06	22.5	27.03			
HRMW4R	-	21/10/06	-	28.045			
HRMW5R	-	21/10/06	-	27.105			

Table G7.5 Recorded groundwater levels – Harts Range

Table G7.6 Summary of FHT results – Harts Range

Test location	Depth (m)	Permeability (k) (m/s)
HRBH01-1 m	1.0	6.8 x 10 ⁻⁷
HRBH01-5 m	5.0	3.2 x 10 ⁻⁷
HRBH01-10 m	10.0	1.1 x 10 ⁻⁷

A falling head test was conducted by Woodward Clyde in borehole HRMW01 between 20.0 m and 56.0 m below surface level (the total length of slotted section of installed standpipe). Initial groundwater level was at 19.35 m and rose to 19.65 m after the addition of 100 L of water at the start of the test, the estimated permeability (k) was 2.65×10^{-7} m/s.

The permeability of the underlying soils at Harts Range may be classified as low in accordance with Terzaghi & Peck (1967). Laboratory permeability test results of $k=6.2 \times 10^{-10}$ m/s on clayey sand samples from HRTP01 is classified as very low to practicably impermeable.

G7.3 Fishers Ridge

G7.3.1 Regional geology

Figure G7.5 presents the underlying geology of the Fishers Ridge area. The Katherine 1:250,000 geological map presents the site is underlain by Quaternary to Neogene laterite and ferricrete mantel. Underlying this mantel are Cretaceous sandstone, siltstone and claystones with minor pebble conglomerates of fluvial, lacustrine and marine origins.

The Daly River Group underlies the site and consists of Ordovician to Cambrian fossiliferous dolomitic sandstone and dolostone of the Oolloo Dolostone and maroon to green siliclastic siltstone, dolomitic sandstone and siltstone interbeds, ooid dolograinstone dolomicrostone, dolomicrosparstone and dolomitic quartz sandstone, which are understood to originate from low to moderate energy peritidal and tidal flat environments.

The basal unit of the Daly River Group is the Tindall Limestone and consists of grey massive, bioclastic, mottled cryptomicrobial, onkoid and minor fenestral limestone with minor grey mudstone and maroon siltstone.

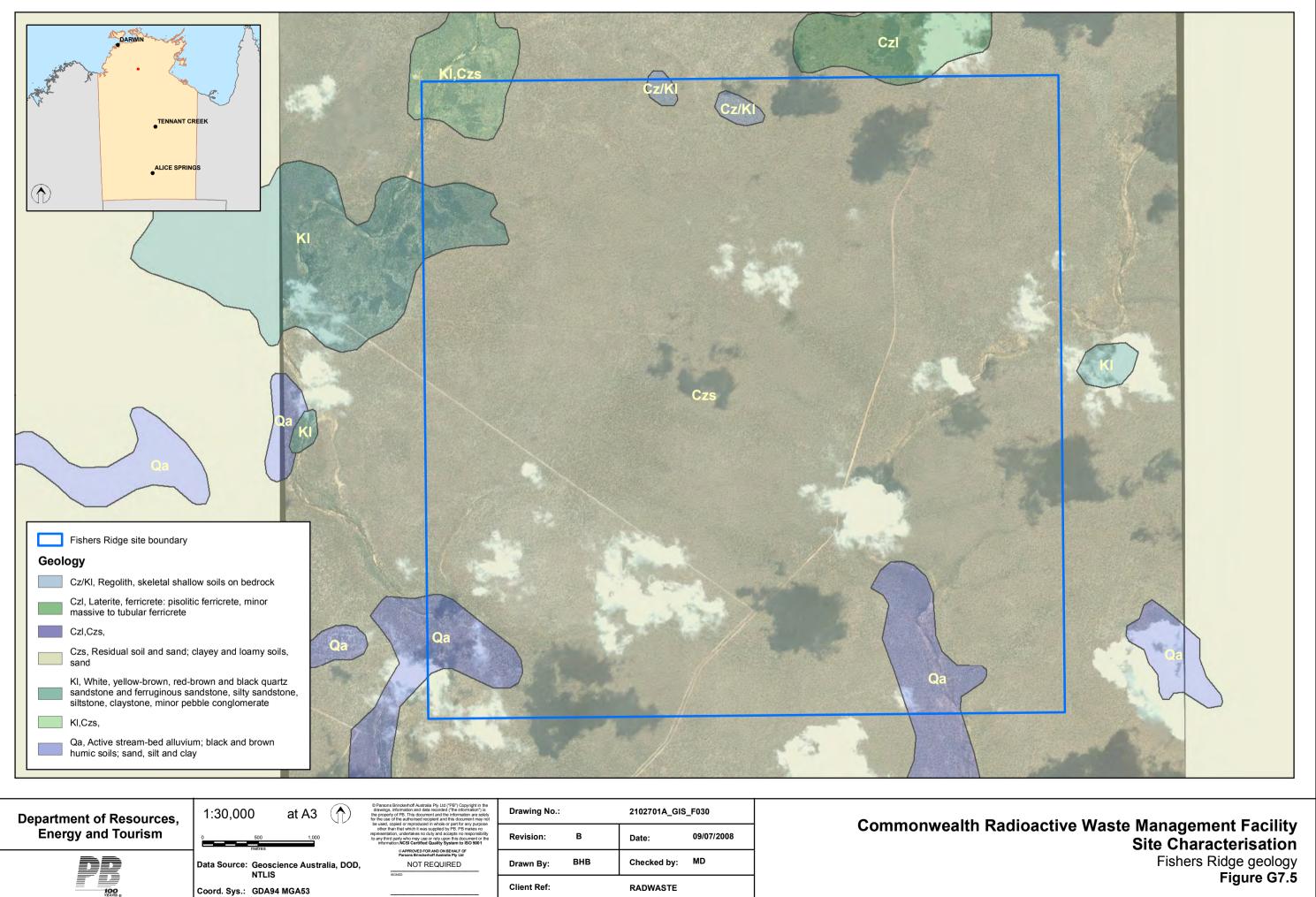
The Daly Basin is a result of extensive marine transgression across the central and northern Australian craton, beginning in the early Middle Cambrian. Initially peritidal siltstone was succeeded by dominantly open shelf marine conditions and accumulations of fossiliferous limestone (Tindall Limestone). Deposition of low energy, fine dolomitic-siliciclastic sediments (Jinduckin Formation) followed on peritidal flats during at least the latest Cambrian and earliest Ordovician. The succeeding Early Ordovician Oolloo Dolostone marks a more offshore ooid shoal facies.

Regional sedimentation then ceased until the Early Cretaceous, when pre-existing rock were mantled by a thin veneer of shallow marine to continental sands and silts during periods of sea level highstands. Paleogene, Neogene and Quaternary activity has been limited to processes of erosion, floodplain deposition and regolith, colluvium and local laterite development.

G7.3.2 Site geology

The investigation program encountered a thin veneer of Silty Sand (SM) overlying fine to coarse grained, grey brown to light brown Silty Gravelly Sand (SP) and Silty Sandy Gravel (GP). From observations made during excavation this material is recorded to be medium dense to very dense in consistency and dry at the time of the investigation.

All of the Fishers Ridge test pits encountered very dense, dry laterite, which was excavated as mottled red brown to brown, dry, very dense sandy gravel with variable amounts of low plasticity fines. All of the test pits refused within the laterite profile. Photographs from the test pits of the encountered soil profile at Fishers Ridge are presented in Appendix A.


Drilling investigations determined the laterite was up to 4 m deep and overlies extremely low to low strength, extremely to highly weathered siltstone to approximately 17 m depth. Interbedded siltstone and sandstone sequences underlies the siltstone which grade below into extremely low to low strength, extremely to highly weathered sandstone. This profile was encountered in boreholes FRBH02–FRBH05.

The encountered profile in FRBH01 differed slightly with approximately 4.5 m of laterite overlying a hard clay layer to a depth of 6.5 m. Sandstone, with minor Conglomerate (Photograph G7.8) was then encountered and extended to about 68 m depth where the sequence changes to Siltstone. Limestone of high to very high strength, interpreted as Tindall Limestone, was encountered at 77 m depth which exhibited in-filled solution cavities. Due to the hard, fractured nature of the limestone which was overlain by low strength sediments, recovery of rock core was extremely difficult and drilling was terminated at 80.6 m.

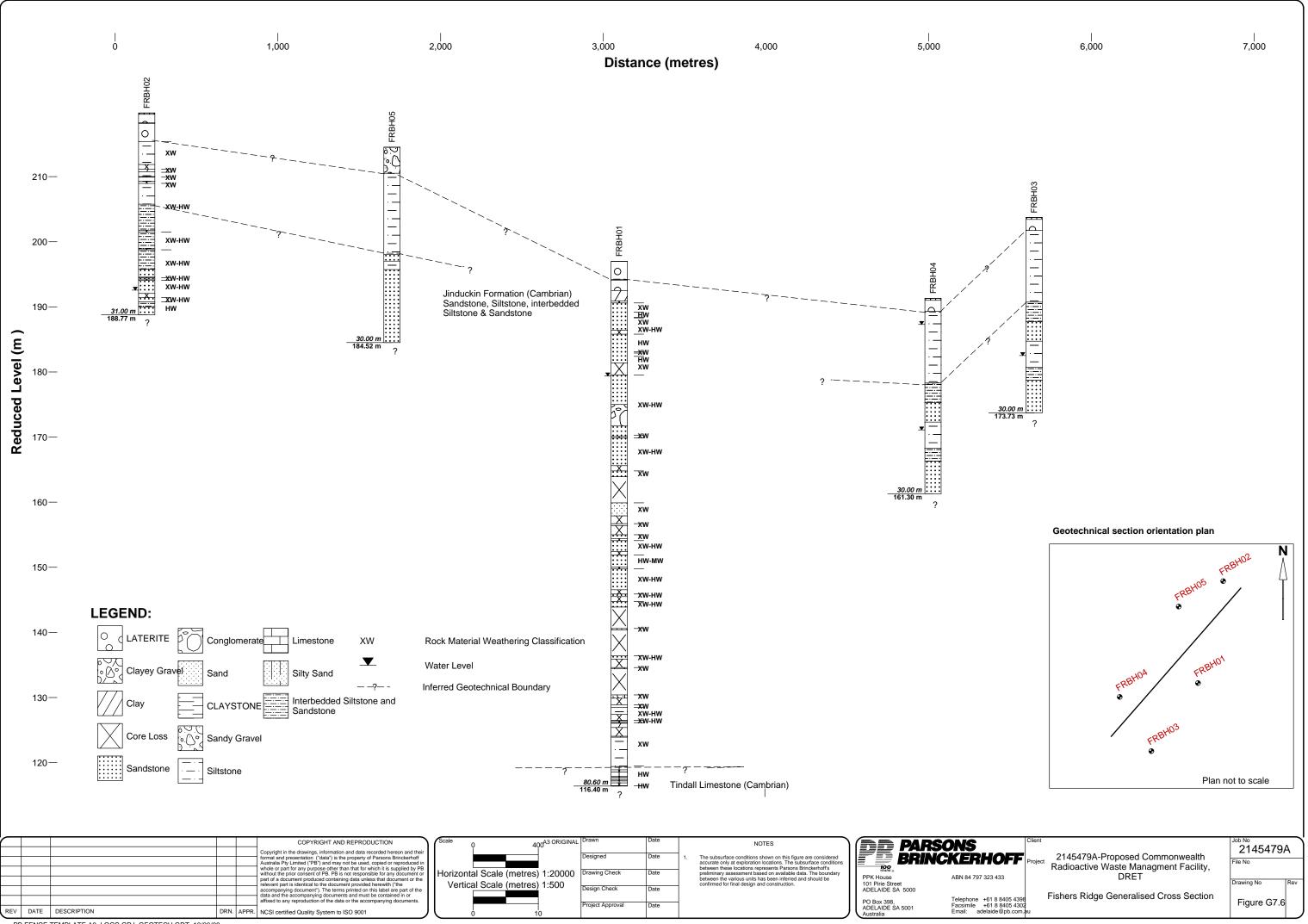

Outcrops of Laterite were noted approximately 1 km to the west of FRBH05 and along both the King River and Roper Creek (Photograph G7.9). No outcrops or exposures of Sandstone, Siltstone or Limestone were noted within the site boundaries.

Figure G7.6 presents a generalised geological cross section of the Fishers Ridge site.

Table G7.7 summarises the soil profile encountered during the test pitting program.

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F030_B.mxd

PB FENCE TEMPLATE A3 LOGS.GPJ GEOTECH.GDT 13/06/08

PHOTOGRAPH G7.8 Minor Conglomerate, with brecciated and in-filled clasts, within Sandstone sequences in FRBH01, Fishers Ridge PHOTOGRAPH G7.9 Laterite caprock at Fishers Ridge

Average depth (m)	Soil profile	Age/Formation
0.0 – 0.1	Silty Sand (SM), fine to medium grained, loose, dry	Quaternary
0.1 – 0.55	Silty Sandy Gravel (GP), Silty Gravelly Sand (SP), fine to coarse grained, medium dense to very dense, dry (FRTP01, FRTP02, FRTP05, FRTP06, FRTP07)	
0.55 – 1.6	Laterite, massive, moderate to high strength, excavated as sandy gravel, fine to coarse grained, very dense, dry.	
1.6 – 4.5	Silty Sand (SM), Silty Sandy Gravel (GP), Silty Gravelly Sand (SP) and Laterite. Generally medium dense to very dense, dry (as encountered in test pits)	
4.5 – 68 (FRBH01	Sandstone, very fine to coarse grained, extremely low to low strength, extremely to high weathered.	Cretaceous
only)	Occasional Claystone and Conglomerate beds.	
4.5 – 18 (FRBH02)	Siltstone, light grey – maroon, extremely low to low strength with occasional harder layers, extremely to highly weathered, generally highly fractured/brecciated and infilled. Occasional fine fine to medium grained sandstone layers. Abundant angular siltstone fragments in very fine grained matrix in places (FRBH02-FRBH05)	Ordovician (Oolloo Dolostone) Over Cambrian (Jinduckin
	Sandstone, fine to coarse grained, angular to sub angular grains, extremely to highly weathered, massive, occasional Claystone and Conglomerate layers (matrix supported, momomictic, max clast size 20mm) (FRBH01)	Formation)
18 – 25	Interbedded Siltstone and Sandstone, extremely low to low strength, extremely to highly weathered	
25 – 68	Sandstone, fine to coarse grained (FRBH02-FRBH05), very fine to fine grained (FRBH01- gradually increasing grainsize to fine to coarse grained at \sim 32 m), mottled light brown, orange brown, grey, angular to sub angular grains, extremely low to low strength, extremely to highly weathered, recovered as sandy clay in places. Faint horizontal bedding planes noted at 33 m. significant core loss between 31 m – 42 m and 53 m – 68 m. Conglomerate, medium to coarse grained, max particle size 30 mm, polymictic, no orientation noted, matrix supported, extremely low strength	

Table G7.7 Summary of Fishers Ridge geology profile

depth (m)		Age/Formation
68 – 77	Siltstone, maroon with orange brown mottling, extremely low to very low strength, extremely to highly weathered, generally recovered as clayey silt/silty clay, occasional bands of fine to coarse grained angular gravel	
77 – >80.6	Limestone, very fine to fine grained, orange brown to grey with some black veining, high to very high strength, highly weathered, massive, crystalline texture, siliclastic, abundant solution cavities infilled with calcite and quartz, some Fe staining, highly fractures throughout	Cambrian (Tindall Limestone)

G7.3.3 Mineralogy and petrology

Mineralogical and petrographic analysis of the sandstones from borehole FRBH01 reports the mineralogy to be dominated by fine grained, sub rounded to rounded Quartz and Kaolinitic cement. Samples analysed from borehole FRBH02 report the mineralogy is dominated by Kaolinite with sub-dominant/co-dominant Quartz. Although mineralogy is similar in both boreholes grain sizes vary significantly with the coarser grained Quartz rich Sandstone in borehole FRBH01 absent from the sequence encountered in borehole FRBH02.

G7.3.4 Groundwater

Table G7.8 below lists the recorded groundwater levels at Fishers Ridge during installation of the groundwater monitoring wells. No other groundwater information was available for the site at the time of the investigation.

Borehole No.	Date re	corded	Recorded d	epth (mbgl)
-	Installation	Sampling	Installation	Sampling
FRBH01	6/8/06	25/10/06	17.6	24.86
FRBH02	8/8/06	25/10/06	27.2	Nil
FRBH02a	9/8/06	25/10/06	Nil	Nil
FRBH03	10/8/06	25/10/06	27.2	6.5
FRBH03a	10/8/06	25/10/06	Nil	Nil
FRBH04	10/8/06	25/10/06	18.2	6.77
FRBH04a	10/8/06	25/10/06	4.0	Nil
FRBH05	9/8/06	25/10/06	Nil	Nil
FRBH05a	9/8/06	25/10/06	Nil	Nil

 Table G7.8
 Recorded groundwater levels – Fishers Ridge

Although no groundwater was encountered in FRBH05 and FRBH05a, on completion of the drilling substantial amount of warm air was being expelled from the 30 m deep FRBH05 borehole. During the groundwater sampling program, some eleven weeks after the well installation, it was noted that air was still being expelled from the dry

monitoring well. The source and mechanism for the air expulsion from the boreholes has not been investigated.

G7.3.5 Permeability

Three FHT were performed adjacent to borehole FRBH01 at 1.0 m. 5.0 m and 10.0 m depths. The tests results are summarised in Table G7.9 below.

Test location	Depth (m)	Permeability (k) (m/s)
FRBH01-1 m	1.0	3.5 x 10 ⁻⁷
FRBH01-5 m	5.0	9.8 x 10 ⁻¹⁰
FRBH01-10 m	10.0	Not determined*
FRTP01	0.6-1.0	1.5 x 10 ⁻⁸ (re-moulded)

 Table G7.9
 Summary of FHT results – Fishers Ridge

* water level fell less that 100mm in approximately 14 hours

The permeability of the underlying soils at Fishers Ridge may be classified as low to very low in accordance with Terzaghi & Peck (1967). Laboratory permeability test results on gravelly clayey sands from Fishers Ridge recorded k= 1.5×10^{-8} , classified as low to very low.

G7.4 Muckaty Station

G7.4.1 Regional geology

Figure G7.7 shows the underlying regional geology of the Muckaty Station site, which comprises mainly of fine to very coarse grained Lower Proterozoic Quartz Sandstone and Pebbly Sandstone with interbedded Claystone and Siltstone of the Tomkinson Group. Around the Muckaty Station homestead is the Cambrian Helen Springs Volcanics.

Much of the west part of the sheet consists of a surface covering of Quaternary aeolian sand and silty sand with some minor outcrops of Laterite.

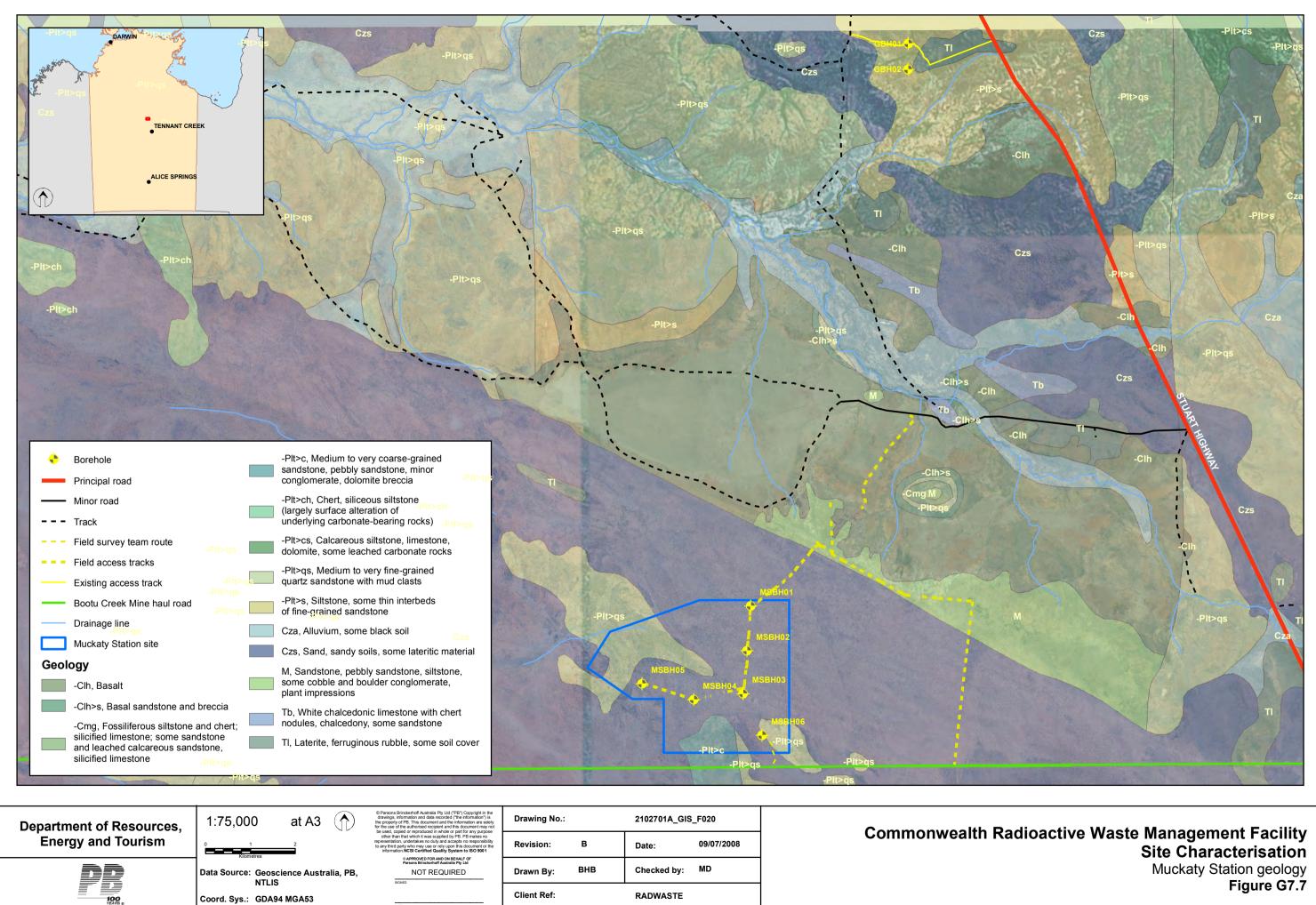
The Tomkinson Group consists of thick siliciclastic units that alternate with six mixed siliciclastic-carbonate intervals. This Group is a succession of shallow marine and continental sedimentary rocks, which the Hayward Creek Formation is the lower part of the sequence.

The Hayward Creek Formation is described as a thinly to very thickly bedded medium to very coarse sandstone and pebbly sandstone with minor pebble to cobble conglomerate (clasts of white vein quartz and white to pinkish cream quartz arenite), minor thinly bedded fine to medium sandstone, siltstone, mudstone and intraformational conglomerates, and basaltic lava. The depositional environment is fluvial to shallow marine, intertidal with periodic subaerial exposures.

Surface exposures of the Helen Springs Volcanics basaltic lava or flood basalt is limited but airborne magnetic imagery (TMI – Total Magnetic Intensity and Magnetic Depth, Figures G7.8 and G7.9) suggest the basalt may extend under the north-eastern corner of the nominated site and below the alluvial and aeolian sand plains which were targeted by several boreholes.

G7.4.2 Site geology

Two distinct subsurface provinces have been identified within the nominated site. Province 1 predominantly consists of a sand valley with sandy soils and some laterite surrounded by low rocky ridges while Province 2 is a sand plain with slightly deeper sands occurring on the north-eastern corner of the nominated site (Figure G7.10). Both these provinces encountered up to five to six metres of Sand (SP) and silty Sand (SM) overlying bedrock material. The remainder of the site is covered by low rocky outcrops of the Hayward Creek Formation fine to coarse sandstones to conglomerates.


The regional investigation site, consisted of weathered and fractured Hayward Creek Formation sandstones and quartzite rock from the surface.

Photographs from the test pits of the encountered soil profiles at Muckaty Station are presented in Appendix A.

A summary of the subsurface profile encountered at Muckaty Station is presented in Table G7.10.

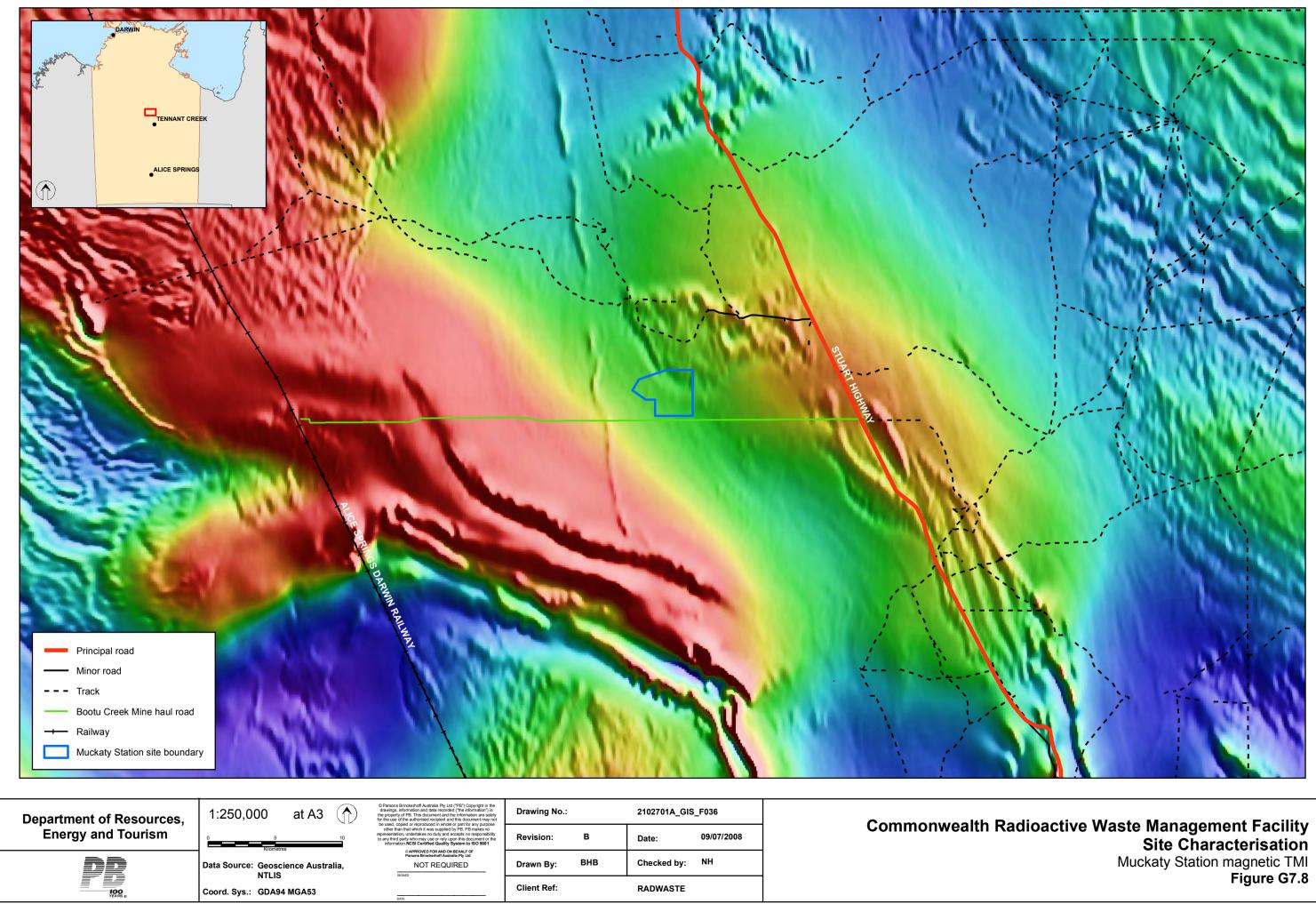
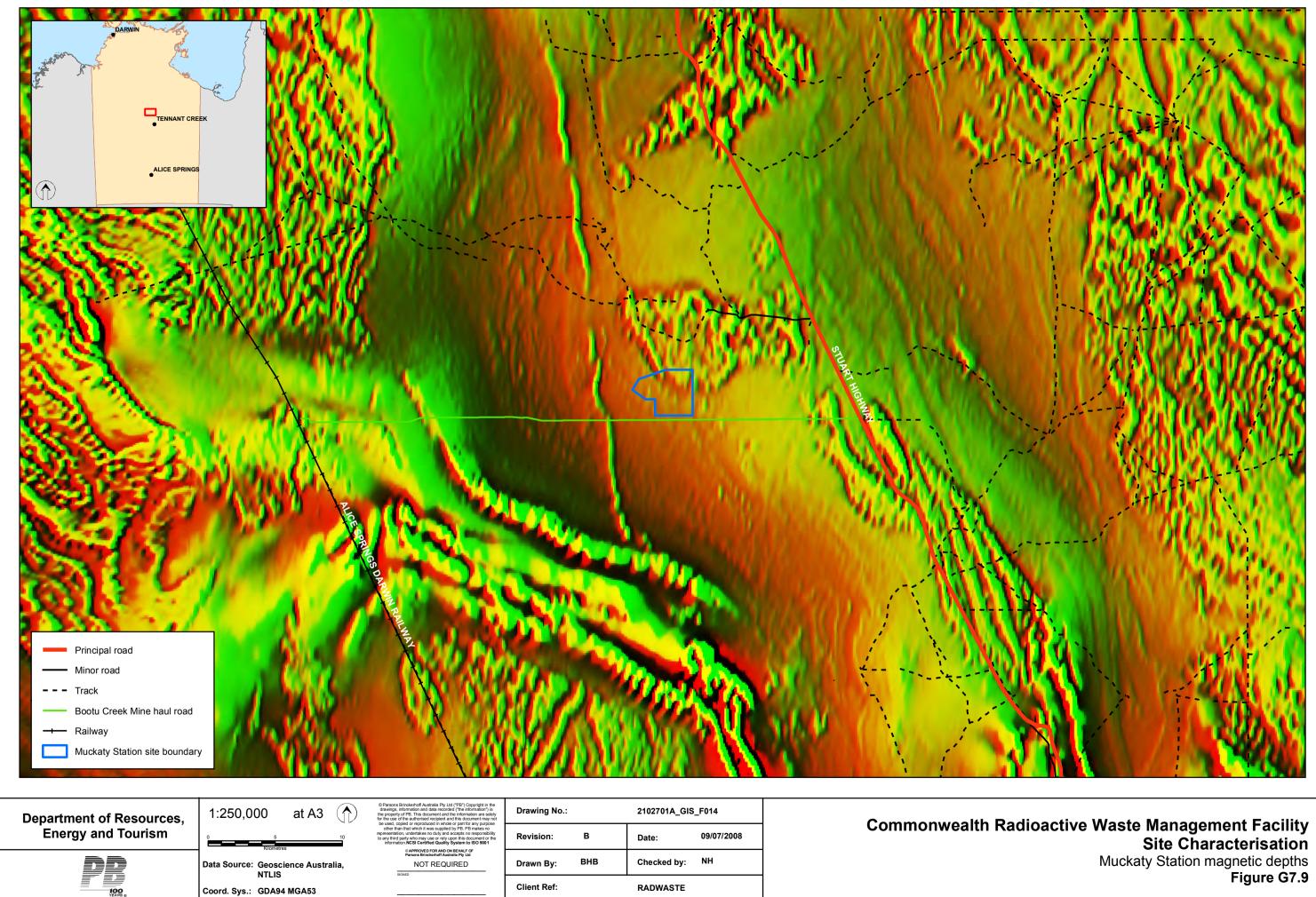
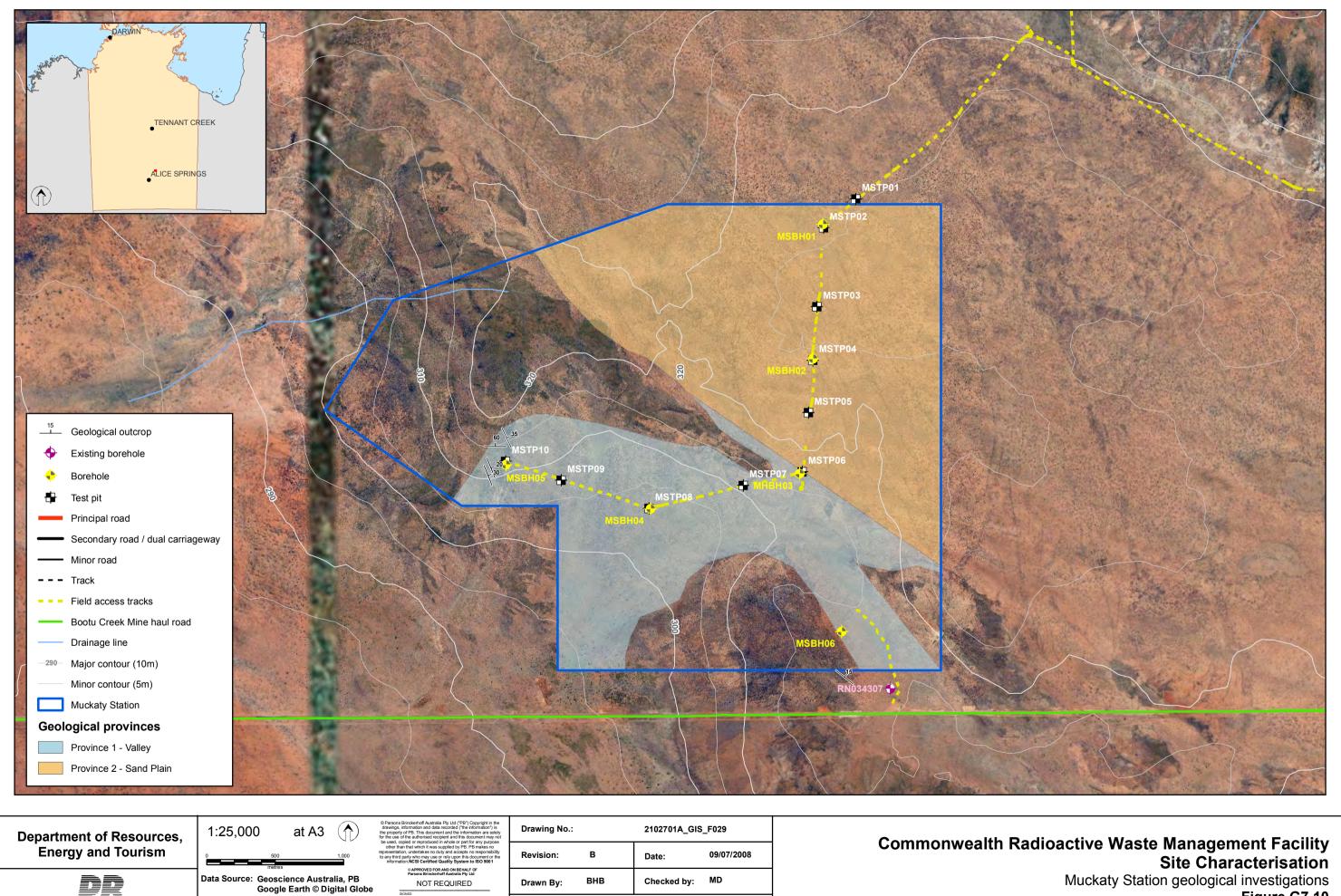

Average depth (m)	Province	Soil profile	Formation/A	ge
0.0 – 5m	1/2	Sand (SP), Silty Sand (SM), fine to medium grained, loose to dense, dry. Laterite, fine to very coarse, sub rounded to angular.		Quaternary
5 - 11m	2	Siltstone/Sandstone, light grey to	Gum Ridge Formation?	Cambrian
(MSBH01)		white, fine grained, claystone, white, highly to extremely weathered.	Formation ?	
5 - >35m (MSBH01 & MSBH02)	2	Basalt, white to grey-green (some purple bands) low to very high strength, highly weathered to fresh, variable fracture spacing but becoming more intact below ~20m. abundant Augite throughout.	Helen Springs Volcanics	Cambrian
5 - >48m (MSBH03 & MSBH06)	1	Pebbly Sandstone, fine to very coarse grained, sub angular to rounded, quartz rich, highly to slightly weathered, low to high strength.	Hayward Formation	Lower Proterozoic
	1	Sandstone, fine to coarse grained, angular to sub angular grains, extremely to highly weathered		
5 - >48m (MSBH04 & MSBH05)	1	Predominantly Siltstone, extremely to highly weathered, very low to medium strength, with some interbedded mudstone and sandstone		

Table G7.10 Muckaty Station Subsurface Profile (Province 1 and 2)



GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F020_B.mxd


100

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F036_B.mxd

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F014_B.mxd

RADWASTE

Client Ref:

GIS File: J:\A303-ENVPLN\PROJ\2102701A_Radwaste_2\10_GIS\Projects\2102701A_GIS_F029_B.mxd

100 YEARS ®

Coord. Sys.: GDA94 MGA53

Figure G7.10

G7.4.2.1 Province 1

Rock outcrops in low lying ridges (Photograph G7.10) surround Province 1 which is mainly covered by loose, dry sands and silty sands with some basal gravels above bedrock at shallow depths (<5 m, Photograph G7.11).

PHOTOGRAPH G7.10 Low rocky ridges to west of Province 1, Muckaty Station

PHOTOGRAPH G7.11 Sandy valley between rocky ridges, Province 1, Muckaty Station

Boreholes MSBH03 and MSBH06, encountered Pebbly Sandstone to approximately 4 m overlying fine to coarse grained highly to extremely weathered Sandstone and Quartz Sandstone. These coarse sediments were found to overlie Mudstones and Siltstones which extend to the limit of the boreholes. Boreholes MSBH04 and MSBH05 encountered predominately Mudstone and Siltstones, which was highly to extremely weathered and of varying defect spacing.

Borehole MSBH03 is on the boundary of Province 1 to Province 2 which confirms the aerial photographic interpretation of thin sands covering a saddle of the north-west to south-east ridgeline of sandstones and quartzites.

Figure G7.11 presents a generalised geological cross section of Province 1.

G7.4.2.2 Province 2

Province 2 is a very prominent sand plain (Photograph G7.12) that runs WNW-ESE which is bound by low lying mud plains to the north and the Hayward Creek Formation rocky ridges to the south.

MSBH01 and MSBH02 encountered up to 4.5 m of Sand and silty Sand overlying highly weathered basalt. The basalt extended to the limits of the boreholes and varied from highly to distinctly weathered in the upper 15–

PHOTOGRAPH G7.12 Sandy plain, Province 2, Muckaty Station

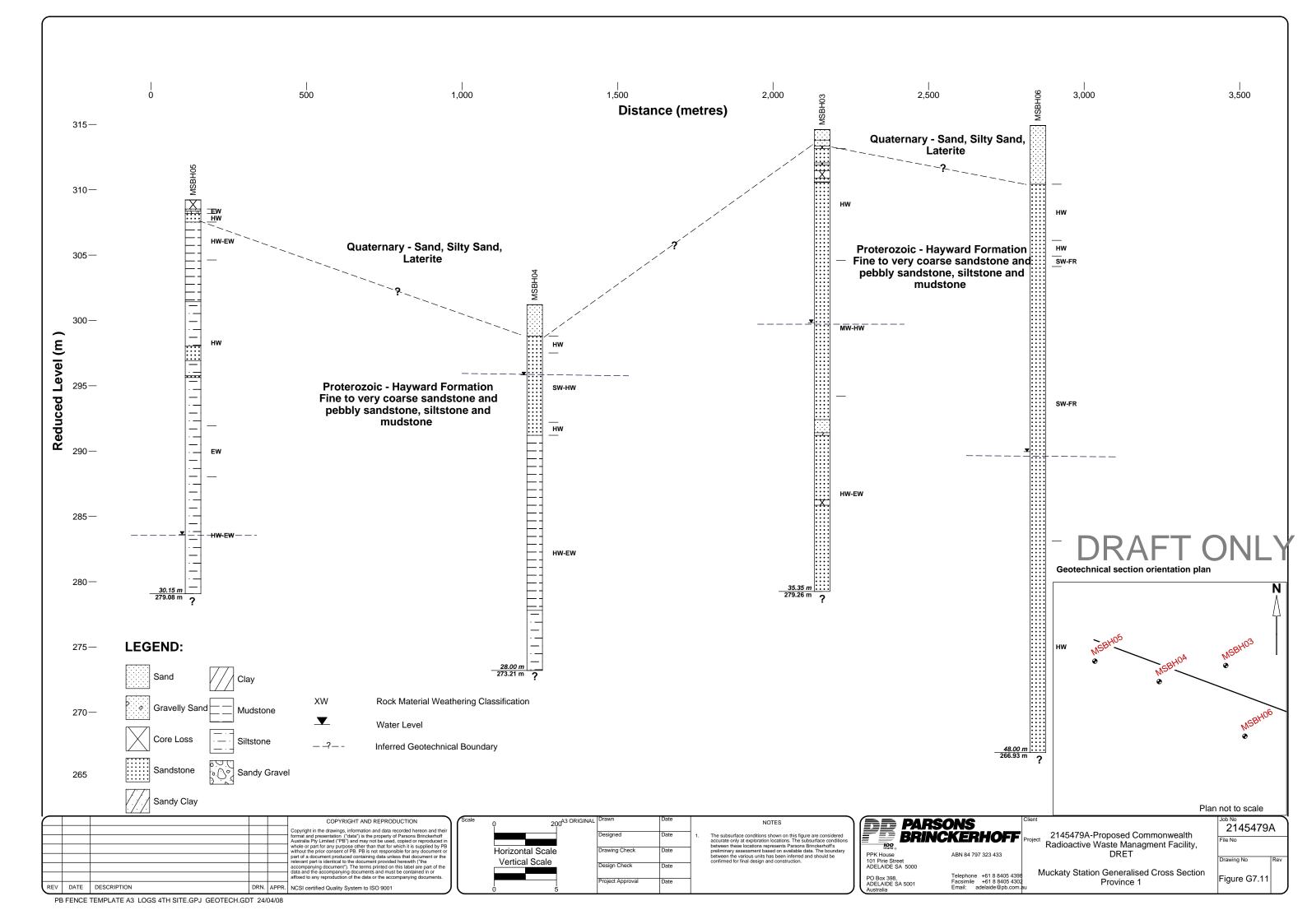
20 m and grading into slightly weathered to fresh relatively intact rock (few defects, Photograph G7.13). Interception of the basalt in the boreholes confirmed the interpretation from the airborne magnetic survey (Figures G7.8 and G7.9) of basalt

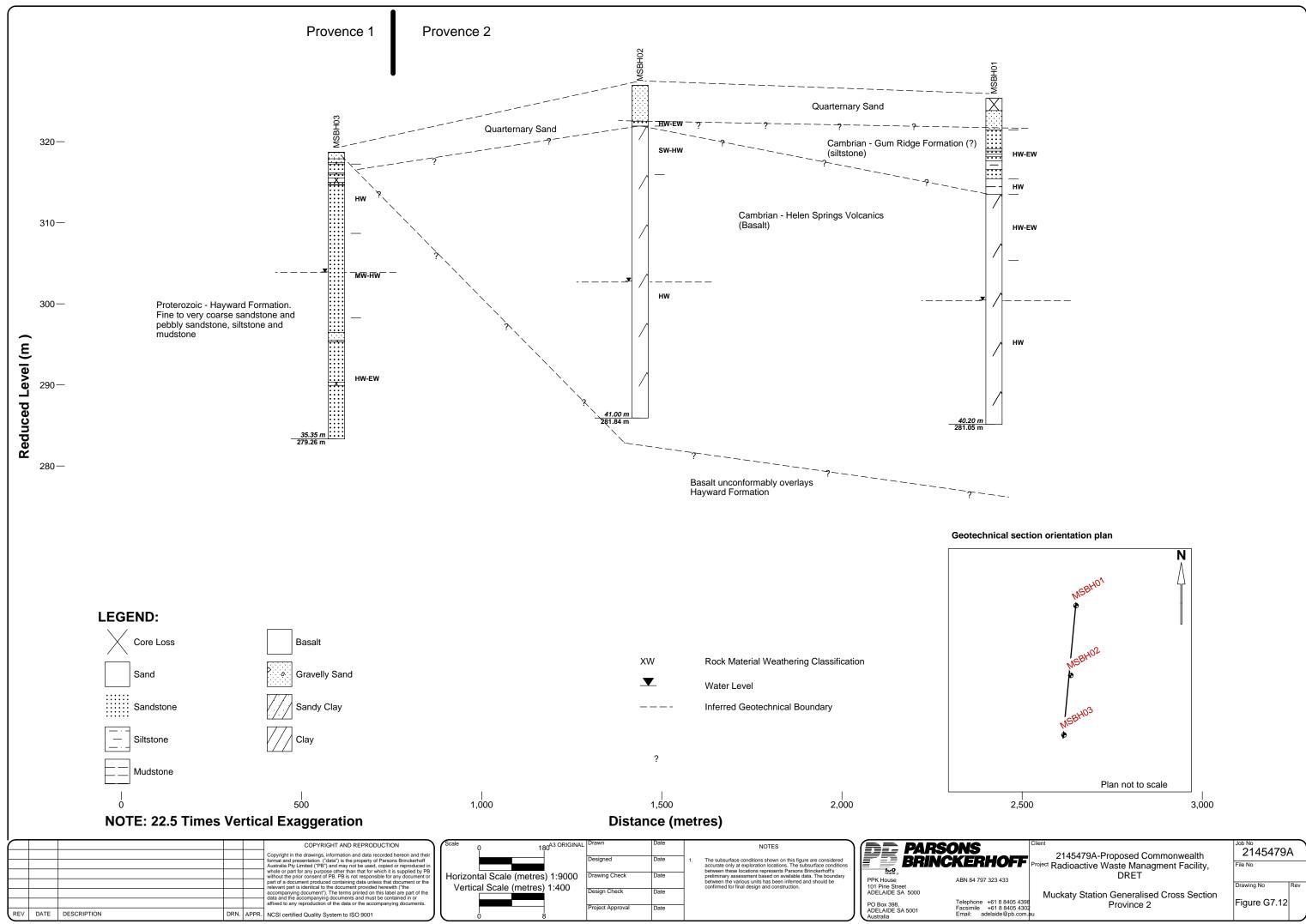
underlying the sand plains which would have its western edge between boreholes MSBH02 and MSBH03.

PHOTOGRAPH G7.13 Recovered core of slightly weathered, fractured basalt, Province 2, Muckaty Station

In borehole MSBH01 the basalt of the Helen Springs Volcanic is overlain by sandstone and siltstones which have been interpreted as being from the Cambrian Gum Ridge Formation. The basal section of these sediments is clay rich and highly to extremely weathered and this may have resulted from insitu weathering of the sediments by ground water moving above the basalt layer.

Figure G7.12 presents a generalised geological cross section of Province 2.


G7.4.2.3 Rocky ridges


The remainder of the nominated site is covered by low lying rocky ridges which are outcropping Hayward Creek Formation sandstones, quartzite and conglomerates (Photographs G7.12 and G7.13). Surface mapping of these ridges confirmed the general stratigraphy and structural orientation of the units as presented in the Helen Springs geological map (Figure G7.10).

PHOTOGRAPH G7.15 Quartz sandstone in rocky ridge, western boundary of nominated site, Muckaty Station

PHOTOGRAPH G7.14 Quartz sandstone with mud clasts in rocky ridge, southern boundary of nominated site, Muckaty Station

PB FENCE TEMPLATE A3 RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08

G7.4.2.4 Regional investigation site

The regional investigation site is a prominent rocky ridgeline that extends west of the Stuart Highway for a distance of about 3 kms which is covered by extensive quartzite outcrop (Photographs G7.14 and G7.15). A deep gully bisects the ridgeline at its western end and boreholes were located in each of the western ridgelines to provide information for regional geology and groundwater studies.

PHOTOGRAPH G7.16 Rocky outcrop along regional site ridgeline, Muckaty Station

PHOTOGRAPH G7.17 Quartzite outcrop along regional site ridgeline, Muckaty Station

Boreholes GBH01 and GBH02 encountered Quartz Sandstone over highly fractured, medium to high strength Quartzite with numerous extremely weathered bands and clay seams to an investigation depth of approximately 50 m.

Figure G7.13 presents a generalised geological cross section of the regional site.

G7.4.3 Mineralogy and petrology

Mineralogical and petrographic of the basalt intercepted in MSBH01 at 28 m (sample #165904) depth identified calcium-plagioclase (with some sericitic alteration) and clinopyroxene as the dominant minerals with minor olivine, magnetite, carbonate and silica minerals, all typical of a slightly weathered to fresh basalt.

Above the basalt was a clay rich unit, identified within the borehole logs as highly weathered siltstone (MSBH01 9.9–11.85 m) which was identified as being a kaolinitic claystone with minor muscovite (sample #165902).

The highly weathered quartz sandstones intercepted in MSBH03 (20.3 m depth, sample #165912) were confirmed by the dominance of fine grained quartz in a kaolinitic matrix.

The highly weathered siltstones intercepted in MSBH05 (17.65 m depth, sample #165915) were confirmed by the dominance of ultrafine kaolinite with muscovite (altered to sericite) and a trace of fine quartz.

The highly weathered quartz sandstone intercepted in GHBH02 (46.9 m depth, sample #165908) were confirmed by the dominance of medium grained quartz grains with clay-sericite throughout (weathered feldspar/lithic fragments).

G7.4.4 Groundwater

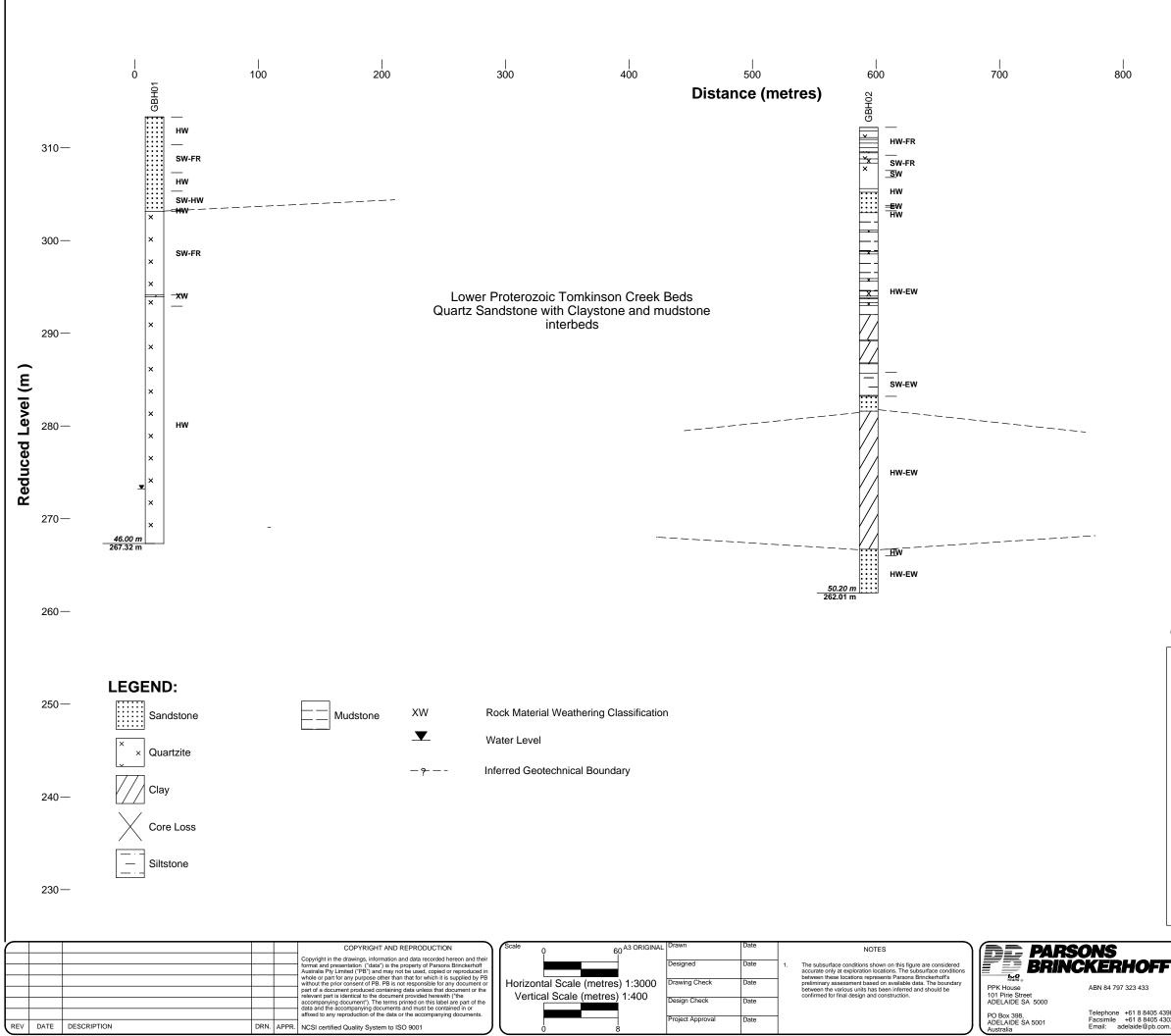
Table G7.11 below lists the recorded groundwater levels at Muckaty Station during installation of the groundwater monitoring wells. No other groundwater information was available for the site at the time of the investigation.

Borehole No.	Date re	corded	Recorded de	Recorded depth (mbgl)			
	Installation	Sampling	Installation	Sampling			
MSBH01	08/03/08	17/04/08	24.7	24.863			
MSBH02	24/02/08	17/04/08	24.0	24.120			
MSBH03	08/03/08	17/04/08	14.6	14.777			
MSBH04	25/02/08	17/04/08	5.3	5.380			
MSBH05	08/03/08	18/04/08	7.0	25.605			
MSBH06	25/02/08	16/04/08	24	24.966			
GBH01	23/02/08	16/04/08	39.5	40.095			
GBH02	29/02/08	-	Nil	-			

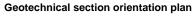
Table G7.11 Recorded groundwater levels – Muckaty Station

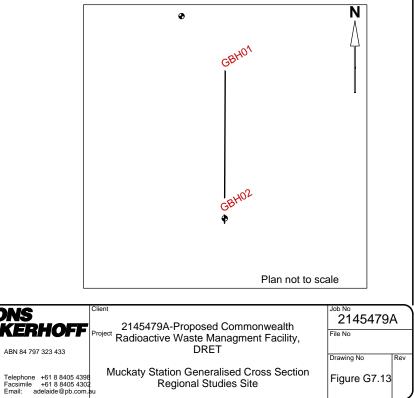
G7.4.5 Permeability

Three FHT were performed adjacent to borehole MSBH03 at 1.0 m. 5.0 m and 10.0 m depths. The tests results are summarised in Table G7.12 below.


Table G7.12	Summary of FHT results – Muckaty Station
-------------	--

Test location	Depth (m)	Permeability (k) (m/s)
MSBH03-1m	1.0	1.3x10 ⁻⁶
MSBH03-5m	5.0	1.2x10 ⁻⁶
MSBH03-10m	10.0	2.0x10 ⁻⁸
MSTP01	1.5	6.3x10 ⁻⁸ (re-moulded)


The permeability of the underlying soils at Muckaty Station may be classified as medium for the upper sands and very low for the bedrock materials in accordance with Terzaghi & Peck (1967). Laboratory permeability test results on compacted sands from Muckaty Station recorded $k=6.3x10^{-8}$, classified as low to very low.


G7.5 Geological modelling

The geological profiles for the first three sites described above are very similar, shallow Quaternary sandy and clayey sand soils overlying laterite or calcrete layers overlying Tertiary or earlier sedimentary sequences. The profile for the fourth site,

PB FENCE TEMPLATE A3 LOGS 4TH SITE.GPJ GEOTECH.GDT 28/04/08

Muckaty Station is similar however does not include the laterite of calcrete layers and consists primarily of Quaternary sandy soils over Proterozoic volcanic basalt and sedimentary sequences.

Mount Everard had the most consistent geological profile over the whole of the investigated site, both vertically and horizontally, which can be readily characterised through geological investigative techniques.

Harts Range had a similar geological profile to Mount Everard with the exception of the alluvial sediments covering the eastern portion of the site.

Fishers Ridge had the most complex geological profile of the four sites, influenced by the laterite layer, the rising ground to the east and the highly variable sediments overlying the Tindall Limestone, all factors causing difficulty in characterising and modelling Fishers Ridge.

Two distinct subsurface provinces have been identified at Muckaty Station; Province 1 siliciclastic sediments consisting of Sandstones, Siltstone and Mudstones and Province 2, volcanics consisting of sandstones and basalt. It is expected that the basalt partially overlies sedimentary sequences within the site. The regional site investigated at Muckaty Station, has a consistent geological profile consisting of weathered and fractured sandstone from the surface over quartzite at depth.

G7.6 Surface processes

Mount Everard was a relatively flat uniform site where surfaces processes such as flooding, landsliding or erosion is unlikely to occur.

Harts Range site is located on the western banks of the Ongeva Creek and may be subject to some flooding during peak flow events as evidenced by alluvial sediments covering the eastern portion of the site. Landslides and erosion is unlikely to occur at Harts Range due to the flat and clayey nature of the soils.

Fishers Ridge is located on a ridgeline and a site may be found along that ridgeline which would not be subject to flooding from the nearby King River and Roper Creek. Localised undermining of the laterite caprock may occur whilst the soils exhibited signs of gully erosion along the unsealed track traversing the Fishers Ridge site.

The Muckaty Station site is relatively elevated with a prominent rocky ridge trending north-west, approximately 2 km north of the Bootu Creek Mine haul road. To the north of the ridge there is rocky plateau area, which grades into an extensive clayey alluvial plain, which is controlled by the underlying flood basalt. The clayey alluvial plain is bordered to the north by rocky quartzite plateaus of the regional investigation site.

G8. Geotechnical conditions

G8.1 Geotechnical profile

Tables G8.1 to G8.4 summarises the geotechnical parameters estimated for the subsurface materials encountered during the investigation at Mount Everard, Harts Range, Fishers Ridge and Muckaty Station. The geotechnical parameters have been provided for materials to a depth of 10 m as excavations for the proposed development are not expected to extend below this depth.

				Geotechnical Parameters							
				9	Short te	rm			Long	term	
	Depth (m)	Material	φ (degrees)	C _u (kPa)	E _u (MPa)	~	γ (kN/m ³)	φ ' (degrees)	C' (kPa)	E' (MPa)	۲'
	0.0 - 0.15	Silty Sand	30	0	25	0.3	16	30	0	20	0.3
	0.5 – 5	Clayey Sand / Sandy Clay	0	100	40	0.4	20	22	10	35	0.3
	2.5 - 5.0	Calcrete/ Sandy Clay	37	50	80	0.35	20	30	0	60	0.3
	5.0 – 10.0	Sandstone			300	0.3				200	0.25
			ction angle C _u /C' = cohesion ung' s Modulus V/V' = Poisson' s Ratio								
$\gamma = \text{density}$		•									

Table G8.1 Summary of geotechnical parameters – Mount Everard

Table G8.2 Summary of geotechnical parameters – Harts Range

			Geotechnical Par					rameters			
			S	hort te	rm		Long term				
Depth (m)	Material	φ (degrees)	C _u (kPa)	Eu (MPa)	>	γ (kN/m³)	ø' (degrees)	C' (kPa)	E' (MPa)	٨	
0.0 - 0.3	Silty Sand	30	0	25	0.35	16	30	0	20	0.3	
0.3 – 7.0	Clayey Sand / Sandy	34	0	35	0.35	18	34	0	30	0.3	
7.0 – 10.0	Sandstone			300	0.3				200	0.25	

Table G8.3 Summary of geotechnical parameters – Fishers Ridge

		Geotechnical Parameters								
	-		S	hort te	rm			Long	term	
	Material	φ (degrees)	C _u (kPa)	Eu (MPa)	>	γ (kN/m³)	ø' (degrees)	С' (кРа)	E' (MPa)	Ń
0.1 – 0.5	Silty Sandy Gravel	35	0	40	0.35	19	35	0	35	0.3
0.5 – 4.5	Laterite	40	200	25	0.35	19	30	0	20	0.3
4.5 – 10.0	Pebbly <mark>Sandstone</mark>			300	0.3				200	0.25

				G	Geotech	nical Pa	aramete	ers				
			S	hort te	rm			Long	term			
	Material	φ (degrees)	C _u (kPa)	Eu (MPa)	>	γ (kN/m³)	ø' (degrees)	C' (kPa)	E' (MPa)	Ņ		
0-1.0	Silty Sand	30	0	25	0.3	19	30	0	20	0.3		
1.0-6.0	Sandstone			300	0.3				200	0.25		
6.0-10.0	Siltstone			300	0.3				200	0.25		

G8.2 Site classification

In accordance with AS2870-1996 'Residential Slabs and Footings', all four sites are classified as **Class S** (less than 20 mm movement) due to the sandy and clayey sand sites underlain by calcrete or laterite to 4 m depth and weathered rock below. Sites with rocky outcrops would be classified as **Class A**.

G8.3 Earthquake and liquefaction

Liquefaction is the phenomenon in which the strength and stiffness of a soil is reduced by earthquake shaking or other rapid loading. Liquefaction occurs when a soil loses strength due to a build-up of pore water pressure to a magnitude equal to the confining stress. Such a condition can occur due to the cyclic stress condition induced by earthquake forces and is generally associated with saturated sandy soils in a loose condition.

Examination of soil profiles from test pits and borehole logs at each of the sites reveals the presence of a layer of loose to dense/stiff to hard silty sands sandy clays and sands up to 5.0 m thick. However, observed groundwater table is generally deep (> 5 m). Therefore, these competent soils are not generally in saturated condition. Hence, the earthquake induced liquefaction susceptibility of these soils is low.

The following parameters should be used to calculate loads due to earth quake loading in accordance with AS1170.4-2007 'Structural design actions – Earthquake actions in Australia'.

- Site Hazard Factor (Z) (Mount Everard and Harts Range) = 0.08
- Site Hazard Factor (Z) (Fishers Ridge) = 0.07
- Site Hazard Factor (Z) (Muckaty Station) = 0.09
- Site sub-soil class (for all sites) = Class C C_e, B_e or A_e
- Liquefaction potential (for all sites) = Low.

The above hazard factors are based on a 1 in 500 year annual probability of exceedance for areas within Northern Territory. As the facilities will be designed for long periods (300 years), additional seismic studies may be required to further define the above hazard factors for the long design life of the structures.

G8.4 Durability

The soils encountered and sampled at each of the four sites are considered to be classified as Soil Conditions B i.e. low permeability soils or soils above groundwater and the chemical test results indicate that they are classified as non-aggressive for both concrete and steel in accordance with AS 2159-1995 'Piling – Design and Installation'.

G8.5 Footings

Shallow footings for structures located at the three sites (Mount Everard, Harts Range and Fishers Ridge) may be founded on the very stiff sandy clay or the dense to very dense sand and clayey sand and silty sandy gravel not less that 0.4 m below existing surface levels where an allowable bearing capacity of 150 kPa may be adopted. Shallow footings could be founded in the loose sands encountered at Muckaty Station with an allowable bearing capacity of 100 kPa. Footings founded within the underlying weathered rock profile at all four sites may be proportioned for an allowable bearing capacity of 400 kPa.

G8.6 Excavations

Conventional excavation machinery is considered suitable for excavations to approximately 5 m and 7 m depth below existing surface levels at Mount Everard and Harts Range respectively. Below these depths larger machinery and/or hydraulic rock breakers may be required to aid excavation of medium strength rock materials.

Conventional excavation machinery may encounter difficulties at relatively shallow depth (<1.5 m) at Fishers Ridge due to the laterite formations. It is considered likely that larger machinery and hydraulic rock breakers would be required if excavations are to extend below 1.5 m depth.

Conventional excavation machinery is considered suitable for excavations to approximately 1.0 to 2.5 m depth below existing surface levels within the two Provinces on Muckaty Station. Below these depths, on the rocky ridges surrounding the two Provinces larger machinery, hydraulic rock breakers and drill and blast methods may be required to aid excavation of medium to high strength rock materials

The stability of the excavations is unlikely to cause problems and it is considered that they would remain open without support. However, it is strongly recommended that no personnel be allowed to enter an excavation deeper than 1.2 m without appropriate support for that area of the excavation which is occupied. The sides of the excavations may be battered back at and angle of 1.5H:1V (33°) for short term and 2H:1V ($\sim 26.5^{\circ}$) for long term in the upper 3 m (Silty Sand, Sand, Clayey Sand) and 1H:3V (71.5°) in rock and laterite, which would negate the need for shoring.

G8.7 Pavements

Subbase for roads on the four sites should comprise of engineered granular soils overlying natural subgrade soils. Based on the obtained laboratory CBR test results it is recommended that design CBR values of 7%, 30% and 40% are used in the pavement designs for Mount Everard, Harts Range and Fishers Ridge respectively. The sandy soils at Muckaty Station would have a recommended design CBR value of 10% whilst the rocky sub-grade of 40%.

It is recommended that the site is reconstructed so that surface and subsurface drainage is such that the integrity of the constructed pavement is not compromised due to water infiltration during rainfall or flooding events.

G8.8 Construction materials

From the preliminary investigations, some of the construction materials for pavements, building pads, embankments and clay liners may be sourced on site. Mount Everard site would have the best range of construction materials available on-site, whilst Fishers Ridge is limited to the laterite and the underlying thin clay unit. Muckaty Station would have limited construction materials available on-site, limited to the upper sands and gravels from within the sand valleys and plains. Rock excavated from the bedrock and ridges may be crushed to produce some construction materials such as general fill and pavement materials.

Table G8.5 summarises the potential materials on each of the four sites.

	matarial	denth renge (m)	Potential use		
	material	depth range (m)			
			Sub grade for pavements Hardstands/building pads		
	Sandy Gravelly Clay	0.5 – 2.5	Impermeable barrier Engineered fill		
	Calcrete	2.5 – 5	Pavement materials Hardstand/building pads		
Harts Range	Sand	0.25 - 3.0	Subgrade for pavements		
			Hardstand/building pads Engineered fill		
	Clayey Sand	3.0 - 7.0	Hardstand/building pads		
			Engineered fill Impermeable barrier		
Fishers Ridge	Laterite (Sandy	0.0 – 4.5	Subgrade for pavements		
	Gravel, Silty Sandy Gravel)		Hardstand/building pads Engineered fill		
	Clay (underlying	4.5 - 6.0	Impermeable barrier		
	laterite)				
Muckaty Station	Silty Sand	0-2.5	Subgrade for pavements		
			Hardstand/building pads Engineered fill		
	Weathered	2.5-3.5	Subgrade for pavements		
	sandstone gravel		Hardstand/building pads Engineered fill		

Table G8.5 Summary of potential construction materials – four sites

Muckaty Station has a road construction borrow source located in the south eastern corner of the target area which was used in the construction of the Bootu Creek mine haul road.

G8.9 Subsurface migration

Falling head permeability tests carried out at the four sites indicate that up to a depth of 10 m below existing surface levels migration of fluids would be greatly impeded by the very low permeability of the existing soil and rock profiles.

At depth, recovered rock core had a high clay content, which is considered to be a result of in-situ weathering resulting in a reduction of the porosity and therefore overall permeability of the profile.

However, highly fractured zones with occasional mineral infilling were noted, indicating some potential fluid flow may occur along these fractures.

G9. Summary

The geological and geotechnical investigation for the proposed development involved:

- 1. A test pitting program at each site, carried out using either a backhoe or tracked excavator. Up to ten test pits were excavated across each site and extended to a maximum depth of three metres.
- 2. A drilling program at each site. The boreholes were drilled using both rotary air boring (RAB) and HQ3 diamond coring techniques. Five boreholes were drilled at Mount Everard and Harts Range sites, nine boreholes at Fishers Ridge and eight boreholes at Muckaty Station. The boreholes ranged in depth from 6 m to 100 m.
- 3. All boreholes were converted to groundwater monitoring wells, samples from which were submitted for a range of testing. Groundwater levels were recorded during well installation and during sampling and provided information on the variations in the groundwater regime on the four sites. Two groundwater monitoring data loggers were installed within two separate borehole at each site with initial information downloaded during the groundwater sampling program.
- 4. Soil and rock samples collected from the test pitting and drilling programs were submitted for a range of testing.
- 5. Three falling head permeability tests were performed at 1 m, 5 m and 10 m depths at each of the sites adjacent to a cored borehole.
- 6. All test locations were initially surveyed using a hand held GPS with a follow on detailed survey of the sites conducted at the end of the field work.

The subsurface profile was the most consistent at Mount Everard and the least consistent, and therefore the most difficult to model, at Fishers Ridge. Muckaty Station encountered reasonably consistent profiles comprising shallow sands overlying bedrock over most of the site, with the remaining areas (including the Regional Studies Site) covered by outcropping rock.

These profiles are summarised and compared in Table G9.1 below.

Site	General subsurface profile	Groundwater levels	General surface profile and elevation
Mount Everard	Up to 5 m of Silty Sand and Sandy Clay overlying thick sequence of Sandstone, Quartzite and Claystone. No basement rock encountered but was expected	Ranging from 30.38 m to 34.89 m bgl. Relatively small variation between installation and sampling	Generally flat with elevations from 726 m AHD to 732 m AHD
Harts Range	Thin layer of Clayey Sand and Sand overlying thick sequence of Sandstone, Pebbly Sandstone with some Siltstone. No basement rock encountered but was expected	Ranging from 14.98 m to 28.045 m bgl.	Generally flat with elevations from 652 m AHD to 660 m AHD
Fishers Ridge	Thin Silty Sand and Silty Sandy Gravel surface soil overlying up to 4 m of Laterite. Thick sequence of Siltstone and Sandstone overlying Limestone at 77 m depth. Target depth of 100 m not reached, however depth to Tindall Limestone confirmed.	Ranging from 6.5 m to 24.6 m bgl but highly variable across the site	Steady rise along ridgeline surrounded by King river and Roper creek, with elevations from 191 m AHD to 219 m AHD.
Muckaty Station	Thin Silty Sand overlying thick sequences of Basalt, Siltstone, Quartzite and Sandstone. No basement rock was encountered.	Ranging from 5.2 m to 40.0 m bgl. Highly variable across the site.	Gently sloping with a shallow valley through the centre. Bounded by a rocky ridgeline on the north west and south. Elevations range from 301.2 m AHD to 322.8 m AHD.

Table G9.1 Summary of subsurface conditions – four sites

Table G9.2 summarises the permeability results obtained from tests conducted on the four sites, with Mount Everard having consistent very low permeability over the upper 10 m of the soil profile, whilst Fishers Ridge has very low permeability only below the laterite in the underlying clay materials. These low permeabilities offer significant restrictions to the flow of subsurface fluids with extensive weathering of the sediments below resulting in relatively low permeability profiles with occasional higher permeability fractured zones to basement rock. The sands overlying the bedrock at Muckaty Station are of medium permeability whilst the fractured bedrock materials were of very low permeability.

Seismic activity occurs about 130 kms south of Muckaty Station, whilst Mount Everard and Harts Range have slightly higher occurrence of seismic activity than the Fishers Ridge site, but all four sites are of low seismic and volcanic activity and liquefaction potential. The tectonic setting of all four sites is extremely complex with a series of major metamorphic/orogenic events influencing the geology and extending back to periods of placement of the basement rocks. Landslides are not considered of high risk at all four sites, whilst flooding may occur at Harts Range and localised erosion at Fishers Ridge.

	Site						
Test depth (m)	Mount Everard	Harts Range	Fishers Ridge	Muckaty Station			
1	7.5 x 10 ⁻⁸	1.0 x 10 ⁻⁶	3.5 x 10 ⁻⁷	1.3x10 ⁻⁶			
5	2.0 x 10 ⁻⁷	4.6 x 10 ⁻⁷	9.8 x 10 ⁻¹⁰	1.2x10 ⁻⁶			
10	1.5 x 10 ⁻⁷	2.0 x 10 ⁻⁷	Not determined	2.0x10 ⁻⁸			
Compacted materials	3.7 x 10 ⁻¹⁰	6.2 x 10 ⁻¹⁰	1.5 x 10 ⁻⁸	6.3x10 ⁻⁸			

Table G9.2 Summary of permeability results (m/s) – four sites

Many of the construction materials expected to be required for the proposed facility may be sourced on site, with Mount Everard having the widest range of suitable materials located on-site, and Fishers Ridge limited to the laterites and underlying clay materials. Materials for pavements, hardstand areas, building pads, engineered fill and impermeable barriers may be acquired and utilised (with conditioning) on most sites.

Soil reactivity and durability of the four sites is very similar, being of Class S and Soil condition B. The underlying bedrock material at Muckaty Station and laterites at Fishers Ridge would be the most difficult to excavate and may require non-conventional excavation equipment whilst the two southern sites would use conventional excavation equipment.

G10. References

Australian Standard (1993). AS1726 Geotechnical Site Investigations.

Australian Standard (1995). AS2159 Piling – Design and installation.

Australian Standard (1996). AS2870 Residential slabs and foundations.

Australian Standard (2000). AS1289 Methods of testing soils for engineering purposes.

Australian Standard (2007). AS1170.4 Structural design actions – Earthquake actions in Australia.

British Standard (1981). BS5930 Code of practice for site investigations.

Geoscience Australia Earthquake Database. http://earthquake.usgs.gov

Hunt, R. E. (2007). "Geologic Hazards: a field guide for geotechnical engineers". Taylor & Francis Group, Florida.

Northern Territory Geological Survey (1975). *Alcoota 1:250,000 Geological Map SF53-10.*

Northern Territory Geological Survey (1983). *Alice Springs 1:250,000 Geological Map SF53-14.*

Northern Territory Geological Survey (1994). *Katherine 1:250,000 Geological Map SD53-09*.

Northern Territory Geological Survey (2001) Helen Springs 1:250,000 Geological Map Series Explanatory Notes, Second Edition SE 53-10

NT Strike Database. http://apps.minerals.nt.gov.au/strike

Terzaghi, K. and Peck, R.B. (1967). "Soil Mechanics in Engineering Practice, Second Edition". John Wiley & Sons, New York.

G11. Limitations of geotechnical site investigation

Scope of Services

This geotechnical site assessment report ("the report") has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between the Client and Parsons Brinckerhoff (PB) ("scope of services"). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

Reliance on Data

In preparing the report, PB has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations, most of which are referred to in the report ("the data"). Except as otherwise stated in the report, PB has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. PB will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to PB.

Geotechnical Investigation

Geotechnical engineering is based extensively on judgment and opinion. It is far less exact than other engineering disciplines. Geotechnical engineering reports are prepared to meet the specific needs of individuals. A report prepared for a consulting civil engineer may not be adequate for a construction contractor or even some other consulting civil engineer. This report was prepared expressly for the Client and expressly for purposes indicated by the Client or his representative. Use by any other persons for any purpose, or by the Client for a different purpose, might result in problems. The Client should not use this report for other than its intended purpose without seeking additional geotechnical advice.

This Geotechnical Report is Based on Project-specific Factors

This geotechnical engineering report is based on a subsurface investigation which was designed for project-specification factors, including the nature of any

development, its size and configuration, the location of any development on the site and its orientation, and the location of access roads and parking areas. Unless further geotechnical advice is obtained this geotechnical engineering report cannot be used:

- when the nature of any proposed development is changed; or
- when the size, configuration location or orientation of any proposed development is modified.

This geotechnical engineering report cannot be applied to an adjacent site.

The Limitations of Site Investigation

In making an assessment of a site from a limited number of boreholes or test pits there is the possibility that variations may occur between test locations. Site exploration identifies specific subsurface conditions only at those points from which samples have been taken. The risk that variations will not be detected can be reduced by increasing the frequency of test locations; however this often does not result in any overall cost savings for the project. The investigation programme undertaken is a professional estimate of the scope of investigation required to provide a general profile of the subsurface conditions. The data derived from the site investigation programme and subsequent laboratory testing are extrapolated across the site to form an inferred geological model and an engineering opinion is rendered about overall subsurface conditions and their likely behaviour with regard to the proposed development. Despite investigation the actual conditions at the site might differ from those inferred to exist, since no subsurface exploration programme, no matter how comprehensive, can reveal all subsurface details and anomalies.

The borehole logs are the subjective interpretation of subsurface conditions at a particular location, made by trained personnel. The interpretation may be limited by the method of investigation, and can not always be definitive. For example, inspection of an excavation or test pit allows a greater area of the subsurface profile to be inspected than borehole investigation, however, such methods are limited by depth and site disturbance restrictions. In borehole investigation, the actual interface between materials may be more gradual or abrupt than a report indicates.

Subsurface Conditions are Time Dependent

Subsurface conditions may be modified by changing natural forces or man-made influences. A geotechnical engineering report is based on conditions which existed at the time of subsurface exploration.

Construction operations at or adjacent to the site, and natural events such as floods, or groundwater fluctuations, may also affect subsurface conditions, and thus the continuing adequacy of a geotechnical report. The geotechnical engineer should be kept appraised of any such events, and should be consulted to determine if additional tests are necessary.

Avoid Misinterpretation

A geotechnical engineer should be retained to work with other appropriate design professionals explaining relevant geotechnical findings and in reviewing the adequacy of their plans and specifications relative to geotechnical issues.

Bore/Profile Logs Should Not Be Separated from the Engineering Report

Final bore/profile logs are developed by geotechnical engineers based upon their interpretation of field logs and laboratory evaluation of field samples. Customarily, only the final bore/profile logs are included in geotechnical engineering reports. These logs should not under any circumstances be redrawn for inclusion in architectural or other design drawings. To minimise the likelihood of bore/profile log misinterpretation, contractors should be given access to the complete geotechnical engineering report prepared or authorised for their use. Providing the best available information to contractors helps prevent costly construction problems. For further information on this matter reference should be made to "Guidelines for the Provision of Geotechnical Information in Construction Contracts" published by the Institution of Engineers Australia, National Headquarters. Canberra 1987.

Geotechnical Involvement During Construction

During construction, excavation is frequently undertaken which exposes the actual subsurface conditions. For this reason geotechnical consultants should be retained through the construction stage, to identify variations if they are exposed and to conduct additional tests which may be required and to deal quickly with geotechnical problems if they arise.

Report for Benefit of Client

The report has been prepared for the benefit of the Client and no other party. PB assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of PB or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report. Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.

Other Limitations

PB will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

Appendix A

Engineering test pit and borehole logs and photographs with explanatory notes

Explanatory Notes — Soil Description

In engineering terms soil includes every type of uncemented or partially cemented inorganic material found in the ground. In practice, if the material can be remoulded by hand in its field condition or in water it is described as a soil. The dominant soil constituent is given in capital letters, with secondary textures in lower case. The dominant feature is assessed from the Unified Soil Classification system and a soil symbol is used to define a soil layer as follows:

UNIFIED SOIL CLASSIFICATION

The appropriate symbols are selected on the result of visual examination, field tests and available laboratory tests, such as, sieve analysis, liquid limit and plasticity index.

USC Symbol	
GW	Well graded gravel
GP	Poorly graded gravel
GM	Silty gravel
GC	Clayey gravel
SW	Well graded sand
SP	Poorly graded sand
SM	Silty sand
SC	Clayey sand
ML	Silt of low plasticity
CL	Clay of low plasticity
OL	Organic soil of low plasticity
MH	Silt of high plasticity
СН	Clay of high plasticity
OH	Organic soil of high plasticity
Pt	Peaty Soil

MOISTURE CONDITION

- Dry Cohesive soils are friable or powdery Cohesionless soil grains are free-running
- Moist Soil feels cool, darkened in colour Cohesive soils can be moulded Cohesionless soil grains tend to adhere
- Wet Cohesive soils usually weakened Free water forms on hands when handling

For cohesive soils the following codes may also be used:

- MC>PL Moisture Content greater than the Plastic Limit.
- MC~PL Moisture Content near the Plastic Limit.
- MC<PL Moisture Content less than the Plastic Limit.

PLASTICITY

The potential for soil to undergo change in volume with moisture change is assessed from its degree of plasticity. The classification of the degree of plasticity in terms of the Liquid Limit (LL) is as follows:

Description of Plasticity	LL (%)
Low	<35
Medium	35 to 50
High	>50

COHESIVE SOILS - CONSISTENCY

The consistency of a cohesive soil is defined by descriptive terminology such as very soft, soft, firm, stiff, very stiff and hard. These terms are assessed by the shear strength of the soil as observed visually, by the pocket penetrometer values and by resistance to deformation to hand moulding. A Pocket Penetrometer may be used in the field or the laboratory to provide approximate assessment of unconfined compressive strength of cohesive soils. The values are recorded in kPa, as follows:

Strength	Symbol	Pocket Penetrometer Reading (kPa)
Very Soft	VS	< 25
Soft	S	20 to 50
Firm	F	50 to 100
Stiff	St	100 to 200
Very Stiff	VSt	200 to 400
Hard	Н	> 400

COHESIONLESS SOILS - RELATIVE DENSITY

Relative density terms such as very loose, loose, medium, dense and very dense are used to describe silty and sandy material, and these are usually based on resistance to drilling penetration or the Standard Penetration Test (SPT) 'N' values. Other condition terms, such as friable, powdery or crumbly may also be used.

The Standard Penetration Test (SPT) is carried out in accordance with AS 1289, 6.3.1. For completed tests the number of blows required to drive the split spoon sampler 300 mm is recorded as the N value. For incomplete tests the number of blows and the penetration beyond the seating depth of 150 mm are recorded. If the 150 mm seating penetration is not achieved the number of blows to achieve the measured penetration is recorded. SPT correlations may be subject to corrections for overburden pressure and equipment type.

Term	Symbol	Density Index	N Value (blows/0.3 m)
Very Loose	VL	0 to 15	0 to 4
Loose	L	15 to 35	4 to 10
Medium Dense	MD	35 to 65	10 to 30
Dense	D	65 to 85	30 to 50
Very Dense	VD	>85	>50

COHESIONLESS SOILS PARTICLE SIZE DESCRIPTIVE TERMS

Name	Subdivision	Size
Boulders Cobbles		>200mm 63mm to 200mm
Gravel	coarse medium fine	20mm to 63mm 6mm to 20mm 2.36mm to 6mm
Sand	coarse medium fine	600mm to 2.36mm 200mm to 600mm 75mm to 200mm

Rock Description

The rock is described with strength and weathering symbols as shown below. Other features such as bedding and dip angle are given.

ROCK QUALITY

The fracture spacing is shown where applicable and the Rock Quality Designation (RQD) or Total Core Recovery (TCR) is given where:

RQD (%) =	Sum of Axial lengths of core > 100mm long
	total length considered
	Is weather of a single second state of

length of core recovered TCR (%) = length of core run

ROCK STRENGTH

Rock strength is described using AS1726 & ISRM - Commission on Standardisation of Laboratory & Field Tests, "Suggested method of determining the Uniaxial Compressive Strength of Rock materials & the Point Load Index", as follows:

Extremely Low	EL	<0.03
Very Low	VL	0.03 to 0.1
Low	L	0.1 to 0.3
Medium	М	0.3 to 1
High	Н	1 to 3
Very High	VH	3 to 10
Extremely High	EH	>10

Diametral Point Load Index test

Axial Point Load Index test

ROCK MATERIAL WEATHERING

Rock weathering is described using the following abbreviation and definitions used in AS1726:

Residual soil	RS	Soil developed on extremely weathered rock, the mass structure & substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported.
Extremely weathered	XW	Rock is weathered to such an extent that it has 'soil' properties, ie: it either disintegrates or can be remoulded in water.
Distinctly weathered	DW	Rock strength usually changed by weathering. The rock may be highly discoloured, usually ironstaining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Slightly weathered	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh	FR	Rock shows no sign of decomposition or staining.

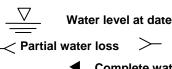
DEFECT SPACING/BEDDING THICKNESS

Measured at right angles to defects of same set or bedding.

Extremely closely spaced	<6 mm 6 to 20 mm	Thinly Laminated Laminated
Very closely spaced	20 to 60 mm	Very Thin
Closely spaced	0.06 to 0.2 m	Thin
Moderately widely spaced	0.2 to 0.6 m	Medium
Widely spaced	0.6 to 2 m	Thick
Very widely spaced	>2 m	Very Thick

DEFECT DESCRIPTION

В	Bedding
F	Fault
С	Cleavage
J	Joint
S	Shear Zone
CS	Clay Seam


PLANARITY/ROUGHNESS

Р	Planar
Un	Undulating
St	Stepped
Sm	Smooth
Ro	Rough
Sk	Slickensided

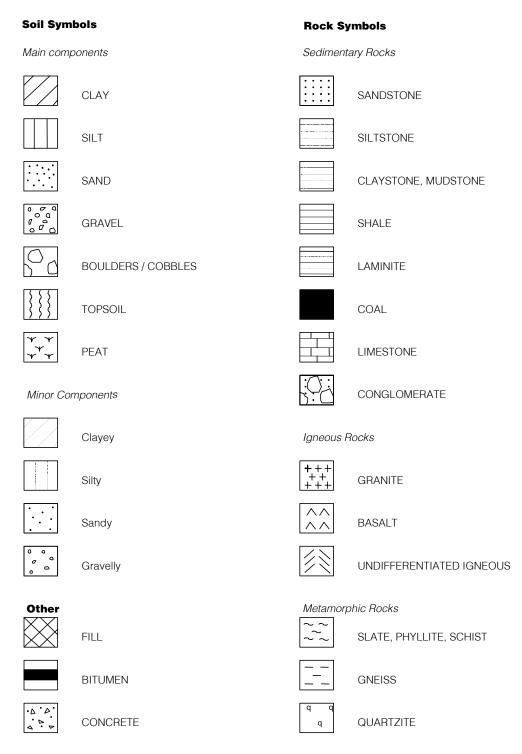
The inclination if defects are measured from the perpendicular to the core axis.

DRILLING METHODS

EE	Existing Excavation/Cutting
EX	Excavator
HA	Hand Auger
HQ	Diamond Core – 63mm
JET	Jetting
NMCL	Diamond Core – 52mm
NQ	Diamond Core – 47mm
PT	Push Tube
RAB	Rotary Air Blast
RD	Rotary Blade
RT	Rotary Tricone Bit
тс	Auger TC-Bit
V	Auger V-Bit
WB	Washbone
DT	Diatube
AS	Auger Screwing
BH	Backhoe
CT	Cable Tool Rig

Water level at date shown

Water inflow


Complete water loss

NFGWO No Free Groundwater Observed The observation of groundwater, whether present or not, was not possible due to drilling water, surface seepage or cave in of the borehole/test pit.

Graphic Symbols for Soils & Rocks

Typical symbols for soils and rocks are as follows. Combinations of these symbols may be used to indicate mixed materials such as clayey sand.

NFGWE No Free Groundwater Encountered: The borehole/test pit was dry soon after excavation; however groundwater could be present in less permeable strata. Inflow may have been observed had the borehole/test pit been left open for a longer period.

These tables are an extract from LANDSLIDE RISK MANAGEMENT CONCEPTS AND GUIDELINES as presented in Australian Geomechanics, Vol. 35, No. 1, 2000 which discusses the matter more fully.

TEST PIT NO.

METD01

Pro Fe Pro	oject	t Locati Numbe	er:	RA M(21	DWA DUNT 45479	STE EVI 9A	ERARD			Date (Recor Log C	Commenced: Completed: ded By: hecked By:	20/7/06 20/7/06 NH MKD
Ξx	cava	tion Me	ethod:	Jo	hn De	eere	315D	Co	face RL: ords:		911 m 4536.694 N 7	′397477.023 GDA <u></u>
1	Test	Pit Info	ormatio	on	5	6	Field Material	Des 8	cription 9	10		11
WATER -	RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	, SOIL/ROCK MATERIAL FIELD DESCRIPTION	ISTURE		ND VETROMETER a)		E AND ADDITIONAL ERVATIONS
	-	0.10				SM CI- CH	Clayey Silty SAND, fine to coarse grained, red brown, low plasticity Sandy Gravelly CLAY, medium to high plasticity, red brown, fine to medium grained gravel (angular), fine to coarse grained sand	,-				
N F G	7 30 - -	0.80 — — 1 — —		В		CI- CH	Sandy Gravelly CLAY, medium plasticity, purple brown, fine to medium grained angular gravel (quartz), fine to coarse grained sand				at 0.8m, with o LL=38% PL=16% LS=10.5% Emerson=6 MDD=1.93 t/m OMC=13.0% moderately to	-
E	- - 729	-									'slow excavatio	n
	_	2									Calcrete grave 2.2m, difficult	els recovered at to excavate
		2.50 —					CALCRETE, light grey to red brown, excavated as fine to coarse grained gravel					
	7 28 -	- 3-					END OF TEST PIT AT 2.70 m					
	-	-										
	- 7 27	-										

TEST PIT NO.

METD02

Pro Te		t: it Locati t Numbe		ra Mo	DWA	STE EVI	of Resources, Energy and Tourism 2 ERARD	RD					
Ξx	cava	ation Me	ethod:	Jo	hn De	ere	315D		face RL: ords:		548 m 5336.843 N 7	397315.986 GDA_	
	Tes	: Pit Info		-	_		Field Material			10			
WATER 1	RL(m)	2 DEPTH(m)	FIELD [©]	4 SAMPLE 4	GRAPHIC LOG	USC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION				STRUCTURE	11 AND ADDITIONAL RVATIONS	
	- - 7 31	0.20				CL- CI/SC CI- CI- CH	Clayey Silty SAND, fine to coarse grained, red brown, low plasticity with some fine gravel, Sandy CLAY/Clayey SAND, fine to coarse grained, low to medium plasticity, red brown with traces of fine gravels Gravelly Sandy CLAY, medium to high plasticity, purple brown, fine to coarse grained sub angular to sub	D				tween root fibres n, no root fibres	
N F G W E	- - 7 30	- 1- - -					rounded sand, fine sub angular to sub rounded gravel,				noted		
	- - - 7 29	- 2- - 2.50					CALCRETE, excavated as fine to coarse grained gravel, light grey to red brown END OF TEST PIT AT 2.60 m				white mottling	red at 2.2m wer area of clay, and some iron sedimentation	
	- - 7 28												

TEST PIT NO.

METDUS

Pro Te		: t Locati Numbe		RA MC	DWA	STE	of Resources, Energy and Tourism 2 ERARD			Date Reco	Commenced: Completed: rded By: Checked By:	20/7/06 20/7/06 NH MKD
Ξx	cava	tion Me	thod:	Jo	hn De	ere	315D		face RL ords:		.307 m 65567.054 N 7	7397628.786 GDA_
	Test	Pit Info					Field Material					44
WATER 1	RL(m)	DEPTH(m)	EELD &	4 3AMPLE 4	GRAPHIC LOG	USC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION		9 RELATIVE DENSITY /CONSISTENC BL S S S L S S S L S S S L S S S L S S	VD D ETROM	STRUCTURE	11 E AND ADDITIONAL ERVATIONS
	- 7 30 -	0.10				SM CL- CI/SC	Clayey Silty SAND, fine to coarse grained, red brown, low plasticity with traces fine gravel, Sandy CLAY/Clayey SAND, fine to coarse grained, low to medium plasticity, red brown with traces of fine angular gravel	D			Root fibres to	0.7m
N F G W E	- - 729 -	0.70 				CH	Gravelly Sandy CLAY, medium to high plasticity, purple brown, fine to coarse sub angular to sub rounded grained sand, fine sub angular to sub rounded gravel			1	slow excavatio	n
	- - 7 28	2-									Trace calcrete	e material at 2m, y hard
	- - 7 27 -				<u>. /. /.</u>		END OF TEST PIT AT 2.40 m					

Ø

TEST PIT ENGINEERING LOG

TEST PIT NO.

Pro Tes		: t Locati Numbo		R/ M(DWA	STE	of Resources, Energy and Tourism 2 ERARD			Date Recor	Commenced: Completed: rded By: Checked By:	20/7/06 20/7/06 NH MKD
Ex	cavat	tion Me	ethod:	Jo	hn De	eere	315D		face RL: -ords:		472 m 55894.298 N 73	397276.214 GDA
	Test	Pit Info		_			Field Material					
WATER 1	RL(m)	2 DEPTH(m)	EELD 5	4 SAMPLE	GRAPHIC LOG	USC SYMBOL 0	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION		9 RELATIVE DENSITY /CONSISTENCY BL S S S S S S S S S S S S S S S S S S S	HAND PENETROMETER 0 (kPa)	STRUCTURE OBSE	11 AND ADDITIONAL RVATIONS
	-	0.10			- / - / - / - / - / - /	SM CL- CI/SC	Clayey Silty SAND, fine to coarse grained, red brown, low plasticity Sandy CLAY/Clayey SAND, fine to coarse grained, low to medium plasticity, red brown with traces of fine angular gravel	Da Da			Roots in top 0.	5m
	7 31 -	0.50				CI- CH	Gravelly Sandy CLAY, medium to high plasticity, purple brown, fine to coarse grained sub angular sand, fine sub angular to sub rounded gravel				Slow excavatio	n
	-	1-										
N F G	-	-										
F G W E	7 30 -	-										
	-	2-										
	- 7 29	-										hard at 2.5m htly calcareous @
	-	- 3-			<u> </u>		END OF TEST PIT AT 2.70 m				2.6m	
	-	-										
	7 28 -	-										
	-	-										

TEST PIT ENGINEERING LOG

TEST PIT NO.

METD05

Pr Te Pr	ojec	it Locati t Numbe	er:	R/ M(21	DWA DUNT 45479	STE EVI 9A	ERARD			Date (Recor Log C	Commenced Completed: rded By: checked By:	1: 20/7/06 20/7/06 NH MKD
Ξx	cava	ation Me	thod:	Jo	hn De	eere	315D		face RL: -ords:		638 m 5829.293 N	I 7396921.637 GDA <u></u>
		t Pit Info		_			Field Material		· ·	10		44
WATER		2 DEPTH(m)	EELD 3	4 SAMPLE	GRAPHIC LOG	0 NSC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	9 RELATIVE DENSITY /CONSISTENCY 84 SSLSS	770		11 RE AND ADDITIONAL SERVATIONS
	- - 7 32 -	0.20				CL- CI/SC CI- CH	Clayey Silty SAND, fine to coarse grained, red brown, low plasticity, with traces of fine gravel Sandy CLAY/Clayey SAND, fine to coarse grained, low to medium plasticity, red brown, with some fine sub angular to sub rounded gravel Gravelly Sandy CLAY, medium to high plasticity, purple brown, fine to coarse grained sub angular to sub rounded sand, fine sub angular to sub rounded gravel	Da			slow excava	ation
N F W E	-	1- - -										
	-	- 2- -										
	7 30	-				, ,					Very hard	reous material in
	-	- 3-					END OF TEST PIT AT 2.70 m				base of test	ριτ
	- - 7 29	-										
	-	-										

TEST PIT NO.

MFTP06

Pro e Pro	oject	t Locati Numb	er:	RA MC 214	DWA DUNT 45479	STE EVE A	ERARD	0		Date (Recor Log C	Commenced: Completed: rded By: Checked By:	20/7/06 20/7/06 NH MKD
=X	cava	ation Me	ethod:	JO	nn De	ere	315D		face RL: ords:		459 m 6247.065 N 7	7397473.784 GDA <u></u>
1	Test	Pit Info	ormation 3	on	5	6	Field Material	Des 8	9	10		11
WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	STURE		D ETROMETER		E AND ADDITIONAL ERVATIONS
N F G W E	- 730 - 729 - -	0.10			· . / . (· / · / · · . / · . · · . / · .		Gravelly Clayey SAND/Sandy CLAY, medium to high	D			excavation. F soils?	root fibres, slow 'ossible collapsable e material at 1.8m y hard around 2m
	-				· / · ·							vated as fine to
	7 28 - - - 7 27 -	- - 3- - -					END OF TEST PIT AT 2.30 m				coarse angula test pit	r gravel at base of

TEST PIT NO.

METP07

Pro Te		: t Locati Numbe		RA MO	DWA	STE	of Resources, Energy and Tourism 2 ERARD			Date Recor	Commenced:20/7/06Completed:20/7/06rded By:NHChecked By:MKD
Ex	cava	tion Me	ethod:	Jo	hn De	ere	315D		face RL: -ords:		.096 m 56366.558 N 7397886.806 GDA_
	Test	Pit Info					Field Material				
WATER 1	RL(m)	DEPTH(m)	FIELD C	4 SAMPLE 4	GRAPHIC LOG	USC SYMBOL 0	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	9 RELATIVE DENSITY /CONSISTENCY BJJJQQ SSLS	HAND PENETROMETER 0 (kPa)	11 STRUCTURE AND ADDITIONAL OBSERVATIONS
	7 29 -	0.10			·/· · ·	SM CL- CI/SC CI- CI-	Clayey Silty SAND, fine to coarse grained sand, red-brown, low plasticity, Sandy CLAY/Clayey SAND, fine to coarse grained, low to medium plasticity, red brown, with some fine sub angular gravel Gravelly Sandy CLAY/Clayey SAND, medium plasticity, fine to coarse grained sand, purple brown, fine sub angular to sub rounded gravel	D			Root fibres LL=35% PL=17%
	-	-		В							PI=18% LS=9.5% CBR (soaked)=7% CBR (unsoaked)=40% Emerson=6 K (remoulded)=3.7E-10 Trace root fibres. Noticeable
N	- 7 28	1-									porosity in some places/lenses. readily disperses in water. possible collapsing soil.
G W E	-	-									
	- 7 27 -	- 2- -									Trace calcrete material at 2.2m
	-				· · /· · / · ·		END OF TEST PIT AT 2.60 m				Calcrete excavated as fine gravel at base of test pit
	- 7 26										
	-	-									
	-	-									

TEST PIT NO.

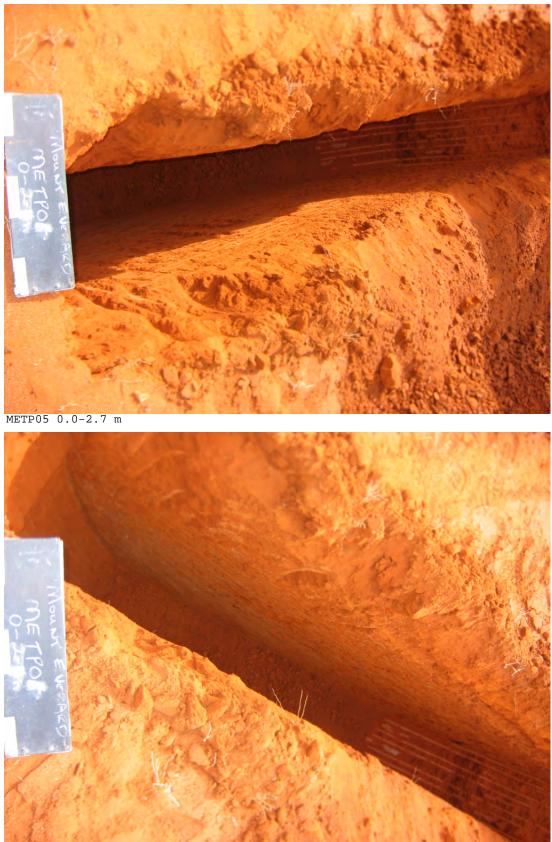
MFTP08

Pro Te	st Pi	ject: RADWASTE 2 it Pit Location: MOUNT EVERARD ject Number: 2145479A avation Method: John Deere 315D est Pit Information F 2 3 4 5 6 7								Date (Recor	Commenced:20/7/06Completed:20/7/06rded By:NHChecked By:MKD
X	cava	tion Me	ethod:	Jo	hn De	ere			face RL: -ords:		.018 m 56371.393 N 7396921.858 GDA_ <u></u>
1	Test			_	E		Field Material I	Des 8	cription 9	10	11
WATER -		DEPTH(m)	FIELD 6	SAMPLE 4	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	STURE	RELATIVE DENSITY /CONSISTENCY 84 SSUCS SSUCS H	HAND PENETROMETER 0 (kPa)	STRUCTURE AND ADDITIONAL OBSERVATIONS
	7 32 -	0.10				SM CL- CI/SC CI- CH	Clayey Silty SAND, fine to coarse grained, red brown, low plasticity Sandy CLAY/Clayey SAND, fine to coarse grained, low plasticity, red brown with some fine gravel Gravelly Sandy CLAY, medium to high plasticity, purple brown, fine to coarse grained sand, fine gravel (sub angular to sub rounded)	D			Some root fibres
N F G V E	- 7 31 -	- 1- -									Slow digging
	- 730 -	2					Calcrete at 2.2m, excavated as fine to coarse grained angular gravels END OF TEST PIT AT 2.30 m	-			Calcrete at 2.2m, excavated as fine to coarse grained gravels Very hard
	- 7 29 -	- - 3-									
	-	-									

TEST PIT NO.

METPNQ

Pro Te		: t Locati Numbe		RA MC	DWA	STE EVE	of Resources, Energy and Tourism 2 ERARD			Date (Recor	Commenced: Completed: ded By: hecked By:	20/7/06 20/7/06 NH MKD
Ξx	cava	tion Me	ethod:	Jo	hn De	ere	315D		face RL -ords:		517 m 5573.989 N 7	396974.013 GDA_
1	Test	Pit Info	ormatio	on	5	6	Field Material	Des 8	cription 9	10		11
WATER -	RL(m)	DEPTH(m)	FIELD 6	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	STURE	RELATIVE DENSITY /CONSISTENC BL S SSL S	D ETROM	STRUCTURE	AND ADDITIONAL RVATIONS
N F G W E	- 732 - -	0.10 0.60 1 				M レージ レーン レーン レーン レーン レーン	Clayey Silty SAND, fine to coarse grained, red brown, low plasticity, Sandy CLAY/Clayey SAND, fine to coarse grained, low to medium plasticity, red brown, with some fine sub angular gravel Gravelly Sandy CLAY, medium to high plasticity, prple brown, fine to coarse grained sand, fine sub angular to sub rounded gravel	D			Trace roots	
GWE	731 - - 730	- 2- -					END OF TEST PIT AT 2.60 m				Becoming very	crete material at to medium
	- - 729 -						END OF TEST MIT AT 2.60 M					


METP01 0.0-0.27 m

METP02 0.00-2.6 m

METP04 0.0-2.7 m

METP05 0.0-2.7 m

METP07 0.0-2.6 m

P	D
	100 YEAR5 ®

BOREHOLE NO.

Prc Bor Prc	ject	le Lo Nur	ocati nber	on: I	RAD MOU 2145	WA INT 479	ST EV	E 2 /ERAR	RD		, Energy and Tourism Hole Angle:		Surf	ace RL:	Date Reco Log	e Comm e Comp orded B Checke 1.474 m	leted: 3y: ed By:	24/7/06 MKD/NH
			iame	•	97 m	-	Jaiu	01 IVII/\-	5/1VI/-		Bearing:			ords:				7397324.975 GDA_94 Z
			ole In	format								ld Materia		<u> </u>	ו			
1 METHOD	SUPPORT	WATER	C	4 WELL DNSTRUC		RECOVERY 5	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD		WEATHERING 0		SF	12 /ERAGE EFECT PACING mm		13 STRUCTURE AND ADDITIONAL OBSERVATIONS
ΗQ				Solid J Solid	n .	100 55 100 100 15 0		- - 731 - - - 730 - - - 729 - - - 729 - - - 729 - - - 729 - - - 729 - - - - 729 - - - - - - - - - - - - - - - - - - -			Gravely Sandy CLAY. Re low plasticity, fine grained quartz, very stiff to hard Gravely Sandy CLAY. Re with white calcite veining, plasticity, cemented with silcrete gravels, hard, dry Core Loss 3.9m - 4.2m Gravelly Sandy CLAY. Ge brown with light grey to w (calcite) fine to coarse gr fine angular quartz gravel moderately cemented	I angular					coars calcre partic Mottle	isional medium to se grained ete/silcrete gravel cles ed red-brown/light white @ 2.8m
						100		- - 7 25 -	5. 0 6- - - 6.7		Interbedded SANDSTON CLAYSTONE. Red-brown grey-green with abundan staining throughout, very strength, extremely weat some angular fragments granitic gneiss.	n to red-brown low hered with of extremely	RS				- Sam	ole MEBH01 6.7m -
						100	18	- - 7 24 -	7		SANDSTONE. Fine to co grained, grey-green with a red-brown staining, very l strength with some mediu layers, highly weathered, granoblastic texture Some minor CLAYSTON	abundant ow to low ım strength					7.0m	tz vein @ 8.0m,
						100	68	- - 723 - - - - 722 -	9								<10n Num Solution Num Solution Num Solution Solu	nm thick erous quartz veins m thick. Some ciated zones with nents of gneiss and z veins between 9.0m -

BOREHOLE NO.

Μ	Ε	В	Н	0	1
				U	

Pro Bo Pro	oject	le L Nu	ocat mbe	r:	RAD MOU 21454	VA NT 479	sti Ev A	E 2 ERARD		, Energy and Tourism			Date Com Date Com Recorded Log Check	pleted: 24/7/06 By: MKD/NH ced By: MKD
			/Mou Diame	nting: eter:	Inves 97 m	-	ato	r MK-5/N	ACK	Hole Angle: 90° Bearing:	Surf Co-o	ace RL: ords:	731.474 ı E 365691	n l.05 N 7397324.975 GDA_94
			ole Ir	nforma		_				Field Materia				
1		3	с	4 WEL		ERY	6	7	GRAPHIC LOG	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING 0	11 INFERRED STRENGTH Is(50) MPa	12 AVERAGE DEFECT SPACING mm	13 STRUCTURE AND ADDITIONAL
METHOD	SUPPORT	WATER			CORE	RECOVI	RQD	RL(m) DEPTH(m)	GRAPH		WEATH		EH 10 1000 1000 3000 3000	OBSERVATIONS
HG							_			SANDSTONE. Medium to coarse grained, red-brown, highly to moderately weathered, very low to low strength, massive Noticeable porosity with some cavities up to 10mm wide.	HW- MW			Visibly coarser with colour change from grey green to red-brown. Some clasts up to 10mm. Solution cavities along clacite veins close to 11.2m
					007	100	66	- 720 - - _ 12			MW- SW			 Maximum particle size 20mm Sample MEBH01 12.1m -
					_			- 719 - - 13	- .					12.4m
						100	83	- 7 18 1 - - _ 14		CONGLOMERATE. Becoming coarser grained with generally medium sized angular gravel fragments including foliated gneiss, quartz, ploymictic, no orientation	HW- MW			 Maximum particle size 50mm
					007	100	80	- 717 - ¹ - - - 716		noted Colour change from red-brown to brown SANDSTONE. Medium to coarse grained, red-brown, highly to moderately weathered, very low to low strength, massive Noticeable porosity with some	HW			 Maximum particle size 20mm (angular to sub angular), random orientation Becoming generally finer
						100	98	- - 16 - 16 - 7 15 - - 17		cavities up to 10mm wide.				grained @ 15.5m occasional fine to medium grained gravel clasts Reddish brown colour Reddish brown colour
						100	100	- - 714 - - _ 18 - 713	- - - - - - - - - -					 Becoming coarser grained with maximum particle size 20mm
					007	100		-13 - - 19 - 712 -						

BOREHOLE NO.

Pro Bo		: le Lo	ocat		RAD	owa Unt	AST F EV			irces	, Energy and Tourism				Date Col Date Col Recorde Log Che	mplete d By:	ed: 24/7/06 MKD/NH
				inting: eter:	Inve 97 n	-	gato	or MK	-5/M/	CK	Hole Angle: Bearing:			ace RL: ords:	731.474 E 3656		N 7397324.975 GDA_94
	_		ole Ir	nform								d Material					
METHOD 1	SUPPORT	WATER 0	с	4 WE CONSTR		CORE ^C RECOVERY ^G	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD I	DESCRIPTION	WEATHERING 01	11 INFERREL STRENGTI Is(50) MPa E0.0.0 E0.0.0 E0.0.0 MPa	I DEFECT SPACING mm		13 STRUCTURE AND ADDITIONAL OBSERVATIONS
HG	2					100	100	- - 711 - - - 710	- - - 21 – - -		SANDSTONE. Medium to grained, red-brown, highly moderately weathered, ve low strength, massive Noticeable porosity with s cavities up to 10mm wide <i>(continued)</i>	y to ery low to some	HW			F Ve B B W	ine to coarse grained with ery fine (silt/clay matrix) ecoming coarser grained rith maximum particle size 0mm
						100		- - - 709 -	- 22 - - - -							01 U 	iner grained with ccasional coarser clasts p to 10mm ample MEBH 22.85m -
						100	100	- 708 - - - - 707	23 - - - - 24 - - -				HW- MW			2 	3.1m
						100		- - - 706 -	- 25 - - - 26 -							re	olour change to mottled ed-brown/brown/dark rey-black
						100	100	- 705 - - - 704	- - - 27 - - -							w w sl	Senerally highly weathered vith occasional moderately reathered bands and of lightly higher strength ome extremely weathered
						100	100	- - 703 - -	- 28 - - - - 29 -				xw			le 	enses
						100	100	- 702 -	-							w	ecoming extremely reathered and very low to ow strength

D	
	100 YEARS ®

BOREHOLE NO.

Bor	ject: eho	: le Lo	ocati nbei		RAD)WA UNT	ST EV			irces	, Energy and Tourism	I				C F)ate Recc	Co orde	mple d By	ence eted: /: d By:	d:	SHEET 21/7/06 24/7/06 MKD/N MKD	;	_
			Mou iame	nting: eter:	Inve 97 n		gato	or MK	(-5/M/	CK	Hole Angle: Bearing:	90° 	Surf Co-			_:			4 m 91.0	5 N	7397	324.975	GDA_	_94
		reho	ole Ir	forma	ation						Fie	eld Materia		scri	ptic	on								
METHOD 1	SUPPORT 2	WATER 0	с	4 WEI ONSTRU		CORE [–] RECOVERY ^G	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD	DESCRIPTION	WEATHERING 0	S	11 IFERF IRENO Is(50 MPa	RED GTH	AVI DE SP	12 ERAGE FECT ACINC mm				13 STRUCTUR ADDITIOI OBSERVAT	NAL	_
- <u>-</u> -IQ		1				01		- - 701 -			Core Loss 30.7m - 31.1n													
						73	41	- 7 00 - -	31.1 - - - - - - - - - - - -		SANDSTONE. Recovere Sandy Gravel/Gravelly Sa very low strength, extrem weathered. Abundant an clasts up to 10mm. Color brown with dark grey/ bla clasts	andy Clay, iely gular quartz ur change to		-		+- - 			 					
						100	06	- 6 99 - - - 6 98	- - 33 - - -				HW XW											
	1	6/10/0				100	100	- - 697 - -	- 34 - - 35 -				HW							red-b	rown/k	g mottled prown. Slig strength	ht	
						06	80	- 6 96 - - - 695	- - 36 - - 364	,	Core Loss 36.4m - 36.55	 m									e angu 10mm	lar quartz d	clasts	
						53	34	- - 694 - -	- 37 - - 374 - - 38 -	\times	SANDSTONE. Recovere Sandy Gravel/Gravelly Sa very low strength, extrem weathered. Abundant an clasts up to 10mm. Coloi brown with dark grey/ bla	andy Clay, nely gular quartz r change to	HW											
						100	74	- 6 93 - - - 6 92	38# - 38# 39 - - - -	\times	Clasts Core Loss 38.2m - 38.8m SANDSTONE. Recovere Sandy Gravel/Gravelly Sa very low strength, extrem weathered. Abundant an clasts up to 10mm. Coloi brown with dark grey/ bla	d as Clayey andy Clay, hely gular quartz r change to	HW											
									39.7	X	Core Loss 39.7m - 40.3n	ı————							 					

BOREHOLE NO.

Pro Bo	ent: oject reho oject	le L			:	RAD	JW/ UNT	AST F E\			urces	, Energy and Tourism		l	Date Com Date Com Recorded Log Check	pleted: 24/7/06 By: MKD/NH red By: MKD
	ll Mo reho				-	Inve 97 n	-	gato	or MK	(-5/M/	ACK	Hole Angle: 90° Bearing:	Сс	urface RL: p-ords:	731.474 r E 365691	n .05 N 7397324.975 GDA_94
1	Bo	reho 3	ole I	nfoi	m 4	ation	5	6	1 7	,	8	Field Materia		escription	12	13
Нор	SUPPORT	WATER		CONS					RL(m)	DEPTH(m)	LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION		INFERRED STRENGTH Is(50) MPa 0.000 F & F	AVERAGE DEFECT SPACING mm	STRUCTURE AND ADDITIONAL OBSERVATIONS
	c -				No	backfill	60	100	- 691 - -	- 40.3 - - - 41 - -	\mathbf{X}	SANDSTONE. Medium to coarse grained, reddish brown, angular clasts up to 20mm, highly weathered, very low to low strength	H	W		 Very consistent medium to coarse grained immature sandstone, angular clasts
							100	82	690 - - - 689	- - 42 - -						up to 20mm in places Occasional clay seam/extremely weathered layer grey, soft
							100	66	- - - 68 88 - -	- 43 - - - - - 44 -						
							86	84	- 6 87 - - - 686	44 <u>4</u> 44 4 - - 45 - - - -		Core Loss 44.2m - 44.4m SANDSTONE. Medium to coarse grained, reddish brown, angular clasts up to 20mm, highly weathered, very low to low strength	H			 Several clay seams, recovered as clayey gravels
							33	0	- - 6 85 - -	45.6 46 46.6 47	\times	Core Loss 45.8m - 46.8m SANDSTONE. Medium to very coarse grained with high fines	x			
							80	80	- 684 - - - - 683 -	- - 47.7 - 48 80 - 4800 -	, , , , , , , , , , , , , , , , , , ,	content, angular grains, extremely to very low strength, extremely weathered Core Loss 47.7m - 48.0m SANDSTONE. Medium to very coarse grained with high fines content, angular grains, extremely to very low strength, extremely weathered QUARTZITE. Coarse grained,	/ 🕅	W		
							100	50	- - 6 82 -	49 - - -	× × × × × ×	mottled light grey to grey green, very low strength, extremely to highly weathered qaurtz, mica, feldspar				

BOREHOLE NO.

Client: Project: Borehole L Project Nu		RA	DW/ UNT	AST F E\			irces	Energy and Tourism			Date Com Date Com Recorded Log Checł	pleteo By:	d: 24/7/06 MKD/NH
Drill Model Borehole [-		gato	or MK-	5/M/	CK	Hole Angle: 90° Bearing:		face RL: ords:	731.474		N 7397324.975 GDA_94 Z
	ole Infor							Field Materia			L 30303	1.05	N 7597524.975 GDA_94 2
1 2 3	_	4	5	6	7		8	9	10		12		13
METHOD SUPPORT WATER	CONS	WELL STRUCTION	CORE C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATH	INFERRED STRENGTH Is(50) MPa E000 HA HA HA HA HA HA HA HA HA HA HA HA HA	1 0000		STRUCTURE AND ADDITIONAL OBSERVATIONS
ΗQ			100	37	- - 681 - - - - - 680 -	- - - 51 - - - - -		QUARTZITE. Coarse grained, mottled light grey to grey green, very low strength, extremely to highly weathered qaurtz, mica, feldspar (continued)	XW HW				
		Bentonite seal 52.0m - 53.0m	06	87	- - - 6 79 - -	- 52 - - - - 53 -	× × × × × × × × × ×	grained with some coarse grained (up to 5-10mm) clasts, grey green, extremely low strength, extremely weathered					
		69.7m	76	100	- 6 78 - - - 6 77	53:2 - - 54 -	×	CLAYSTONE. Grey green with some red-brown mottling, some fine to medium grained sand visible, very low strength, extremely to highly weathered Some coarser grained sandy lenses throughout					
		Slotted pipe section 54.9m - 69.7m	100	100	- - - 6 76 -	- 55 - - - - 56 -						59. stre Bre	lcite veining between 4m - 60.1m. Increase in ength (low to medium) ecciation and infilling pughout
			100	38	- - - - - - - - - - - - - - - - - - -	- - - 57 - - -							
			100	100	- - - 6 73 - -	- 58 - - - - 59 -							
			96	66	- 6 72 -	 59 .4 		Pebbly CLAYSTONE. Abundant sub-rounded clasts, brecciated and infilled, grading back to finer grained Claystone towards 60.1m	_				mple MEBH01 59.55m - 9m

BOREHOLE NO.

MEBH01

		10 YEA	O R5 ©													SHEET 7 OF 7
Bor	ject eho	le Lo	ocation: nber:	Depa RAD MOL 2145	JNT	\ST FE\	Έ2		urces	, Energy and Tourism			Date Corr Date Corr Recorded Log Chec	nplete By:	ed:	21/7/06 24/7/06 MKD/NH MKD
			-	Inve	stig	gato	or Mł	<-5/M/	ACK	Hole Angle: 90°		face RL:	731.474			
Bor	eho	le Di	iameter:	97 m	nm					Bearing:		ords:		1.05	N 73	97324.975 GDA_94 Z
	-		le Informa	ation	_	-				Field Materi	_					10
1	2	3	4		5	6		7	8	9	10	INFERRED	12 AVERAGE			13
METHOD	SUPPORT	WATER	WEL CONSTRU		CORE RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTIO	WEATHERING	STRENGTH Is(50) MPa 0.000000	SPACING mm	0000		STRUCTURE AND ADDITIONAL OBSERVATIONS
HQ							- - 671 - -	60.1 - - - 61 -		CLAYSTONE. Grey green with some red-brown mottling, some fine to medium grained sand visible, very low strength, extremely to highly weathered Some coarser grained sandy lenses throughout	—XW HW					
					100	100	- 6 70 - -	- - 62 –								
					100	100	- 669 - - - - 668	63 — - -		Interbedded SANDSTONE and CLAYSTONE. Generally grey-green with red-brown mottling, fine grained sandstone very thinly bedded						
				-	100	100	- - - 667 - -	- 64 - - - 65 -								
				-	100	100	- 666 - - - 665	- 65.3 - 65.7 - 6 66 66 - -		SANDSTONE. Fine to coarse grained, generally grey green with red-brown clasts, brecciated and infilled, low to medium strength, highly to moderately weathered, very (thinly bedded CLAYSTONE. Grey green with some red-brown mottling, some fine to medium grained sand visible, very low strength, extremely to highly	; <u>h</u>	/		-		
		-			100	100	- - 664 -	- 67 - - - - 68 -		weathered Some coarser grained sandy lenses throughout SANDSTONE. Fine to coarse grained, generally grey green with red-brown clasts, brecciated and infilled, low to medium strength, highly to moderately weathered, very thinly bedded						
					100	100	- 663 - - - 662	- - - 69 – - -								
-				-+	_		ŧ	-		END OF BOREHOLE AT 69.70 m	_					
							F									

Parsons Brinckemoff Australia Pty Ltd. Version 5.1 ENGINEERING CORED BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS. GPJ GEOTECH. GDT 18/6/08

This borehole log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.

PB	
100 YEARS @	

BOREHOLE NO.

MEBH02

Pro Bor		: le Lo Nun			RA MO	DWA	AST FEN			irces	, Energy and Tourism			Date Com Date Com Recorded Log Chec	npleted: By:	25/7/06 26/7/06 MKD/NH MKD
				nting eter:	: Inv 97	-	gato	or MK	-5/M/	ACK	Hole Angle: 90° Bearing:		ace RL: ords:	730.097 E 36584		97692.621 GDA_
	-		le Ir	-	nation		-				Field Materia	_				
1 WETHOD	SUPPORT N	WATER ω	С	W ONSTI	4 ELL RUCTIO	CORE C RECOVERY		T RL(m)	DEPTH(m)	© © CRAPHIC LOG	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION COMMENCE CORING AT 0 m	WEATHERING 0		DEFECT SPACING mm	0	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
IQ				S O 2 O S	olid pipe ection .0m - 8.0m ement eal 0.0m - .0m	16		7 30 - - - 7 29 -	- - - 1-	\times	Core Loss 0.0m - 1.5m					
						100		- - 728 - - -			Clayey SAND/Sandy CLAY. Fine to coarse grained, red-brown, med-high plasticity with some fine angular gravel, dry, very hard/dense				angular qu	tium grained artz gravels mottling @ 3.0m
						100		7 27 - - 7 26 - -	- 3.3 3.6 3.8 4 - -		SAND. Medium to coarse grained, red-brown with some angular quartz gravel, loose Gravelly Sandy CLAY. Medium to high plasticity, red-brown, fine to coarse grained angular sand and gravel Clayey Sandy GRAVEL. Angular fine to coarse grained, red-brown, occasional hard cemented layers,				- effect)	on - marbling
					ackfilled .0m - 0.0m	100		- 725 - - - 724	4.8 5- 5.1 - - - 6-		Core Loss 4.8m - 5.1m Clayey Sandy GRAVEL. Angular fine to coarse grained, red-brown, occasional hard cemented layers, some fines	XW HW			-	
						06	0	- - 723 -	6.3 6.4 - 7- - -		Core Loss 6.3m - 6.45m SANDSTONE. Fine to coarse grained, red-brown to brown, Abundant fine to medium grained angular quartz. Numerous clay seams up to 20mm thick				 Sandstone thinly bedo 	e appears to be led
						100	56	- 722 - - - 721	 99:0		CONGLOMERATE. Coarse grained	HW				quartz veins .1m - 8.4m
								-		РС X	vith sandy matrix, generally grey-brown, abundant angular quartz, very low to low strength, highly weathered, (monomictic?), no orientation noted Core Loss 9.3m - 10.0m				-	

BOREHOLE NO.

Pro Bor		le Lo	ocation nber:	RAL)WA UNT	ST EV			irces	, Energy and Tourism				Date Com Date Com Recorded Log Checl	pleted: By:	25/7/06 26/7/06 MKD/NH MKD
			Mountir iamete	-	-	gato	r MK	-5/M/	ACK	Hole Angle: Bearing:	90° 	Surfa Co-c	ace RL: ords:	730.097 E 365847		97692.621 GDA_9
				rmation						-	eld Materia					
1	2	3		4	5	6	7	,	8	9		10	11 INFERRED	12 AVERAGE		13
B METHOD	SUPPORT	WATER	CON	WELL STRUCTION Bentonite	46 CORE -	0 RQD	B RL(m)	DEPTH(m)		SOIL/ROCK MATERIAL FIELD		ATH		DEFECT SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS
				bridged @ 10.0m. No backfill below	4		7 20 - - - 7 19	- - - 11 -		with sandy matrix, general grey-brown, abundant an very low to low strength, weathered, (monomictic? orientation noted	ally gular quartz, highly				 Sample M 10.9m Some interior 	EBH02 10.8m -
					100	100	- - - 7 18	- - 12- -							conglome	tate and pebbly below 11.0m
					100	100	- - 7 17 - -			Pebbly SANDSTONE. Fi grained, red-brown, low t strength, highly to slightly	o moderate	MW- SW			 Sample M 13.6m 	EBH02 13.4m -
					100	100	- 7 16 - - - 7 15 -	14 - - - 15 -							Colour cha red/brown 14.8m	ange to mottled /grey-green @
					100	100	- - 7 14 - -	- - 16 - - - -							 Colour cha grey-brow 	ange to n @ 15.4m
					100	100	- 7 13 - - - - 7 12	- 17 - - - - 18 -				HW			and low st also incre grained cl gravel size Occasiona weathered	al extremely
					100	86	- - - 7 11 - -	- - 19 <i>-</i> - -							17.3m	

BOREHOLE NO.

Bore Proj	ect: ehol ect	: le L Nu	oca mbe	tion er:	F : N 2	RAD MOL 2145	JNT 5479	ST EV		RD		SHEET 3 OF 4 , Energy and Tourism Date Commenced: 25/7/06 Date Completed: 26/7/06 Recorded By: MKD/NH Log Checked By: MKD Hole Angle: 90° Surface RL: 730.097 m
			Diam		-	97 m	-	Jaic		-5/1417	-on	Bearing: Co-ords: E 365847.594 N 7397692.621 GDA_94
			ole I	Info	rmati	on	- 1		_			Field Material Description
METHOD 1	SUPPORT N	WATER		CON	4 WELL STRUC	TION	CUKE RECOVERY 2	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG ∞	9 10 11 12 13 INFERRED AVERAGE SOIL/ROCK MATERIAL FIELD DESCRIPTION SOIL/ROCK MATERIAL FIELD DESCRIPTION UT T T T T T T T T T T T T T T T T T T
≥ HQ	S	~					100 7	86	∝ 710 - - 709		Ø	Pebbly SANDSTONE. Fine to coarse grained, red-brown, low to moderate strength, highly to slightly weathered (continued) HW IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
							100	73	- - 7 08 - -	- - 22 - - - -		
					Bentoni seal 24 - 24.5m	ite .0m	53	53	- 7 07 - - - 7 06	22 . 23 - - - - - - - - - - - - - - - - - - -	\times	Core Loss 22.8m - 23.5 Image: Fine to coarse SANDSTONE. Fine to coarse HW grained, mottled brown/red-brown, with some grey green, very low strength, extremely weathered (recovered as poorly cemented sands) Image: Fine to coarse
						•	100	0	- - 705 - -	- - 25 - - - 25 6		
									- 704 -	26 -	\times	Core Loss 25.8m - 26.5m
					•	-	46	0	- - 703 -	26.5 - - 27.7 - 27.3 -		SANDSTONE. Fine to coarse XW IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
					Slotted pipe section 28.0m 40.0m		0	0	- 702 -	- 28- -	\ /	
							0	0	- - 701 -	- 29 – - -	X	
									-	-		

BOREHOLE NO.

Client: Projec Boreho Projec	:t: ole Lo	ocation: nber:	Depart RADW MOUN 214547	AST T E\	Έ2		urces	, Energy and Tourism		l	Date Com Date Com Recorded ₋og Checł	pleted: By:	25/7/06 26/7/06 MKD/NH MKD
		Mounting: iameter:	Investi 97 mm		or MK	(-5/M/	ACK	5		ace RL: ords:	730.097 E 365847		397692.621 GDA_9
	_	ole Informa			1 -	_		Field Materia					10
METHOD 7 1 SUPPORT 7		4 WEI CONSTRU			RL(m)	DEPTH(m)	GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING 01	11 INFERRED STRENGTH Is(50) MPa 000-00-00-00-00-00-00-00-00-00-00-00-00			13 STRUCTURE AND ADDITIONAL OBSERVATIONS
IQ	-				700		X	Core Loss 27.3m - 30.3m (continued)					
			100	100	- - - 6 99 - -	- 30.3 - - - 31 – - - - -		SANDSTONE. Fine to coarse grained, mainly brown with some red-brown mottling. Recovered as very stiff to hard clayey Sand with occasional low to moderate strength layers <200mm	XW- HW				
	16/10/0		100	80	- 698 - - - 697	32 - - - - - - - - 33			HW			- Becomin 32.8m	g finer grained @
			100	06	- - 696 - -	- - - 34 - -							
			100	100	- 695 - - -				XW				g extremely d & extremely low
			100	100	6 94 - - - 6 93 - -	36 - - - - 37 - - - - -			HW			strength	@ 35.8m
			100	06	- 692 - - - 691								
			100	100	+ - -	-							

BOREHOLE N	0.
------------	----

HEFT	1	OF	

Pro Bor		le Lo	ocation: nber:	RADW	ASTE 2 T EVEF	2		es, E	inerg	y an	d Tourism		Dat Rec	e Comme e Comple corded By Checked	eted: /:	1: 24/8/06 25/8/06 AT MKD	_
			Mountin iameter	g: Investig : 105 mm	-	MK-5	/MAC	K	Drill Drill		S. Blundell c No:	Surface RL: Co-ords:		730.984 m E 365370.		N 7397527.717 GDA	<u>9</u>
			Bor	ehole Infor	1			1 -				ield Material E				10	
	SUPPORT 5	WATER	V CONS	4 VELL TRUCTION	S Briting	DEPTH(m)	FIELD 9	2 SAMPLE	GRAPHIC LOG ∞	USC SYMBOL @	SOIL/ROCK MATERIAL FIE		MOISTURE 11	12 RELATIVE DENSITY /CONSISTENCY 84 SSLS		13 STRUCTURE AND ITIONAL OBSERVATIONS	
				Solid pipe section 0.0m - 26.0m Cement seal 0.0m - 6.0m Backfilled 6.0m - 24.0	- - - 730 - - - - - - 729 - - - - - - - - - - - - - - - - - - -						SANDSTONE. Fine to with occasional gravel, red-brown, abundant fir variable amounts of fin- generally increasing an 7.0m	coarse grained grey to nes, dry. e to coarse					

BOREHOLE N	0.
------------	----

BOREHOLE E	ENGINEERING LOG

MEBH03

Dell Model/Mounting: Investigator MK-SMACK Dille: S. Blundol Surface RL: 733.984 m Co-ords: 2000 2000 0 0 0 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 100000 1000000 1000000 1000000	Client:Department of Resources, EProject:RADWASTE 2Borehole Location:MOUNT EVERARDProject Number:2145479A									Energ	y ar		Date Commenced:24/8/06Date Completed:25/8/06Recorded By:ATLog Checked By:MKD			
Field Material Description 1 2 3 4 5 6 7 8 9 10 11 12 13 0 10 11 12 13 13 13 10 11 12 13 13 13 13 10 11 12 13 10 11 12 13 10 11 12 13 13 13 13 13 13 13 13 13 13 13 14 <th14< th=""> 14 14 14<</th14<>						-	MK-5	5/MAC	K						5 N 7397527 717 GDA	
1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 1 12 13 13 13 13 0 1 10 11 12 13 13 13 0 11 12 13 13 13 13 0 11 12 13 13 13 13 0 11 12 13 13 14 15 15 11 12 13 111 13 13 111 111 13 13 111 111 111 111 111 11	DUICI						n									
OUTINE REAL CONSTRUCTION Real Rea Rea Real<	1	2	3					6	7	8	9			11 12	13	
red-brown, abundant fines, dry.		SUPPORT	2		LL JCTION	RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SANDSTONE. Fine to	o coarse grained	MOISSIL TONSIZENCA BANCA CONSIZENCA BANCA CONSIZENCA CO	ADDITIONAL OBSERVATIONS	
	RAB		10			- 719 - 718 - 717 - 717 - 716 - 716 - 715 - 716 - 715 - 714 - 714 - 713 - 713 -						with occasional grave red-brown, abundant variable amounts of fi grained gravel with so	l, grey to fines, dry. ne to coarse me clayey layers		0.0m - 10.0m. Remainder of borehole logged from available drilling returns and correlated from cored boreholes MEBH01 & MEBH02 Decrease in drilling rate at approximately 12m - 15m. Slight colour change to mainly red	

Client:	
Project:	

Ę

MEBH03

pb
100 YEARS ®

BOREHOLE ENGINEERING LOG

Client: Department of Resources, E Project: RADWASTE 2 Borehole Location: MOUNT EVERARD Project Number: 2145479A									es, E	Energ	y an	d Tourism	Da Re	te Commente te Complet corded By: g Checked	ed: 25/8/06 AT
Drill Model/Mounting: Investigator MK-5/MACK									K	Drille		S. Blundell Surface RL c No: Co-ords:		730.984 m	65 N 7397527.717 GDA_9
	Borehole Information											Field Material			
1	2	3		4			5	6	7	8	9	10	11		13
METHOD	SUPPORT	WATER	CC	WEI DNSTRU	L JCTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIVE DENSITY /CONSISTENCY BL SS S S S	STRUCTURE AND ADDITIONAL OBSERVATIONS
8V8				24.0 Gra 25.0	tonite seal Dm - 25.0m Vel filter pack Dm - 38.0m tted pipe tion 26.0m - Dm	- - - 709 - - 709 - - 708 - - 708 - - 707 - - 706 - - 706 - - 705 - 705 - 705 - 705 - 705 - 705 - 705 - 705 - 705 - 705 - 705 - 709 - 707 - 707 - 707 - 707 - 709 - 707 - 707 - 707 - 707 - 707 - 709 - 707 - 7 -	21- - - - - - - - - - - - - - - - - - -					SANDSTONE. Fine to coarse grained with occasional gravel, grey to red-brown, abundant fines, dry. variable amounts of fine to coarse grained gravel with some clayey layers encountered. (continued)	D		

BOREHOLE NO.	
--------------	--

SHEFT	4	OF	4

Drill Model/Mouring: Investigator MK-5MACK Differ: S. Blundell Surface RJ. 200.84 m Driller Lio No: Coords: E 36870-66 N 7397527.17 GD/ Deller Lio No: Coords: E 3670-66 N 739757-71 GD/ Deller Lio No: Coords: E 3670-71 GD/ Deller Lio No	Pr Bo	ct: nole	cation: ber:	Depart RADW MOUN 21454	ASTE	2		ces,	Energ	iy ai	nd Tourism	Da Re	te Commene te Complete corded By: g Checked E	d: 25/8/06 AT
1 2 3 4 5 0 7 0 9 10 11 12 13 0 10 11 12 13						MK-5	5/MAC	CK						5 N 7397527.717 GDA
No. No. <th>_</th> <th></th> <th></th> <th></th> <th>rmati</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>10</th>	_				rmati		-							10
Weathered Becoming wet at 33m 700 31- 809 32- 808 33- 808 33- 809 32- 809 32- 809 33- 809 30- 809 30- <t< th=""><th>METHOD</th><th>-</th><th></th><th></th><th>RL(m)</th><th></th><th></th><th></th><th>5 LOG</th><th></th><th>SOIL/ROCK MATERIAL FIELD DESCRIPTION</th><th>MOISTURE</th><th>RELATIVE DENSITY CONSISTENCY HIJJQQ SSLSSH</th><th>STRUCTURE AND</th></t<>	METHOD	-			RL(m)				5 LOG		SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIVE DENSITY CONSISTENCY HIJJQQ SSLSSH	STRUCTURE AND
	RAB	16/1			- - - - - - - - - - - - - - - - - - -						sand becoming damp, loose, extremely weathered Becoming wet at 33m			

BOREHOL	E NO
---------	------

MEBH04

BOREHOLE ENGINEERING LOG

HEFT	1	OF	Δ

	MOUNT EVERARD 2145479A		Date Completed: Recorded By: Log Checked By:	AT	
orill Model/Mounting: Sorehole Diameter:	Investigator MK-5/MACK 105 mm	Driller: S. Blundell Surface R Driller Lic No: Co-ords:		N 7397339.91 GDA_9	
Boreh	ole Information	Field Materia			
1 2 3 4	5 6	7 8 9 10	11 12 RELATIVE	13	
WEIHOD SUPPORT WATER WATER	RL(m) DEPTH FIELD TEST	90 JOB SOIL/ROCK MATERIAL FIELD DESCRIPTIO		STRUCTURE AND DITIONAL OBSERVATIONS	
	d pipe section - 28.0m - 28.0m - 10.0m - 1 - - 1 - 	b CL/C Gravelly Sandy CLAY. Low to medium plasticity, reddish brown to brown, fine to coarse grained sand and gravel, dry Variable amounts of gravel returned generally increasing amounts towards 7.0m Variable amounts of gravel returned generally increasing amounts towards 7.0m SANDSTONE. Fine to coarse grained with occasional gravel, grey to red-brown, abundant fines, dry. Variable amounts of fine to coarse grained gravel with some clayey layers encountered. Variable colour from grey-green to red brown throughout Variable colour from grey-green to red brown throughout	D		

BOREHOL	E NO
---------	------

SHEFT	. 2	OF	4

Prc Boi		le L	ocation:	RADW MOUN	Department of Resources, Energy and Tourism RADWASTE 2 MOUNT EVERARD 2145479A								Date Commence Date Completed: Recorded By: Log Checked By	26/8/06 AT
			/Mounting: Diameter:	Investi 105 mr	igator M m	1K-5	MAC	۲	Drill Drill		S. Blundell c No:	Surface RL: Co-ords:		N 7397339.91 GDA_9
-		-		nole Info						-		Field Material D		
1	2	3			5		6	7	8	9		10	11 12	13
B METHOD	SUPPORT	WATER	WE CONSTR	LL UCTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL F			STRUCTURE AND DITIONAL OBSERVATIONS
RAB					- 720 - 719 - 718 - 718 - 717 - 716 - 716 - 715 - 715 - 715 - 715 - 715 - 714 - 713 -						SANDSTONE. Fine to with occasional grave red-brown, abundant 1 variable amounts of fi grained gravel with so encountered. Variable colour from <u>c</u> brown throughout (con	I, grey to fines, dry. ne to coarse me clayey layers grey-green to red		amples collected from 0m - 10.0m. Remainder borehole logged from valable drilling returns of correlated from ored boreholes MEBH01 MEBH02

BOREHOLE	E NO.
----------	-------

BOREHOLE ENGINEERING LOG

HEFT 3 OF 4

Clien Proje Borel Proje	ect: hole	e Lo	cation: lber:	RADWASTE 2Date Completed:MOUNT EVERARDRecorded By:								d: 26/8/06 AT	
			lounting: ameter:	Investig 105 mn	gator MK- n	5/MACI	K	Drille Drille		S. Blundell Surface RL c No: Co-ords:		731.634 m E 365371.12	3 N 7397339.91 GDA_9
			Boreł	nole Infor	mation					Field Material I	Des	cription	
1	2	3		4	5	6	7	8	9	10	11	12	13
	SUPPORT	WATER		ELL RUCTION	r RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	D MOISTURE		STRUCTURE AND ADDITIONAL OBSERVATIONS
RAB				entonite seal 1.0m - 25.0m ravel filter pack 5.0m - 38.0m otted pipe ection 26.0m - 1.0m	- - 711 - - - 710 - - 709 - - 709 - - 709 - - 709 - 23- 709 - 23- 709 - 24- 707 - 25- 707 - 25- 706 - 26- 707 - 25- 706 - 26- 707 - 25- 706 - 26- 707 - 26- 707 - 27- 706 - 26- 707 - 26- 707 - 27- 706 - 26- 707 - 27- 706 - 26- 707 - 27- 706 - 26- 707 - 27- 706 - 26- 707 - 27- 707 - 27- 707 - 27- 707 - 27- 707 - 27- 707 - 27- 707 - 27- 707 - 27- 707 - 27- 707 - 27- 707 - 27- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 29- 702 - 702 29- 702 702 29- 702 702 702 702 702 702 702 702 702 702					SANDSTONE. Fine to coarse grained with occasional gravel, grey to red-brown, abundant fines, dry. variable amounts of fine to coarse grained gravel with some clayey layers encountered. Variable colour from grey-green to red brown throughout <i>(continued)</i>			

BOREHOLE	E NO
----------	------

|--|

HEFT	· 1	OF	4

Bor	ject eho	le L	ocation: nber:	Depart RADW MOUN 214547	ASTE : T EVEI	2		es, E	Date Commenced Date Completed: Recorded By: Log Checked By:	25/8/06 26/8/06 AT MKD		
			Mounting: iameter:	Investi 105 mr		MK-5	/MAC	<	Drille Drille	S. Blundell Surface RL c No: Co-ords:		N 7397339.91 GDA_94
			Boreh	ole Infor	matio	n				Field Material	Description	
Drill		del/	Mounting: iameter: Boreh 4 CONSTR		n matio 5 - - - - - - - - - - - - - - - - - -	n		Sample		c No: Co-ords:	E 365371.123	N 7397339.91 GDA_9
					696 - - 695 - - 695 - - 694 - 694 - - 693 - - 693 - - 693 - - 693 - - - 693 - - - 693 - - - - 695 - - - - - - - - - - - - - - - - - - -					END OF BOREHOLE AT 38.00 m		

Client:	
Project	

BOREHOL	E NO.
---------	-------

BOREHOLE ENGINEERING LOG

P B	ore	ect: ehol	e L	nts s ocation: nber:	Departi RADWA MOUNT 214547	ASTE EVE	2		es, E	Energ	y ar	nd Tourism	Da Re	te Comme te Comple corded By g Checked	ted: :	27/8/06 27/8/06 AT MKD
				Mounting: iameter:	Investig 105 mn	-	MK-5	MACK	(Drille Drille		S. Blundell Surface RL c No: Co-ords:		726.341 m F 364975		798 GDA_94 Z_5
Г					ole Infor		on			I	01 21	Field Material				
þ	1	2	3	4			5	6	7	8	9	10	11	12		13
	RAB METHOD	SUPPORT	WATER		d pipe section n - 26.0m	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	CT USC SYMBOL		L ²		ST ADDITIO	RUCTURE AND NAL OBSERVATIONS
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08					kfilled 6.0m -	726 - - - - - - - - - - - - - - - - - - -		ould be r				plasticity, reddish brown to brown, fine to coarse grained sand and gravel, dry Variable amounts of gravel returned generally increasing amounts towards 7.0m SANDSTONE. Fine to coarse grained with occasional gravel, grey to red-brown, abundant fines, dry. variable amounts of fine to coarse grained gravel with some clayey layers encountered. Variable colour from grey-green to red brown throughout			28	

100

BOREHOLE NO.

BOREHOLE ENGINEERING LOG

Bo	ject reho	: le Lo	Dcation:	RADWA	ASTE 2 EVERARI		es, E	inerg	y ar	d Tourism		Da Re	te Comme te Comple corded By g Checked	ted:	27/8/06 27/8/06 AT MKD
			Mounting: iameter:	Investig 105 mm	ator MK-5	MACK	ζ.	Drille		S. Blundell c No:	Surface RL Co-ords:		726.341 m E 364975		8798 GDA_94 Z_53
	CIIO													11700	
1	2	3	Boren 4	ole Inforr	5	6	7	8	9	10	ield Material E				13
В МЕТНОD	SUPPORT	WATER	WEI CONSTRU		RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIE					TRUCTURE AND DNAL OBSERVATIONS
RAB										vith occasional gravel, red-brown, abundant fin variable amounts of fine grained gravel with som encountered. Variable colour from gre brown throughout (conti	grey to les, dry. e to coarse le clayey layers ey-green to red			0.0m - of bore availal and co	les collected from 10.0m. Remainder ehole logged from boreholes MEBH01 8H02

This borehole log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.

P
 100 YEARS ®

Parsons Brinckethoff Australia Pty Ltd. Version 5.1 ENGINEERING BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08

BOREHOLE I	NO.
------------	-----

BOREHOLE ENGINEERING LOG

Pi Bi Pi	ore roje	ect: hol ect	e L Nu	ocation: nber: Mounting:	RADWA MOUNT 214547	ASTE 2 F EVER 9A	2 RARI	כ		Energy Drille		nd Tourism S. Blundell Surface RL	Da Re Lo	te Comme te Comple corded By g Checked 726.341 m	ted: 27/8/06 : AT By: MKD
				iameter:	105 mn		WIT \- J		•			ic No: Co-ords:			N 7398798 GDA_94 Z_5
	_				ole Infor							Field Material			
		SUPPORT 2	WATER 8	4 CONSTR		5 Br(m)	DEPTH(m)	6 FIELD TEST	2 SAMPLE	œ GRAPHIC LOG ∞	OUSC SYMBOL	10 SOIL/ROCK MATERIAL FIELD DESCRIPTION SANDSTONE. Fine to coarse grained	D MOISTURE		13 STRUCTURE AND ADDITIONAL OBSERVATIONS
C Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08				24	ntonite seal .0m - 25.0m avel filter pack .0m - 38.0m btted pipe ction 26.0m - .0m	- 706 - - 705 - - 704 - - 704 - - 704 - - 701 - - 701 - - 701 - - 701 - - - 701 - - - 701 - - - 701 - - - - 702 - - - - - - 702 - - - - - - - - - - - - - - - - - - -	21	puld be r	ead	in conj	unct	on with Parsons Brinckerhoff's accompany		standard note	25.

100

BOREHOLE ENGINEERING LOG

MEBH05 SHEET 4 OF 4

	ient						source	s, E	nerg	y ar	nd Tourism		te Comme	
	ojec		ocation:	RADW/ MOUN			-						te Comple corded By	
			mber:	214547									g Checked	
	-		/Mounting			r MK-5		,	Drille	or:	S. Blundell Surface RI		726.341 m	-
)iameter:	105 mn		1 10117-0		•			ic No: Co-ords:			N 7398798 GDA_94 Z_
Г			Bore	hole Infor	mati	on					Field Material			
1	2	3		4		5	6	7	8	9	10	11	12	13
									g	5			RELATIVE DENSITY /CONSISTENCY	
E		~	W CONSTI	ELL RUCTION		(E)		щ	Ц Ц	YMB(SOIL/ROCK MATERIAL FIELD DESCRIPTION	LRE N		STRUCTURE AND ADDITIONAL OBSERVATIONS
METHOD	SUPPORT	WATER			RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL		MOISTURE	VS FB ST KD VST DD VD VD	
α Ν		3			R	30.00		Ś	U	S	SANDSTONE. Recovered as clayey	≥ W	Σοπροχτ	
ддд	5				- 6 96	-					sand with some gravel, becoming damp, loose, extremely weathered,			
		16/10/			-	_					generally red brown colour			
					-						Becoming wet at approximately 33m			
					-	31 –								
					-	-								
					6 95	-								
					Ĺ	-								
			:目:		F	- 32								
					F	52 -								
					6 94	-								
08					-	-								
18/6/						-				ł				
SDT					-	33 -								
CH.O					6 93									
STE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08					-	_								
B					F	-								
S.GP			:目:		Ľ	34 –								
LOG					6 92	-								
LED					-									
MBIN					-	_								
ЦСС					-	35 -								
AST					- 6 91	-								
ADM					-	-								
L) R					-									
WEI			[:目:		-	36 -								
90					-	-								
OLE I			:目:		69 0	-								
REH(Ĺ	-								
3 BO			[]目]]		F	37 -								
RINC			:目:		F	57								
NEE					6 89	-								
ENG					-	-				ł				
5.1						-								
rsion					F	- 38 -					END OF BOREHOLE AT 38.00 m			
d. Ve					6 88									
'ty Lt					F	-								
alia F					F	-								
Austr					[39 -								
'hoff ,					- 687	-								
Jcker					-									
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING BOREHOLE LOG (WELL) RADWA					F	-								
arson					<u> </u>									
ů O				This bo	rehol	e log sh	ould be r	ead	in conj	uncti	on with Parsons Brinckerhoff's accompany	ying s	standard note	es.

100 YEARS

Client:
Project:

METP01 7.7-13.3 m

MEBH01 41.0-46.8 m

MEBH01 52.3-57.9 m

MEBH01 57.9-63.5 m

MEBH01 63.4-68.8 m

MEBH01 68.7-69.7 m

MEBH02 0.0-5.8 m

MEBH02 5.8-11.44 m

MEBH02 17.0-22.6 m

MEBH02 22.6-28.1 m

MEBH02 28.1-33.7 m

MEBH02 33.7-39.6 m

MEBH02 39.6-40.0 m

D
 100 YEARS ®

TEST PIT NO.

HRTP01

2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	formation 3		hn De	R USC SYMBOL 9	315D Field Materia 7 SOIL/ROCK MATERIAL FIELD DESCRIPTION SAND, fine to coarse grained, red brown with some low plasticity fines	Co- al Des 8 8 9 1 1 1 8	9 RELATIVE DENSITY JCONSISTENCY BH SSELSSH	E 44	196 m 14292.467 N 7459419.347 GDA 11 STRUCTURE AND ADDITIONAL OBSERVATIONS
2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	4 SAMPLE		USC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION SAND, fine to coarse grained, red brown with some	MOISTURE	9 RELATIVE DENSITY JCONSISTENCY BH SSELSSH	HAND PENETROMETER G (kPa)	STRUCTURE AND ADDITIONAL OBSERVATIONS
(W)HIJJU		SAMPLE		USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		HAND PENETROMETER ((kPa)	STRUCTURE AND ADDITIONAL OBSERVATIONS
	-	В		SW	SAND, fine to coarse grained, red brown with some low plasticity fines	D			
	_	в		1					Some roots
1.00 -1-	_	в		SC	Clayey SAND, fine to coarse grained, red brown, low plasticity fines with trace fine gravel				Easily excavated LL=20% PL=12% PI=8% LS=3.5% CBR (soaked)=30 CBR (unsoaked)=130% Emerson=5
	-								K (remoulded)=6.2E-10
2	-								
	-								
3	_		<u> /</u>	•	END OF TEST PIT AT 3.00 m				
	-								
	5	- - - - - - - - - - - - - - - - - - -		5 - B 	5 - B - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>B C C C C C C C C C C C C C C C C C C C</td> <td>3 - B </td> <td>B F - - -</td> <td>B</td>	B C C C C C C C C C C C C C C C C C C C	3 - B 	B F - - -	B

TEST PIT NO.

HRTP02

Pro Tes		Locati Numbe		RA HA	partn DWA NRTS 45479	ASTE Ran				Date Reco	Commenced: Completed: rded By: Checked By:	21/7/06 21/7/06 NH MKD
Exc	cavat	tion Me	ethod:	Jo	hn Do	eere	315D		face RL: -ords:		.473 m 14400.186 N 7	7459697.772 GDA_9
1	[est	Pit Info	ormati 3	on 4	5	6	Field Materi	al Des 8	cription 9	10		11
WATER	RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		T T T T T T T T T T T T T T T T T T T	STRUCTUR	E AND ADDITIONAL ERVATIONS
	-	_				SM	Silty SAND, fine to coarse grained, red brown, low plasticity, with some fine angular gravel	М			Trace roots	
	- 6 56 -	0.30				SW	Sand, fine to coarse grained, red brown with low plasticity fines				Some roots	
	_	- 1-										
N F G W E	- 655	1.20				sw	Sand, fine to coarse grained, red brown with an increase in low plasticity fines content (>30%)	D			 Becoming dry 	at 1.2m
L	-	2-									Becoming ver slow excavation	y dense at 1.9m, on
	- 654 -	-										
							END OF TEST PIT AT 3.00 m					
	- 653	-										
	-	_										

TEST PIT NO.

HRTDUS

Pro Tes		: t Locati Numbe		R/ H/	partr DWA ARTS 45479	ASTE Ran				Date (Recor	Commence Completed ded By: thecked By	: 21/7/06 NH
Excavation Method: John Deere 315D									face RL -ords:		805 m 4097.461	N 7460115.964 GDA_94
1	Test	Pit Info	ormat 3	ion 4	5	6	Field Materia	l Des 8	cription 9			11
WATER -	RL(m)	2 DEPTH(m)	FIELD 6	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		D ETROM		11 TURE AND ADDITIONAL DBSERVATIONS
	-	- 0.30				SW SW	SAND, fine to coarse grained, reddish brown, with trace fines	Da				
	- 654 -	- - 1 <i>-</i>										
N F W E	- - 653	1.20				SW	SAND, fine to coarse grained, red brown with increase in low to medium plasticity fines					
	-	2.00-2				SW- SC	Clayey SAND/SAND, fine to coarse grained, medium to high plasticity, red brown					
	- 652	- - 3-										
	-	-					END OF TEST PIT AT 3.00 m					
	- 6 51	-										

TEST PIT NO.

HRTP/

Pro Tes		Locati Numbe		RA HA	partr DWA RTS 45479	ASTE Ran				Date Reco	Commenced: Completed: rded By: Checked By:	21/7/06 21/7/06 NH MKD
Exc	cavat	tion Me	ethod:	Jo	hn D	eere	315D	Surface RL: 654.497 m Co-ords: E 444302.436 N 7460383.04 GDA_9				
1	fest	Pit Info	ormati 3	on	5	6	Field Material	0		10		11
WATER -	RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	BELATIVE DENSITY ACONSISTENC	H VD - HAND HAND PENETROMETER ((kPa)	STRUCTURE OBSEI	AND ADDITIONAL RVATIONS
	-	0.10				SM SW	Clayey Silty SAND, fine to coarse grained, light brown, low plasticity fines SAND, fine to coarse grained, red brown, with some fines	Da				
	-	- - 1-										
w	- 653					SW	SAND, fine to coarse grained, red brown, with an increase in medium to high plasticity fines	D			-Becoming very	hard/dense
E	-	- 2-										
	652	-										
	-						END OF TEST PIT AT 3.00 m					
	- 651 -	-										
	_	-										

D
100 YEARS @

TEST PIT ENGINEERING LOG

TEST PIT NO.

HRTP05

	ect: Pit L	.ocatio umbe		ra Ha	partr DWA RTS 45479	NSTE Ran				Date Reco	Commence Completed: rded By: Checked By:	21/7/06 NH	
Exca	vatio	n Me	thod:	Jol	hn De	eere	315D	Surface R Co-ords:			652.795 m E 444515.243 N 7460540.438 G		
			ormatic	-	_		Field Materia				1		
WATER	RL(m)	DEPTH(m)	EIELD TEST	4 SAMPLE 4	GRAPHIC LOG	USC SYMBOL 0	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	9 RELATIVE DENSITY /CONSISTENC BL S SSL S	VD ETROM		11 URE AND ADDITIONAL BSERVATIONS	
-	-52	_				sw	SAND, fine to coarse grained, red brown, with some fines	D			Some root	s in upper 200mm	
	- 51					SW	SAND, fine to coarse grained, red brown, with increase in fines	<u> </u>			Becoming excavation	very dense, slow	
- - -	2 50	- 2.00 - 2 -				SW	SAND, fine to coarse grained, red brown, with some fines, and traces of fine angular gravel						
-	649						END OF TEST PIT AT 3.00 m						

TEST PIT NO.

LDTDUC

Pro Te Pro	oject	t Locati Numbe	er:	RA HA 21	DWA RTS 45479	nste Ran 9a	IGE				Date (Recor Log C	Commenced Completed: ded By: hecked By:	21/7/06 21/7/06 NH MKD
Ξx	cava	ation Me	thod:	Jo	hn Do	eere	315D	Surface RI Co-ords:			652.535 m E 444931.851 N 7		7460508.529 GDA
1	Test	Pit Info	ormatio	-	F	6	Field Material	Des 8	crip	otion 9	10		11
WATER -	RL(m)	DEPTH(m)	FIELD 6	4 SAMPLE 4	GRAPHIC LOG	0 NSC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	FB VL VD			STRUCTU	11 RE AND ADDITIONAL SERVATIONS
N F G W E	- 652 - -	0.30		В		SM	Silty SAND, fine to coarse grained, reddish brown, low plasticity	D				Increase in f Becoming ve excavation	ines ery hard, slow
	- - 650 -	2		В			Sandy GRAVEL, fine to medium angular gravel, fine to coarse grained sand, brown					2.0m	ragments (gneiss) @
	- - 649 -	3 - - - -											

TEST PIT NO.

HRTP07

Pro Tes		: t Locati Numbe		ra Ha	partn DWA RTS 45479	STE Rai				Date (Recor Log C	Commenced: Completed: rded By: Checked By:	21/7/06 21/7/06 NH MKD	
Exe	cavat	tion Me	ethod:	Jo	hn De	ere	315D		rface RL -ords:		653.190 m E 445223.866 N 7460103.256 GE		
1	Fest	Pit Info	ormati 3	on	5	6	Field Materia	I Des 8	cription	10		11	
WATER -	RL(m)	DEPTH(m)	FIELD 6	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIVE DENSITY /CONSISTENC BL S SSL S	D ETROMETER	STRUCTURE OBSE	AND ADDITIONAL RVATIONS	
					· . / .	SC	Silty Clayey SAND, fine to coarse grained, reddish brown, low plasticity fines	D					
	6 53 -	- 0.30				SW	SAND, fine to coarse grained, red brown, with some fines and traces of fine angular gravel						
	-	_											
N F G	- 6 52	1-											
W E	-	-											
	- 651	2-				GP	Cemented rock fragments and calcrete/silcrete, fine to coarse grained, white, fragments of gneiss and						
	-	_				<	quartzitē. Easily excavated.						
	-	-					END OF TEST PIT AT 2.60 m				Refusal @ 2.6r	n	
	- 650	3-											
	-	-											
	-	-											

TEST PIT NO.

HRTP08

Proj es		Locati Numbe		R/ H/	epartr ADWA ARTS 45479	ASTE Ran				Date Reco	Commenced:21/7/06Completed:21/7/06rded By:NHChecked By:MKD
хс	avati	ion Me	thod:	Jo	ohn Do	eere	315D	Surface RI Co-ords:			.666 m 45004.386 N 7460004.791 GDA_9
_		Pit Info					Field Materia				
WAIEK 1	RL(m)	2 DEPTH(m)	Eleld c	4 SAMPLE	GRAPHIC LOG	0 NSC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE			11 STRUCTURE AND ADDITIONAL OBSERVATIONS
N =	-	_				SW	SAND, fine to coarse grained, red brown, with some fine angular gravel and fines	D			 Surface veneer of silty sand Some roots in top 0.3m
	6 53 - -	0.60				SC	Clayey SAND, fine to coarse grained, medium to high plasticity, red brown				 Becoming very hard, slow excavation
	652	1.60					CALCRETE/SILCRETE, excavated as fine to coarse angular gravel grained gravel with fragments of				
	-	- 2- - -					Angular quartz				──Refusal @ 1.7m
	6 51 -	- 3-									
	- 650	-									
	_	-									

D
100 YEARS @

TEST PIT ENGINEERING LOG

TEST PIT NO.

HRTP09

Pro Tes	Dient: Department of Resources, Energy and Tourism Project: RADWASTE 2 Test Pit Location: HARTS RANGE Project Number: 2145479A									Date Reco	Commenced: Completed: rded By: Checked By:	21/7/06 21/7/06 NH MKD
Exc	cava	tion Me	thod:	Jol	hn De	ere	315D	Surface RL: 656.633 m Co-ords: E 444617.071 N 7459661.497 GDA				
1	Test	Pit Info	ormatio	n			Field Materia					
1		2	3	4	5	6	7	8	9 RELATIVE	10 E 10		11
WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE			STRUCTURI OBS	E AND ADDITIONAL ERVATIONS
NF	- - - - -	- - 1- -				SW	SAND, fine to coarse grained, red brown, with some fines	D			Some rocks in	n upper 300mm
G W E	- - - 654	- 2- - -									 Very hard at excavation 	I.9m, slow
	╞	-										
	-						END OF TEST PIT AT 3.00 m				Fragments of Gneiss)	rock (Granitic
	- 653 -	-										

Tes ⊃roj	ject: t Pit Loca ject Num	ber:	RA HA 21	Department of Resources, Energy and Tourism RADWASTE 2 HARTS RANGE 2145479A									
Exc	avation N	lethod:	Jo	hn De	ere	315D		face -ords					
T	est Pit In	formati	on	5	6	Field Materia	Des		ic 9				
WATER -	RL(m)		SAMPLE	GRAPHIC LOG	USC SYMBOL	, SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	REL JCONSI 84 SA					
N F G W E	- - 656 - 1 - - - 655 - 2 -	-				SAND, fine to coarse grained, red brown, with some fines							
	- 654 - 3 - - 653	-				END OF TEST PIT AT 2.30 m							

RING LOG

1

TEST PIT NO.

This test pit log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.

HRTP10

SHEET	1	OF	
21/7/0	6		

21/7/06

NH

E 443815.74 N 7459719.745 GDA_94 Z_53

11

STRUCTURE AND ADDITIONAL OBSERVATIONS

-Surface veneer of silty sand, roots in top 0.3m

Increse in fines Becoming very hard, slow excavation

Very hard, very slow to excavate

-Refusal @ 2.3m

MKD

Date Commenced:

Date Completed:

Log Checked By:

Recorded By:

656.782 m

HAND PENETROMETER 0 (kPa)

Surface RL:

RELATIVE DENSITY (CONSISTENC)

╔┽┐ᢓ₀ᢓ VS ST VST

HRTP02 0.0-3.0 m

HRTP04 0.0-3.0 m

HRTP06 0.0-2.8 m

HRTP08 0.0-2.3 m

HRTP09 0.0-3.0 m

	ß
_	100 YEARS ®

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

HRBH01

Client: Project: Borehole Location				ion:	RAI	epartment of Resources, Energy and Tourism ADWASTE 2 ARTS RANGE							SHEET 1 OFDate Commenced:13/8/06Date Completed:16/8/06Recorded By:NH			
Project Number:					214	547	9A							Log Checl	ked By:	MKD
				nting eter:	: Inve 97 r	-	gato	or MK-	5/M/	ACK	Hole Angle: 90° Bearing:		rface RL: o-ords:	656.550 E 44427		459866.446 GDA_9
					nation						Field Materia					
1	2	3			4	5	6	7		8	9	_	0 11	12		13
METHOD	SUPPORT	WATER	С	WI ONSTR	ELL RUCTION	CORE C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION		INFERRED STRENGTH Is(50) MPa	SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS
	ິ	Š		s	Solid pipe	о¤ Х	Ř	R	DE	Ü	COMMENCE CORING AT 0 m	>	३ चॅ⋜⊣≥т३	<u>998383⊈</u>	Core san	nple recovered
ΗQ				Ser 0.0 24 Ce ser	setion ¹ . Om - 4.0m ement sal 0.0m - 0m	73 100 60		- - 6556 - - - 6555 - - - 6554 - - 6553 - - 6533 - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - 6553 - - - - 6553 - - - - 6553 - - - - - 6553 - - - - - 6552 - - - - - 6553 - - - - - - - - - - - - -	- 		Core Loss 0.0m - 0.6m Silty SAND. Fine to coarse grained, red brown, low plasticity, loose to medium dense, dry, occasional poorly cemented bands. Core Loss 3.0m - 3.4m Silty SAND. Fine to coarse grained, red brown, low plasticity, loose to medium dense, dry, occasional poorly cemented bands. Some fine to medium angular gravel fragments @ 4.5m grading to Pebbly SANDSTONE. Medium to				Core san 0.0m - 10	
					Sackfilled .0m -	100	100	- - 651 - -	- 5 - - - 6:#		coarse grained, reddish brown, with angular to sub rounded clasts (clasts supported), poorly cemented with some stronger cemented bands throughout, occasionally larger than 50m angular fragments. Bedding not visible.	_			- Recovery	y of some angular agments indicating
					9.0m	0	0	- 650 - - -	- - - 7- - 7.5	\times						nannel sequence of
						100	80	649 - - - 648 - - -	8 8 - - 9		Pebbly SANDSTONE. Fine to coarse grained, reddish brown, composition variable throughout with interlayered coarser and finer sands, clasts are angular to sub-rounded, supported, generally extremely to highly weathered, extremely low to very low strength.				coarse gi between	d as medium to rained sand 8.0m - 8.3m, t mica and quartz.
						100	100	- 647 -	-							

D	D
	100 YEAR5 ®

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

HRBH01

roj ore		e L	ocati nbei	n: R	RADWASTE 2					Energy and Tourism		SHEET 2OF 10Date Commenced:13/8/06Date Completed:16/8/06Recorded By:NHLog Checked By:MKD			
			Mou	-	ivest 7 mr	-	tor N	/K-5/M	ACK	Hole Angle: 90° Bearing:		face RL: ords:	656.550 r E 444275	m 5.823 N 7459866.446 GDA	94
				formatio					1	Field Materia					٦.
1	2	3		4	5	6	;	7	8	9	10	11	12	13	
MEIHOU	SUPPORT	WATER	с	WELL ONSTRUCT	CORE NO.	RECOVERY	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING		AVERAGE DEFECT SPACING mm 0000000000000000000000000000000000	STRUCTURE AND ADDITIONAL OBSERVATIONS	
Q							-			Pebbly SANDSTONE. Fine to coarse grained, reddish brown, composition	XW HW	/- 🗱			
					_		- 646	5		variable throughout with interlayered coarser and finer sands, clasts are angular to sub-rounded, supported,					
			REPERSION		100	00	- - - 645	11- 5		generally extremely to highly weathered, extremely low to very low strength. (continued)				 Occasional pebbly fragments recovered throughout. 	
							-	122	#**** 	Core Loss 12.0m - 13.55m				 Recovered material sand and pebbles fragments in 	
					œ		- 644 - -	13-						core catcher.	
					_		- 643) 13 13		Conglomerate, fine to coarse	НМ			 Generally highly weathered with some extremely 	
				95	0 P		14 -	-	grained, grey, angular to sub-rounded clasts, matrix supported. @ 13.65m grading to Pebbly SANDSTONE. As above with	///////////////////////////////////////			weathered bands, easily broken by hand throughout.		
				100	007	- 642 - - -	15-		some grey banding, no bedding or orientation visible. Increase in pebbly fragments at 15.5m with some finer grained interlayered (quartzite pebbles)						
					100	8 6		16-						 Abundant mica and quartz throughout. 	
					100	001	-	17-							
					-		+	18ª	<u> ::::</u>	Core Loss 18.0m - 18.8m	-				
				Bentoniti seal 19.0	0m	co G	- 638 3 - - -	3 18 19 -		Several large fragments of gneiss showing augen foliation features, mainly recovered as cemented sand.					
				- 20.0m			- 637 -	,		,					

D	D
	100 YEAR5 ®

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

HRBH01

Bor	ject	le L		atior ber:	RA I: HA	DW	AST 6 RA			A, Energy and Tourism Date Commenced: 13/8/06 Date Completed: 16/8/06 Recorded By: NH Log Checked By: MKD							
				ounti mete	-	esti mm	-	or MK	(-5/M/	ACK	Hole Angle: 90° Surface RL: 656.550 m Bearing: Co-ords: E 444275.823 N 7459866.446 GDA_94						
					rmation						Field Material Description						
1	2	3			4	5	6	7	7	8	9 10 11 12 13						
B METHOD	SUPPORT	WATER		CON	WELL STRUCTIO	100 CORE Z	30 RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION						
					filter pack 20.0m - 36.0m	-		- - 6 36	20 .2 -		SANDSTONE. Very fine grained XW- + H + H + H + H + H + H + H + H + H + H						
											100	100	-	- - 21 -		with the blown and brawn sections iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	
							100	100	6 35 - - -	- - 22 - -							
					•			634 - -	22.5 23- 23-	\times	Core Loss 22.5m - 23.2m						
								0	- 633 -	- 23.7 - - 2 4 44		SANDSTONE. Very fine grained XW- matrix with some medium to coarse HW grained sand (quartzite). Green grey IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII					
		19/10/0								Slotted pipe section 24.0m 36.0m	56	0	- - 6 32	2-4 /0 - 24.6	\times	Verathered, very low strength.	
										- - - 6 31	- 25 - -		matrix with some medium to coarse grained sand (quartzite). Green grey with red brown and orange brown colour bands, red brown sections generally harder. Extremely weathered, very low strength.				
									100	100	-	- - 26 -		brown/tan to light grey similar composition. Becoming mottled grey-green/orange brown. Slight increase in strength. 25.6 m. Easily broken by			
	1		19/10/0	9/10/0	06							100	100	6 30 - -	- - 27 –		 IIIII IIII IIIII IIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIIII IIIII IIIII IIIII IIIIIII IIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
											- 629	-		26.5m-26.8m			
								100	100	-	- 28 – -						
							100	100	628 - - - 627	- 29 - -							
								_	_								

BOREHOLE NO.

Pro Boi		le L	ocation: mber:	RAI	ow/ Rts	AST RA		Resol	irces	, Energy and Tourism			C F	Date Commenced:13/8/06Date Completed:16/8/06Recorded By:NHLog Checked By:MKD				
			Mounting: Diameter:	Inve 97 r	-	gato	or MK	(-5/M/	ACK	Hole Angle: 90° Bearing:			ace RL: ords:	656.550 E 44427		459866.446 GDA_94		
-			ole Inform							Field Mater								
1	2	3		4	5	6	7	7	8	9		10	11 INFERRED	12 AVERAGE DEFECT		13		
METHOD	SUPPORT	WATER	WE CONSTF	ELL RUCTION	CORE C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTIC	N L	WEATHERING		mm		STRUCTURE AND ADDITIONAL OBSERVATIONS		
HQ					100	100	- - 626 - -)	SANDSTONE. Very fine grained matrix with some medium to coarse grained sand (quartzite). Green grey with red brown and orange brown colour bands, red brown sections generally harder. Extremely weathered, very low strength. (continued)	X\ H	W- IW				al black veining.		
					100	100	6 25 - - - 6 24 -	- 32 - - - -										
					100	100	- - 623 - - -	33 - - - - - 34 - - -										
					100	100	622 - - - 621 -	- 35 - - - 36 -						1933	 Slight inc 	rease in strength.		
					100	100	- 620 - - -	30 - - - - 37 - -										
					100	100	6 19 - - - 6 18 -	- 38 – - - -							─ Sample F 37.9m-38			
					100	86	- - 617 -	39 - - -										

D	
	100 YEAR5 ®

BOREHOLE NO.

Prc Boi	Department of Resource Project: RADWASTE 2 Borehole Location: HARTS RANGE Project Number: 2145479A								irces	, Energy and Tourism	[Date Com Date Com Recorded Log Check	pleted: By:	13/8/06 16/8/06 NH MKD		
			Mounting: iameter:	Inve 97 n		gato	or MK	-5/M/	CK	Hole Angle: 90° Bearing:		Surface Co-ords:		656.550 i E 444275		459866.446 GDA_9
	-		le Informa				1			Field Mate	rial			1		
1	2	3	4		5	6	7		8	9		10 INF	11 ERRED	12 AVERAGE		13
В МЕТНОВ	SUPPORT	WATER	WEI CONSTRI	LL JCTION	CORE T RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPT		ATHEF 0.03	$\mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} \mathbb{R} $	DEFECT SPACING mm	Extremel	STRUCTURE AND ADDITIONAL OBSERVATIONS
								-		matrix with some medium to coars grained sand (quartzite). Green green	e	xw-			slightly cl	Recovered as ayey sand.
				-			6 16 - -	- - 41 –		with red brown and orange brown colour bands, red brown sections generally harder. Extremely weathered, very low strength. (continued)	<i>'</i>	HW			Extremely siltstone 40.1m. R	y weathered between 39.9m to ecovered as ayey sand.
					100	100	- - 6 15	-	· · · · · · · · · · · · · · · · · · ·							
				-			-	- - 42-	•••••						- Sample F	
					0	c	- - 6 14	-							42.1m-42	
					100	100	-	- 43-	· · · · · · · · · · · · · · · · · · ·							g finer grained @
				-			- 613 -	-							but increa	till SANDSTONE ase in clay matrix ction in overall e.
					100	100	-	44 – -	· · · · · · · · · · · · · · · · · · ·							al siltstone band ut with similar riation.
							6 12 -	-	· · · · · · · · · · · · · · · · · · ·							
				-			-	45 - -	• • • • • •							
					100	100	6 11 - -	- - 46-								
				-			- - 6 10	-	· · · · · · · · · · · · · · · · · · ·						- Increase	in black
						~	-	- 47 –								atches, very fine ull luster, very soft
					100	100	- 609	-								
				-			[- -	- 48-							- Sample H 48.0m-48	IRBH01 3.35m
					100	100	- 6 08 -	-								
					~ _	-	-	49 – 49.2	; ;	SILTSTONE. Mottled orange brow				┥┾╘┤ #╣┥		
				-			6 07 -	-	· ·	grey, extremely to highly weathered very low to low strength.						v very fine grained, e grained sand

D	
	100 YEAR5 ®

BOREHOLE NO.

Pro Bo		ole L	ocation: mber:	RAD	ow/ Rts	AST RA		Resou	irces	Energy and Tourism			Date Commenced:13/8/06Date Completed:16/8/06Recorded By:NHLog Checked By:MKD				
			Mounting: Diameter:	lnve 97 n		gato	or MK	(-5/M/	ACK	Hole Angle: 90° Bearing:		face RL: ords:	656.550 n E 444275		7459866.446 GDA_94 2		
	Во	rehe	ole Inform	ation						Field Materia	al De	scription					
1	2	3	4		5	6	7	,	8	9	10	11	12		13		
METHOD	SUPPORT	WATER	WE CONSTR	LL UCTION	CORE ^C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	Z WEATHERING	INFERRED STRENGTH Is(50) MPa 00000000000000000000000000000000000	AVERAGE DEFECT SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS		
HQ					100	100	- - 6 06 -	^{50:‡} - - 51 -		SANDSTONE. Very fine grained matrix with some medium to coarse grained sand (quartzite). Green grey with red brown and orange brown colour bands, red brown sections generally harder. Extremely weathered, very low strength.	-HW			- Sample 50.5m-	∍ HRBH01 50.75		
					86	86	- 6 05 - -	- - - 52 -						51.7m- Band c	e HRBH01 52.15m f black (organic) al @ 51.8m.		
					100	100	- 604 - - - 603 -	52+ - 53 - - - -		SILTSTONE/CLAYSTONE. Mottled grey/green to red brown, highly to extremely weathered, very low to low strength (no bedding visible), deep cracking on drying.	_				of black (organic) al @ 52.0m.		
					100	100	- - 602 - -	54 		Interbedded SILTSTONE/SANDSTONE, similar colouration, abundant quarts in places within sandstone.	_						
					100	100	- 601 - - - 600 -	554 - 56 - - - 57 -		SANDSTONE. Fine to coarse grained, mottled red brown-grey, low to very low strength, extremely to highly weathered, abundant clay/fragments gravelly material.							
							- 599 - - - 598 -	57:4 - - 58 - - - -		SANDSTONE. Fine to medium grained, mottled grey-orange brown with occasionally black particles (organic?), very low to low strength, extremely weathered.				58.2m- Abudai veining	e HRBH01 -58.4m nt black (orgainic) ı and patches ın 58.3m and 58.5m.		
					100	100	- - 5 97 -	59 - - -									

D	
	100 YEAR5 ®

BOREHOLE NO.

Prc Bor	Client:Department of ResourcProject:RADWASTE 2Borehole Location:HARTS RANGEProject Number:2145479A								urces	, Energy and Tourism	Date Commenced:13/8/06Date Completed:16/8/06Recorded By:NHLog Checked By:MKD						
	rill Model/Mounting: Investigator MK-5/M orehole Diameter: 97 mm							(-5/M/	ACK	K Hole Angle: 90° Surface R Bearing: Co-ords:				656.550 m E 444275.823 N 7459866.446 GDA			
	Bo	reho	le Inform	ation						Fi	eld Materia	l De	scription	1			
1	2	3	4		5	6		7	8	9		10	11 INFERRE	12 AVERAGE		13	
METHOD	SUPPORT	WATER	WE CONSTR	LL UCTION	CORE RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD	DESCRIPTION	WEATHERING	NFERRET STRENGT Is(50) MPa ©⊙⊙⊂€ UJJJ∑I	H DEFECT SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS	
HQ					100	100	- 596 - -	- - - 61 - -		SANDSTONE. Fine to m grained, mottled grey-ora with occasionally black p (organic?), very low to lo extremely weathered. (cc	ange brown barticles w strength,	XW HW				It black organic between 60.3m and	
					100	100	5 95 - - 594 -	- 62 - - - - 63 -									
					94	65	- 593 - - -		X	Core Loss 63.43m - 63.5 SANDSTONE. Fine to m grained, mottled grey-ore with occasionally black p (organic?), very low to lo extremely weathered.	edium ange brown articles	XW HW				ganic patches 63.9m and 64.2m.	
					100	100	5 92 - - 591 -	- 655		SANDSTONE. Medium t grained, mottled grey-ora some angular quartzite g Reduction in fines	ange-brown				-		
					100	100	- 590 - -	66 ⁶⁴⁴ - - - 67 - - -		SANDSTONE. Fine to m grained, mostly grey-orau increase in fines again.					-		
					66	93	5 89 - - 588 -	- 67.5 68 ^{7.4} - - -		Core Loss 67.9m - 67.95 SANDSTONE. Fine to m grained, mostly grey, red fines.	iedium						
					100	100	- - 587 -	69 - - - - -		ad in conjunction with Pars							

P	ß
	100 YEARS ®

BOREHOLE NO.

Client: Department of F Project: RADWASTE 2 Borehole Location: HARTS RANGE Project Number: 2145479A							E 2	Resol	irces,	Energy and Tourism	C F	Date Commenced:13/8/06Date Completed:16/8/06Recorded By:NHLog Checked By:MKD				
			Mounting: iameter:	Inve 97 n	-	gato	r MK	-5/M/	ACK	5		ace RL: ords:	656.550 E 44427	m 5.823 N 7459866.446 GDA_94		
			le Inform							Field Material						
1	2	3	4	l I	5	6	7		8	9	10	11 INFERRED	12 AVERAGE	13		
METHOD	SUPPORT	WATER	WE CONSTR	LL UCTION	CORE RECOVERY	RQD	RL(m)	DEPTH(m)	CRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	STRENGTH Is(50) MPa	DEFECT SPACING mm	STRUCTURE AND ADDITIONAL OBSERVATIONS		
ΗQ	2						-	1 1			XW- HW					
							5 86 - -	- - 71-								
					100	100	- - 585 -	71 2		SILTSTONE. Very fine grained, grey with occasional dark brown patches, very low strength, extremely weathered						
					100	100	- - 5 84 -	72-								
							- - 5 83 -	73 - - - -						 Sample HRBH01 73.0m-73.25m 		
					100	100	- - 582 -	74 - -								
					100	100	- - 581 - - -	75 50 - - 76 - - -		Interbedded						
					100	100	5 80 - - - 5 79 -	- 77 - - - - 78 -								
					80	80	- - 578 - -	78 ^{78.1} - - 78.4 - - 79 -		Core Loss 78.15m - 78.45m						
							5 77 -	79.5 - -					+++++++++++++++++++++++++++++++++++++++	 Sample HRBH01 79.6m-79.8m 		

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

HRBH01

Client: Department of Resources Project: RADWASTE 2 Borehole Location: HARTS RANGE Project Number: 2145479A								Resou	irces	, Energy and Tourism			Date Commence Date Completed Recorded By: Log Checked B	d: 16/8/06 NH
		Model/Mounting: Investigator MK-5/MACK hole Diameter: 97 mm								Hole Angle: 90° Bearing:		ace RL: ords:	656.550 m E 444275.823	N 7459866.446 GDA_94 Z
			ole Informa	ation							al Descriptior			
1 00	0RT 5	3	4 WEL CONSTRU	L JCTION	CORE ² RECOVERY ²	6	7		GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING 0	11 INFERRED STRENGTH Is(50) MPa	12 AVERAGE DEFECT SPACING mm	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
METHOD	SUPPORT	WATER			RECC	RQD	RL(m)	DEPTH(m)	GRAF		WEAT	×±≥−∠ TZTZTZ	0000	
HQ		-			100	100	- - 5 76 -) 	SANDSTONE. Fine to medium grained, grey to brown, very low strength, extremely to highly weathered (continued)	XW			ick organic traces.
					100	100	- - 5 75 - -	81 *** - - - 82- - -		SANDSTONE. Fine to medium grained, grey, very low strength, extremely to highly weathered				
					100	100	5 74 - - - 5 73 -	82 0 - 83 330 - - - -		SANDSTONE. Medium grained, grey with brown patches, very low strength, extremely to highly weathered, Interbedded SILTSTONE/SANDSTONE, mainly brown with some grey streaks, fine to medium grained sandstone, very low to low strength, extremely to highly weathered	/			
					100	100	- - 5 72 - - -	84 - - 85 -						
					100	100	- - - 570 - 570	- - 86 - - - - - - - - - - -						
					100	100	- - 569 - -	87 - - - - 88 - -						ght increase in strength.
					100	100	- 568 - -	- - 89 –						
					100	100	- 567 -	-						

Parsons Brinckemoff Australia Pty Ltd. Version 5.1 ENGINEERING CORED BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS. GPJ GEOTECH. GDT 18/6/08

This borehole log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.

BOREHOLE NO.

			75 @													SHEET 10 OF 10		
Department of Resources Project: RADWASTE 2 Borehole Location: HARTS RANGE Project Number: 2145479A							E 2	esou	urces	Energy and Tourism				Date Commenced:13/8/06Date Completed:16/8/06Recorded By:NHLog Checked By:MKD				
-														-				
			Nounting: ameter:	Inve 97 m		jato	or MK	-5/M/	ACK	Hole Angle: 90° Surface RL:				656.550 m E 444275.823 N 7459866.446 GDA				
										Bearing: Co-ords: Field Material Descriptio					442/3	0.023 N 7459000.440 GDA_		
1	2		le Informa		5	6	7		8	Pleid Material	10	<u> </u>	11		12	13		
METHOD	SUPPORT	WATER	WEI CONSTRU		CURE RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	OIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	STF I	ERRED ENGTH S(50) MPa	DI	ERAGE EFECT ACING mm	STRUCTURE AND ADDITIONAL OBSERVATIONS		
Q	0,	_					-				XW-					Slight change in overall		
					8	0	Ļ	- 90.3 90 .4	 X	Core Loss 90.3m - 90.4m	HW XW-					structure of rock. increase in core loss due to		
				_	100	100	566 - -	- 91 - 91 -		Interbedded SILTSTONE/SANDSTONE, mainly brown with some grey streaks, fine to medium grained sandstone, very low to low strength extremely to highly weathered	HW XW- HW XW- HW XW- HW					weathered bands. May indicate second water level (aquifer).		
				_	100	100	- 565 - - 564	- - - 92 – - - -			XW HW XW- HW					weathered band. Recovered as loose sand on core loss.		
				-			- - 563	- 93:- 93:-	\mathbf{X}	Core Loss 93.0m - 93.4m	XW- HW							
					73	73	-	- 94 – -		SILTSTONE/SANDSTONE, mainly brown with some grey streaks, fine to medium grained sandstone, very low to low strength extremely to highly weathered	HVV							
					80	30	562 - -	94.8 - - 9 5 9 5.0 -		Extremely weathered SANDSTONE. Recovered as very loose fine to coarse grained sand between 94.5m to 95m SILTSTONE. Generally very fine	-							
				-	100	100	- 561 -	95.3 - - 96 -		grained with some medium grained sand fragments, mottled grey to red brown, very low to low strength, high to extremely weathered.								
				_	7		- - 560		\searrow	SANDSTONE. Very loose, fine to coarse grained. Abundant fines, similar colouration throughout. Core Loss 96.5m - 96.9m		·						
					100	100	-	96.9 97 - -		SANDSTONE. Very loose fine to coarse grained. Abundant fines, similar colouration throughout.	XW- HW	- -						
					100	100	559 - - - 558	- - 98 - -										
					10	0	- - - 557	- 98.7 - 99 – - - -	\times	Core Loss 98.7m - 99.9m. Core slipped from catcher several times only 100mm recovered after several attemps.	-							
																Hole terminated @ 100.0m		

D	D
	100 YEARS

BOREHOLE NO.

Pro Bor	Project:RADWASTE 2Jorehole Location:HARTS RANGEProject Number:2145479A							lesou						C F	Date Commenced:17/8/06Date Completed:Recorded By:ATLog Checked By:MKD				AT
	eho	le Dia	ounting meter:	97 r		-	or MK	-5/M/	ACK	Hole Angle: 90° Bearing:	Со	-01	ice RL rds:				523 485		7459845.723 GDA_
			Inform		-					Field Materia		es 0		on					10
METHOD 1	SUPPORT N	WATER	WI CONSTR	4 ELL RUCTION	CORE ^C RECOVERY ^G	RQD	Tr(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	UNIO		11 INFERF STRENC Is(50 MPa 0000000000000000000000000000000000)	5	VEF DEF	2 RAGE ECT CING m	0000	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
			SI O 2 C SI	oolid pipe ection .0m - 2.0m 2ement eal 0.1m - .0m	80	80	- 654 - - -	0.# - - 1- -	X	Core Loss 0.0m - 0.2m Silty SAND. Fine to coarse grained, loose, red brown, poorly cemented.								Range grained	from coarse to fine I.
					100	100	_ 6 53 - - - 652 -	1.6 - 2- - - - 3-		Silty SAND. Fine to coarse grained, very loose, red brown, very poorly cemented.	_						+ + 	Some I fragme	arge gravel nts 5-10mm in size.
					53	53	 651 - - -	- 3.6 - 4 4. <u>1</u>	\times	Core Loss 3.45m - 4.15m	_					 		_	
					100	100	_650 - - - 649 -	- - 5- - - - -											
		NONONONONONO	4 1246	Backfilled .0m - 6.0m	0	0	- 648 - - -	- - - 7 - 7.3	\times	Core Loss 6.0m - 7.3m								- Rock fr	agments 10-50mm
					100	100	647 - - 646 -	7.6 - 8 - - - 9		fragments. SANDSTONE. Fine to medium grained with some coarse grains, mottled light grey/reddish brown, very low strength with occasional low to medium strength bands, extremely to highly weathered. Abundant fines throughout	H\ ′							_	
					100	100	- 645 -	-											

D	
	100 YEAR5 ®

BOREHOLE NO.

sore	ect: eho	le L	ocat mbe		RAD	ow/ Rts	AST RA		Resou	irces	, Energy and Tourism			C F	Date Com Date Com Recorded .og Check	pleted By:	: AT	
				Inting: eter:	Inve 97 n		gato	or MK	-5/M/	ACK	Hole Angle: Bearing:			ace RL: ords:	654.523 I		N 7459845.723 GE	<u>م</u>
				nforma							-	eld Materia			L 44403(.020	11 7 4550 45.7 25 02	<u>~_</u> 3-
1	2	3		4		5	6	7	,	8	9		10	11	12		13	
METHOD	SUPPORT	WATER	c	WEI CONSTRU	LL UCTION	CORE ^C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD I	DESCRIPTION	WEATHERING	INFERRED STRENGTH Is(50) MPa E0.0 C E 0 C			STRUCTURE ANI ADDITIONAL OBSERVATIONS	
		_				01	-	-			SANDSTONE. Fine to me grained with some coarse		XW- HW					
								-	-		mottled light grey/reddish low strength with occasio	brown, very						
					ł			6 44 -	-		medium strength bands, e highly weathered.	extremely to						
								-	- 11 –									
								-			Abundant fines throughou (continued)	It						
						100	100	-	-									
								6 43	-									
								-	-									
					-			Ļ	12-									
								-	-									
								6 42	-									
						100	100	Ľ	-									
						ì		[13-									
								F	-									
								641	-									
								-	-									
								-	14 -									
						100	100	[-									
						-		6 40	-									
								-										
					-			-	15-						1 1 1 1 1831			
								Ľ	-								our change to pale	
								6 39	-							oran grey	ge brown/tan and light	
						100	100	F	-									
						-	-	F	- 16-									
				sea	ntonite al 16.0m 7.0m			╞	-									
								-	-									
								6 38 -	-									
								\vdash	- 17 -									
				Gra filte	er pack	100	100	-	- //									
				34.	0m - 0m	10		-	-									
								6 37	-									
								Ĺ	-									
									18-							Qua	rtz fragments 0.1-1mm interbedded within	
								\vdash	-								Istone.	
								6 36	-									
						86	86	F	-									
								Ľ	19 <i>ء</i> ת	∇	Core Loss 19.02m - 19.24	4m — — —		╞┤╇╃┥┿┝	┥┿┝┥╇┩╴	-		
								ŀ	19.2	$\left \right\rangle$			xw		┥┶╵┽┢┢╴	Blac	k organic layering at , intermitent.	
					-			6 35	-				HW				,	
								╞	-									
								F		::::								

D	D
	100 YEARS

BOREHOLE NO.

I Model/Mour rehole Diame Borehole In 2 3 L L NO da NS CC	eter: 97 n	nm	ator	MK-5/M/	ACK	0		face RL:	654.523 m		
		5				Douring.	C0-0	ords:	E 444853.	628 N 7	459845.723 GDA_94
±	4	5				Field Materia					
	WELL ONSTRUCTION	DVERY	RQD 9	KL(m) DEPTH(m)	GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING 01	INFERRED STRENGTH Is(50) MPa	12 AVERAGE DEFECT SPACING mm		13 STRUCTURE AND ADDITIONAL OBSERVATIONS
	Slotted screen section 22.0 - 30.0m	100 100 100 100 100 100 100 100 100 100	- 100 100 100 100 100 100 100 100 100 10			SANDSTONE. Fine to medium grained with some coarse grains, mottled light grey/ pale orange brown, very low strength with occasional low to medium strength bands, extremely to highly weathered. Abundant fines throughout with occasional dark red brown (Fe staining) patches (continued) SANDSTONE. Fine to medium grained with some coarse grains, mottled light grey/deep red brown, very low strength with occasional low to medium strength bands, extremely to highly weathered. Distinct colour change to deep red brown Abundant fines throughout with occasional dark red brown Fe staining) patches	X X X	╡╧╶═┰╤┇		• Occasior traces.	nal organic black

P	ß
	100 YEARS ®

BOREHOLE NO.

	ect: ehol		ocation: nber:	Depa RAD HAR 2145	WA TS	AST RA	E 2	esol	irces,	, Energy and Tourism Date Commenced: 17/8/06 Date Completed: Recorded By: AT Log Checked By: MKD
			Mounting: iameter:	Inve 97 m	_	gato	or MK-	5/M/	ACK	Hole Angle: 90° Surface RL: 654.523 m Bearing: Co-ords: E 444853.628 N 7459845.723 GDA
			le Informa		- 1					Field Material Description
1 METHOD	SUPPORT 5	WATER 6	4 WEL CONSTRU		CURE RECOVERY	6	٦ ٦	DEPTH(m)		9 10 11 12 13 INFERRED SOIL/ROCK MATERIAL FIELD DESCRIPTION SOIL/ROCK MATERIAL FIELD DESCRIPTION
	SUF	WA.			ЭW	RQD	RL(m)	DEF	GR/	
RAB					100	100	- 6 24 - - -	- 30.6 - 31 - -		XW- HW IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
					100	100	6 23 - - - 622 -	- 32 - - -		Distinct colour change to light brown/tan I <td< td=""></td<>
				-	33	33	- - 621 - -	333	\times	Core Loss 33m to 33.93m IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
				_	20	0	6 20 - -	34.5 - 34.9 35 -	\mathbf{X}	Abundant fines throughout with some
							- - 619 - -	33		black silty bands (organic) and cocasional quartz fragments Core Loss 34.5m - 34.9m SANDSTONE. Recovered as Sandy Gravel, fine to coarse grained with abundant fines, generally brown with some grey fragments END OF BOREHOLE AT 35.00 m
							6 18 - - -	- - 37 - -		
							6 17 - - - 6 16	- - 38 - -		
							- - - - 6 15	- 39 - -		
- 1							╞			

BOREHOLE NO

HRBH03

BOREHOLE ENGINEERING LOG

н	FF	T-	1	OF	2

	xt: ole L	ocation:	RADW	ASTE 2 8 RANG		source	es, E	nerg	y an	d Tourism		Date Commen Date Complete Recorded By: Log Checked B	ed: 20/8/06 AT
		/Mounting: Diameter:						Driller: S. Blundell Surface R Driller Lic No: Co-ords:					7 N 7460699.872 GDA_9
			nole Infor								Field Material C		
1 2	3			5		6	7	8	9			11 12	13
B METHOD SUPPORT	WATER			RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	S USC SYMBOL	SOIL/ROCK MATERIAL FI		RELATIVE DENSITY TOURSISTENCY SCONSISTENCY SCONSISTENCY CONSISTENC	STRUCTURE AND ADDITIONAL OBSERVATIONS
RAB			nckfilled 6.0m - .0m	- 652 - - - 651 - - - 640 - - 648 - - 649 - - 649 - - 649 - - 649 - - 649 - - 649 - - 649 - - 649 - - 649 - - 649 - - 649 - - 649 - - 649 - - 648 - - 647 - - 646 - - 646 - - 646 - - 647 - - 646 - - 648 - - 647 - - 648 - - 648 - - 647 - - 648 - - 648 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - 644 - - - 643 - - - 644 - - - - 643 - - - - - - - - - - - - -						SANDSTONE. Fine to coa	coarse grained sized clasts, content		

Η	IR	B	Η	0	3
	CHE	ст	2	OF	2

lient: roject: orehole Lo roject Num		RADWA	ASTE 2 RANGE		ces,	Energ	y ar	nd Tourism	Date Commer Date Complete Recorded By: Log Checked	ed: 20/8/06 AT
Drill Model/Mounting: Investigator MK-5/MACK Driller: S. Blundel Borehole Diameter: 105 mm Driller Lic No:							S. Blundell Surface RL c No: Co-ords:		7 N 7460699.872 GDA_	
	Boreh	ole Infor	mation					Field Material I	Description	
1 2 3	4		5	6	7	8	9	10	11 12	13
WATER	WEI CONSTRU		RL(m)	DEPTH(m) FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE ST MC VCNX82FB ST MC VST D VST D VST D H	STRUCTURE AND ADDITIONAL OBSERVATIONS
	12.0	tonite seal 0m - 13.0m wel filter pack 0m - 20.0m tted pipe tion 14.0m - 0m						SANDSTONE. Fine to coarse grained with occasional pebble sized clasts, light brown, high fines content throughout but variable, very low to low strength, dry (continued) SANDSTONE. Fine to coarse grained with occasional pebble sized clasts, light brown, high fines content throughout but variable, extremely low strength, extremely weathered, wet, borehole colapsing from 14.9m	W I I I I I I I I I I I I I I I I I I I	-Samples collected from 0.0m - 10.0m. Remainder of borehole logged from available drilling returns and correlated from cored boreholes HRBH01 & HRBH02 -Becomming wet at 14.9m. Decrease in strength. Recovered as loose sand.

BOREHOLE NO

HRBH04

BOREHOLE ENGINEERING LOG

HEFT	1	OF	Δ

Boi Pro	ject eho ject	le L Nu	ocation: mber:	RADWA HARTS 214547	ASTE 2 RANGE 9A					nd Tourism		Date Commenced:19/8/06Date Completed:19/8/06Recorded By:ATLog Checked By:MKD
			Mounting: iameter:	Investig 105 mn	gator MK-{	5/MACk	(Drille Drille		S. Blundell c No:	Surface RL: Co-ords:	: 655.482 m E 444043.652 N 7460184.379 GDA_9
Γ				nole Infor							eld Material D	
1	2	3	4	1	5	6	7	8	9	10		11 12 13
METHOD	SUPPORT	WATER	WE CONSTR		RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD		
				actfilled 6.0m - 5.0m						Clayey SAND. Fine to coa brown, low to medium pla	se grained, nicreasing depth, ents.	

ര

This borehole log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.

100

Client:	
Project:	

BOREHOLE ENGINEERING LOG

Client:Department of Resources, Energy and TourismProject:RADWASTE 2Borehole Location:HARTS RANGEProject Number:2145479A									Date Commence Date Completed Recorded By: Log Checked By	d: 19/8/06 AT			
Drill Model/Mounting: Investigate Borehole Diameter: 105 mm				Investigator MK-5/MACK Driller: S. Blundell Surface								N 7460184.379 GDA_	
			Boreh	ole Infor	mation					F	ield Material D	escription	
RAB METHOD 1	SUPPORT	WATER	4 CONSTR		5 BRL(m)	e FIELD TEST	7 SAMPLE	© GRAPHIC LOG ∞	nsc symbol 6	SOIL/ROCK MATERIAL FIE Silty SAND. Fine to coa brown, low plasticity, w fine to coarse gravel wit	ELD DESCRIPTION arse grained, ith increasing th depth.	11 12 RELATIVE DENSITY CONSISTENCY W D S S S S S S S S S S S S S	13 STRUCTURE AND DITIONAL OBSERVATIONS
			15.	ntonite seal 0m - 16.0m avel filter pack 0m - 32.0m						SANDSTONE. Fine to (with occasional pebble light brown, high fines of throughout but variable, strength, extremely wea	coarse grained sized clasts, content , extremely low	0. of a ^y all	amples collected from 0m - 10.0m. Remainder i borehole logged from vailable drilling returns nd correlated from ored boreholes HRBH01 HRBH02

P	
100 YEARS ®	

BOREHOLE NO).
-------------	----

HRBH04

	ect: hole		ocation: nber:	Depart RADW HARTS 214547	ASTE 8 RAN	2	sourc	es, E	Energ	y an	nd Tourism		Date Commence Date Completed: Recorded By: Log Checked By	19/8/06 AT
Drill Model/Mounting: Borehole Diameter:				nting: Investigator MK-5/MACK						er: er Li	S. Blundell c No:	Surface RL: Co-ords:		N 7460184.379 GDA_
			Boreh	ole Infor	matio	n					F	ield Material D	escription	
	t	WATER				97 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FIELD 9	SAMPLE	GRAPHIC LOG	USC SYMBOL 6		0 ELD DESCRIPTION coarse grained sized clasts, content , extremely low	11 12 RELATIVE DENSITY /CONSISTENCY	13 STRUCTURE AND DITIONAL OBSERVATIONS
					- - - - - - - - - - - - - - - - - - -	22								
	19/	110/0			- 630 - - - 629 - - - - - - - - - - - - - - - - - - -	25- - - 26- - - - - - - - - - - - - - - -								
					- - 627 - - - 626 -	- 28 - - - - 29 - - - - - -								

BOREHOLE N	О.
------------	----

EEF	RING LO	G	HF	RBH	04	ı		
					SF	IEET 4	OF 4	Ļ
		Dat Rec Log	e Comme e Comple corded By Checked	ted: : By:	1 4	9/8/06 9/8/06 \T /KD		-
dell	Surface RL:		655.482 m	-				- · -
	Co-ords:		E 444043.	652	N 7460	0184.379	GDA	_94 Z_
	Field Material D)esc	ription					1
1	10	11	12			13		
ERIAL FI	ELD DESCRIPTION	TURE		ADE		TURE AND DBSERVAT	IONS	

	Sor	eno	ie L	Diameter: 105 m				Driller Lic No: Co-ords: E 444043.652 N 74					
				Borehole Info			-			Field Material D			
	1	2	3	4	5	6	7	8	9	10	11 12 RELATIVE	13	
	METHOD	SUPPORT	WATER	WELL CONSTRUCTION	RL(m) DEDTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
	RAB				625 - - - - - - - - - - - - - - - - - - -	-				SANDSTONE. Fine to coarse grained with occasional pebble sized clasts, light brown, high fines content throughout but variable, extremely low strength, extremely weathered, dry (continued)	W	Becomming wet @ 29.8m. Borehole beginning to colapse below water level. Recovered as loose sand	
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS. GPJ GEOTECH.GDT 18/6/08					623 623 - 622 - 622 - 622 - 621 - 621 - 620 - 620 - 620 - 619 - 618 - 618 - 617 - 39 616 - 39					END OF BOREHOLE AT 32.00 m		Borehole terminated @ 32m.	
C Par				This b	orehole log s	hould be i	read	in conj	uncti	on with Parsons Brinckerhoff's accompanyi	ing standard note	S.	

Client: Project:

Borehole Location: Project Number:

2145479A Drill Model/Mounting: Investigator MK-5/MACK

RADWASTE 2 HARTS RANGE

Department of Resources, Energy and Tourism

Driller:

S. Blun

BOREHOLE N	0
------------	---

HEFT	1	OF	4

Client:Department of Resources, Energy and TourismProject:RADWASTE 2Borehole Location:HARTS RANGEProject Number:2145479A							source	nd Tourism	Date Commenced Date Completed: Recorded By: Log Checked By:	d: 21/8/06 21/8/06 AT MKD			
											N 7459308.337 GDA_9		
			Boreł	nole Infor	mation						Field Material	Description	
B METHOD	SUPPORT	WATER 0	WE CONSTR	ELL RUCTION	C (m)	DEPTH(m)	FIELD TEST	2 SAMPLE	GRAPHIC LOG ∞	R USC SYMBOL ©	10 SOIL/ROCK MATERIAL FIELD DESCRIPTION Silty SAND. Fine to coarse grained, red	MOISTL NOISTL ST ME H VD	13 STRUCTURE AND DITIONAL OBSERVATIONS
RAB				ackfilled 6.0m - .0m	- - - - - - - - - - - - - - - - - - -						on with Parsons Brinckerhoff's accompan		

SHEET	2	OF	4

HRBH05

Pro Bor	Client:Department of Resources, Energy and TourismProject:RADWASTE 2Borehole Location:HARTS RANGEProject Number:2145479A									Date Commence Date Completed: Recorded By: Log Checked By:	21/8/06 AT		
							Surface RL Co-ords:		N 7459308.337 GDA				
			Bore	hole Infor	mation						Field Material	Description	
1	2	3		4	5	6	7	8	9		0	11 12 RELATIVE	13
B METHOD	SUPPORT	WATER		ELL RUCTION	RL(m)	FIELD	SAMPLE	GRAPHIC LOG	M USC SYMBOL	SOIL/ROCK MATERIAL FI Silty SAND. Fine to co			STRUCTURE AND DITIONAL OBSERVATIONS
RAB			1	entonite seal 5.0m - 16.0m 5ravel filter pack 6.0m - 32.0m	- - - - - - - - - - - - - - - - - - -					Pebbly SANDSTONE. coarse grained, reduction (continued) Pebbly SANDSTONE. coarse grained, reddis angular to sub rounded harder cemented band occasionally larger that fragments	ry, occasional n in drilling rate) Medium to h brown, with d clasts, some is throughout,		amples collected from Om - 10.0m. Remainder borehole logged from ailable drilling returns d correlated from red boreholes HRBH01 HRBH02

BOREHOLE	NO.
----------	-----

HRBH05

BOREHOLE ENGINEERING LOG

SHEET	3	OF	Δ

Bor	ject eho	le Lo	ocation: nber:	Depart RADW HARTS 214547	ASTE 6 RAI	E 2	sourc	es, E	d Tourism	Date Commenced Date Completed: Recorded By: Log Checked By:	: 21/8/06 21/8/06 AT MKD		
			Mounting:		-	r MK-5	/MACI	K	Drill		S. Blundell Surface RL		
Bor	eno	ie D	iameter:	105 mr					Drill	er Li	c No: Co-ords:		N 7459308.337 GDA_9
1	2	3	Boren	ole Infor	mati	5	6	7	8	9	Field Material		13
METHOD	SUPPORT	WATER	WE CONSTRI		RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		STRUCTURE AND ITIONAL OBSERVATIONS
RAB				vited pipe ction 20.0m - .0m	- - - 637 - - -						SANDSTONE. Very fine to medium grained with abundant fines throughout, grey to red brown, very low strength, extremely weathered	D	
					6 36 - - - 6 35 - - 6 34 - - - -	220022					Recovered as SAND. Fine to coarse grained, red brown, loose.		
	1	9/10/0			633 - - - 632 - - 631 - - 631 - - 630 -	25.025					SANDSTONE. Very fine to medium grained with abundant fines throughout, grey to red brown, very low strength, extremely weathered		
					- - 629 - -	- - 29- - - - -							

HRBH0	5
	1

Bor	ject eho	le Lo	ocation: mber:	RADW	RANGE		Irce	s, E		Date Commence Date Completed: Recorded By: Log Checked By:	21/8/06 AT			
			Mounting: Diameter:	Investig 105 mm	gator MK n	(-5/MA	ACK		Drille Drille		S. Blundell c No:	Surface RL: Co-ords:		N 7459308.337 GDA_
			Boreh	ole Infor	mation						F	ield Material D	escription	
1	2	3	4		5	6	3	7	8	9	1	0	11 12	13
METHOD	SUPPORT	WATER		LL JCTION	RL(m)	DEPIH(m) FIELD	TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIE		MOIST VSFI ST VST M H VST D	STRUCTURE AND DITIONAL OBSERVATIONS
RAB					- - - 627 31 - - - - 626 32 - - - - - - - - - - - - - - - - - - -						SANDSTONE. Very fin grained with abundant throughout, grey to red strength, extremely wea (continued)	fines brown, very low athered		

HRBH01 0.0-5.75 m

HRBH01 5.75-11.2 m

HRBH01 11.2-16.8 m

HRBH01 16.8-22.5 m

HRBH01 22.5-28.1 m

HRBH01 28.1-33.7

HRBH01 39.3-45 m

HRBH01 45-50.8 m

HRBH01 50.8-56.3 m

HRBH01 56.3-62 m

HRBH01 62-67.6 m

HRBH01 73.25-78.8 m

HRBH01 78.8-84.3 m

HRBH01 84.3-90.1 m

HRBH01 90.1-95.6 m

HRBH01 90.1-95.6m

HRBH01 95.6-100m

HRBH02 0-5.93 m

HRBH02 5.93-11.88 m

HRBH02 11.88-17.94 m

HRBH02 17.94-23.85 m

HRBH02 23.85-29.70 m

HRBH02 29.70-38 m

TEST PIT ENGINEERING LOG

TEST PIT NO.

EDTD01

Pro Fes Pro	oject	Locati Numbe	er:	RA FIS 214	DWA HER 15479	Ste S Ri A	DGE			Date Recor Log C	Commenced: Completed: ded By: hecked By:	28/7/06 28/7/06 NH MKD		
X	cava	tion Me	ethod:	Komatsu PC75UU Surface RL: 198.779 m Co-ords: E 245816.426 N 83										
1	Test	Pit Info	ormatic 3	n	5	6	Field Material	Des 8	cription 9	10		11		
WATER -	RL(m)	DEPTH(m)	FIELD ,	SAMPLE 4		USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		D ETROMETER	STRUCTURE . OBSEF	AND ADDITIONAL RVATIONS		
	-	0.10				SM	Silty SAND, fine to medium grained, grey, low plasticity Silty Gravelly SAND, fine to coarse grained, grey brown, fine to medium grained sub rounded gravel, low plasticity	D			Many roots			
N F G W E	- 19 8 -	0.55 — - 1 — -		в		· · · · · · · · · · · · · · · · · · ·	LATERITE, excavated as sandy gravel, fine to coarse grained, mottled red brown to brown with low plasticity fines	D			Slow excavation LL=26% PL=17% PI=9% LS=5% Emerson=6 MDD=2.07 t/m3 OMC=9.0% K (remoulded)=	3		
	- 1 97	-					END OF TEST PIT AT 1.60 m					1		
	- - 1 96	2												
	- - 1 95	-												

TEST PIT ENGINEERING LOG

TEST PIT NO.

FRTP02

Pro Tes		: t Locati Numbe		RA FIS	DWA	STE S R	t of Resources, Energy and Tourism 2 IDGE			Date Recor	Commenced:28/7/06Completed:28/7/06rded By:NHChecked By:MKD				
Ξxc	cava	tion Me	ethod:	Ko	Komatsu PC75UU Surface RL: 202.437 m Co-ords: E 246767.049 N 8387919.714										
_	Fest	Pit Info		-											
1		2	3	4	5	6	7	8	9 RELATIVE	10 10	11				
WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	ACONSISTENCY	770	STRUCTURE AND ADDITIONAL OBSERVATIONS				
	-	0.45				SM	Silty SAND, fine to medium grained, grey, low plasticity fines	D			Many roots				
N	- 2 02	0.15				SP	Silty Gravelly SAND, fine to coarse grained, light brown to grey brown, fine to medium grained sub rounded gravel, low plasticity fines	D							
F G W	-	0.45 —				1	LATERITE, excavated as sandy gravel, fine to coarse grained, red brown with some brown mottling, some low plasticity fines	D			Slow excavation				
E	-	- 1-									some highly clayey, coloured				
											white				
	-				<u>.0 .</u> 0.		END OF TEST PIT AT 1.25 m				Refusal @ 1.25m				
	2 01	_													
	-	-													
		2-													
	-	-													
	2 00	_													
	-	-													
		3-													
	 -	-													
	1 99	-													
	_	_													
	F														

TEST PIT ENGINEERING LOG

TEST PIT NO.

EDTD02

Pro Fes		Locati Numbo		RA FIS	partn DWA SHER 45479	STE S R				Date (Recor	Commenced: Completed: ded By: hecked By:	28/7/06 28/7/06 NH MKD
Exc	cavat	tion Me	ethod:	Ko	mats	u P(C75UU		face RL: ords:		097 m 6547.248 N 8	389154.113 GDA
	est		ormatio		_	0	Field Material			10		
WATER 1	RL(m)	DEPTH(m)	FIELD [©]	4 SAMPLE 4	GRAPHIC LOG	USC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	9 RELATIVE DENSITY /CONSISTENCY BJJJQQ SSLS		STRUCTURE OBSE	11 AND ADDITIONAL RVATIONS
	2 13 - -	0.10				SM	Silty SAND, fine to medium grained, low plasticity, grey LATERITE, excavated as fine to coarse angular gravel, red brown to brown, fine to coarse grained sand, low plasticity fines	D				of fine to medium Ir to sub rounded
	212 - - 211						END OF TEST PIT AT 1.00 m				Refusal @ 1.0	m
	- - 210 -	- 3- -										

TEST PIT NO.

FRTP/

Pro es		: t Locati Numbe		RA FIS	DWA	STE S R	t of Resources, Energy and Tourism 2 2 IDGE				Date Reco	Commend Complete rded By: Checked B	d:	28/7/06 28/7/06 NH MKD
X	cava	tion Me	ethod:	Ko	mats	u P(C75UU	Su Co		ce RL: ds:		793 m 17053.93	N 838	9626.786 GDA_9
1	Fest	Pit Info	ormation 3	on	5	6	Field Material	0		•	10			11
WATER -	RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	VS FB		HAND PENETROMETER C (kPa)	STRU	CTURE A	ND ADDITIONAL VATIONS
N F G W E	- - 2 16	0.10		в		× • •	Silty SAND, fine to medium grained, grey, low plasticity fines LATERITE, excavated as gravelly sand, fine to coarse grained angular, reddish brown with some low plasticity fines					LL=25% PL=13% PI=12% LS=6.09 CBR (sc CBR (ur	% baked)=4	40%)=220%
		1- - - 2- -					END OF TEST PIT AT 1.30 m							
	- 2 14 -	- 3- -												
	- 2 13	-												

TEST PIT NO.

EDTD05

rc		: t Locati Numbe		ra Fis	DWA	STE S R	of Resources, Energy and Tourism 2 DGE			Date (Recor	Commenced: Completed: rded By: Checked By:	28/7/06 28/7/06 NH MKD
		tion Me			mats	u P(C75UU	Co	face RL: ords:		557 m 15517.219 N 83	85321.58 GDA_9
1	fest	Pit Info	ormatic 3	n	5	6	Field Material	Des 8	cription 9	10		11
WATER -	RL(m)	DEPTH(m)	FIELD 6	SAMPLE 4	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	STURE	BELATIVE DENSITY CONSISTENCY BLACK B	HAND PENETROMETER ((kPa)		ND ADDITIONAL VATIONS
N F G	-	0.05					Silty SAND, fine to medium grained, grey, low plasticity fines Silty Sandy GRAVEL, fine to coarse grained, light — — / brown/tan, angular to sub rounded gravel, low plasticity fines	, D , D				
E	2 04 -	0.60					LATERITE, excavated as sandy gravel, fine to coarse grained, red brown, some low plasticity fines				Well cemented	
	- 203 - - - 202 - -	- - 2- - - 3-					END OF TEST PIT AT 1.00 m				Refusal @ 1.0m	
	- 2 01 -	-										

ENGINEERING TEST PIT LOG RADWASTE COMBINED LOGS GP.1 GEOTECH GDT 17/6/08 5 Version alia Ptv I td orh off

TEST PIT NO.

FRTDU

Pro Tes		Locati Numbe		RA FIS	partn DWA SHER 45479	STE S R				Date (Recor	Commenced: 28/7/06 Completed: 28/7/06 rded By: NH Checked By: MKD
Ξxo	cavat	tion Me	ethod:	Ko	mats	u P(face RL: ords:		654 m 14794.274 N 8385787.981 GDA
	Test	Pit Info	ormati	on			Field Material I	Des	cription		
WATER 1	RL(m)	DEPTH(m)	FIELD STEELD	4 SAMPLE	GRAPHIC LOG	USC SYMBOL 0	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	9 RELATIVE DENSITY JCONSISTENCY 4 4 4 4 5 4 4 4 5 4 4 4 5 4 5 4 5 4 5	HAND PENETROMETER 0 (kPa)	11 STRUCTURE AND ADDITIONAL OBSERVATIONS
N F G W	_	0.10					Silty SAND, fine to medium grained, grey, low plasticity Silty Sandy GRAVEL, fine to medium grained, light brown to tan, low plasticity, angular to sub rounded gravel	D			
E	- 2 02	-]	grained, red brown				
		- 1- - 2-					END OF TEST PIT AT 0.70 m				Refusal @ 0.7m
	- 200	- - 3- -									
	19 9 -	-									

Parsc

Ø

TEST PIT NO.

FRTP07

			RA FIS	partn DWA SHER 45479	STE S R				Date Reco	Commenced: 28/7/06 Completed: 28/7/06 rded By: NH Checked By: MKD
xcav	vation M	lethod:	Ko	mats	u P(C75UU		rface RL -ords:		.593 m 43209.501 N 8386921.93 GDA_9
	st Pit In			_	0	Field Materi			10	
WATER 1	2 2 HLdH()	ETELD 2	4 SAMPLE	GRAPHIC LOG	USC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	9 RELATIVE DENSITY /CONSISTENC BL S SL S SL S		11 STRUCTURE AND ADDITIONAL OBSERVATIONS
N F G W 19 E _	0.80 —	-			.GP	Silty Sandy GRAVEL, fine to coarse grained, light brown/tan, low plasticity fines	D			Surface veneer of silty sand
- - 19 -	1	-				END OF TEST PIT AT 1.00 m				Refusal @ 1.0m
- 1 8 -	39	-								
- - 1 8 -		-								

FRTP06 0.0-0.7 m

FRTP07 0.0-1.0 m

BOREHOLE NO.

	9/7/06 8/06 H KD
Borehole Information Field Material Description 1 2 3 4 5 6 7 8 9 10 11 12 Acenate 0	39.992 GDA_9
Image: Construction with the second of th	
Image: Second Strength of the second strength of th	13
Q Solid pipe solid pipe to damage LATERITE. Mottled grey-green/red brownyleidow. Recovered a Sandy Clay, medium to high plasticity, grained angular gravel, dry very hard/dense. 1	UCTURE AND DDITIONAL SERVATIONS
491 6 Arad Fine the sub angular graver, dry, hard Fine the sub an	3.3m-5.4m & ayey Sandy Angular, grained s which hered eres with fine hed angular gravel .6m - 20mm

P	
—	100 YEARS @

BOREHOLE NO.

Prc Bor		le L	ocati mbei		RA	DW/ HEF	AST RS F			urces	Energy and Tourism			Date Com Date Com Recorded Log Check	pleted: By:	29/7/06 6/8/06 NH MKD
Dril	l Mo	del/	Mou	nting:	Inve	estig		or MK	-5/M/	ACK	5		ace RL:	197.002	n	
Bor			iame		97 r	nm							ords:	E 246425	5.501 N 83	86789.992 GDA
1	BO	reho 3	ole Ir	forma		5	6	7		8	Field Material	Des 10	scription	12		13
METHOD	SUPPORT	WATER	С	WE				RL(m)	DEPTH(m)	LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	THERING	INFERRED STRENGTH Is(50) MPa	AVERAGE DEFECT SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS
≥ HQ		<				0 K	8	- - -			Core Loss 10.6m - 11.2m	≤ XW- HW		3,2,8,2,8,2,8,2,0,2,0,0,0,0,0,0,0,0,0,0,0		m ı @10.0m - 30mm
						60	60	- 1 86 - - -	- 11 - ^{11:±} - -	\times	SANDSTONE. Fine to medium grained, mottled grey/orange brown/pink, extremely low to very low strength, extremely to highly weathered, massive. (quartz, feldspar)	HW			 Increase ir decrease i colour cha 	n weathering,
						100	100	1 85 - - - 1 84 -	12- - - - 13- -						 Sample: F 12.1m-12. 	
						100	100	- 18 3 - - - -	- - - - - - 15 -			XW HW XW				
				Bel	ntonite al	33	0	- - - 1 81 -	15 - 156 - 16 - -	,	Core Loss 15.6m - 17.45m	-				
					avel er pack	0	0	- - 1 80 -	- - 17 -	X						
		10/06			otted	86	86	- - - 1 79	17.4 - - 18 -		SANDSTONE. Fine to medium grained, mottled brown/tan/pink/light grey, very low to low strength, extremely to highly weathered.	XW- HW				
				sec	ction .0m-30.0n	100	100	- - - 1 78 - -	- - - 19- - - -		Interbedded with extremely weathered CLAYSTONE, generally light grey, extremely low strength					
								F	-							

BOREHOLE NO.

Pro Bor		le L	ocation: mber:	RAD)W/ HER	AST IS F			irces,	Energy and Tourism	I			Date Com Date Com Recorded Log Check	pleted: By:	6/8/06 NH
			Mounting: Diameter:	Inve 97 n	_	gato	or MK	-5/M/	CK	Hole Angle: Bearing:	90° 	Surfa Co-o	ce RL: ds:	197.002 ı E 246425		N 8386789.992 GDA_94
	Во	reh	ole Inform	ation						Fie	eld Materia	l Des	cription			
METHOD 1	SUPPORT 2	WATER 6	4 WE CONSTR		CORE ^C RECOVERY ^G	RQD	RL(m)	DEPTH(m)		9 SOIL/ROCK MATERIAL FIELD	DESCRIPTION	픈	11 INFERRED STRENGTH Is(50) MPa	SPACING mm		13 STRUCTURE AND ADDITIONAL OBSERVATIONS
		M			100 100 100	100 100 100	12 - - - - - - - - - - - - -	21- - - - - - - - - - - - - - - - - - -		SANDSTONE. Fine to m grained, mottled brown/tk grey, very low to low stre extremely to highly weath Interbedded with extreme weathered CLAYSTONE light grey, extremely low a (continued)	an/pink/light ngth, lered. ely , generally strength IE, fine to v to low hly MERATE,				 CON supp 20mr with round (mon heav infillir (Clay orien Sam 	GLOMERATE: Matrix orted. Max clast size n, generally angular occasional sub ded clasts iomictic). Clasts show y brecciation with ng by very fine grained <i>i</i> like) matrix. No tation noted. ple: FRBH01 5m-22.85m
					80 100	63 100	1 72 - - - 1 71 - - -	25 - 253 - - 26 - - - - - - - - - - - - - - - - - -		SANDSTONE. Very fine grained, mottled light bro grey, extremely low to ver strength, extremely to hig weathered. Recovered as clay at 26.	wn/tan/light ry low hly 9m	xw			degre grain exhit Displ	: - 25.0m inclined at 45 ees. Within very fine ed matrix and biting slickensides. lacement not mined
					100	10	1 70 - - - 1 69 - -	26.9 27- 27.1 - - - - - - - - - - - - - - - - - - -	×.	Core Loss 26.9m - 27.1m Clay seam) SANDSTONE. Very fine grained, mottled light bro grey, poorly sorted, very strength, extremely to hig weathered. Abundant very fine to fine angular to sub-angular qu Recovered as clay at 26.1	to fine wn/tan/light low to low ghly grained uartz grains	/ XW- HW				
					100	15	1 68 - - -	29 - - - -								

BOREHOLE NO.

Prc Boi		: le L	ocation: mber:	RAI	DW/ HEF	AST RS F			urces	SHEET 4 , Energy and Tourism Date Commenced: 29/7/06 Date Completed: 6/8/06 Recorded By: NH Log Checked By: MKD	
	reho	le D	Mounting: iameter:	97 r	-	gato	or MK	(-5/M/	ACK	Hole Angle: 90° Surface RL: 197.002 m Bearing: Co-ords: E 246425.501 N 8386789.992	GDA_94
1	Bo	reho	ole Informa		5	6	-	7	8	Field Material Description 9 10 11 12 13	
МЕТНОD -	SUPPORT	WATER	WEI CONSTRI		CORE ^C RECOVERY ^G		RL(m)	DEPTH(m)	DOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	AL
₩ HQ		Ň			100 CC	100 RG	- -		G	SANDSTONE. Very fine to fine XW-1 IIIII grained, mottled light brown/tan/light HW IIIIII grey, poorly sorted, very low to low IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
					80	0	- 1 66 -	- 31 - - 31 :1		Abundant very fine to fine grained angular to sub-angular quartz grains Recovered as clay at 26.9m (continued) Becoming coarser grain	
							- - 1 65 -	- - 32- ₃₂₅	\times	Image: Construction of the co	
					73	0	- - - 1 64	- - - 33 -		SANDSTONE. Medium to coarse XW Image: Constraint of the second seco	
					73	0	- - - 1 63 -	331 - - - - 34 - - -		grained quartz (~50%)	nd
					0	0	- 162 - -	- 35 - - -	\times	Image: Second	IE
							- 1 61 - -	- 36 – -			
					33	0	- - 1 60 -	- 37- ^{37.1}		SAND. Fine to coarse grained, XW I <	
					100	0	- - 1 59 - -	- - 38 - - -		Sorted. (Extremely weathered 1 1	
							- 1 58 - -	- 39 ^{39,1} - -		Core Loss 39.1m - 40.3m IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
					20	0	_	_		ad in conjunction with Parsons Brinckerhoff's accompanying standard notes.	

BOREHOLE NO.

Prc Boi		le L	ocation: nber:	RAD)WA HER	AST S F			urces	Energy and Tourism				Date Commer Date Complet Recorded By: ₋og Checked	ed:	29/7/06 6/8/06 NH MKD
			Mounting: iameter:	Inve 97 n	-	gato	or MK	(-5/M/	ACK	Hole Angle: 90° Bearing:		urfac o-orc	e RL:	197.002 m	4 NI (8386789.992 GDA_9
DUI			ole Informa							Bearing: Field Mater				E 240423.30		0300709.992 GDA_9
1	2	3	4		5	6		7	8	9		10	11	12		13
METHOD	SUPPORT	WATER	WE CONSTRI	LL UCTION	CORE ^C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTIC	ON	IERIN	INFERRED STRENGTH Is(50) MPa	AVERAGE DEFECT SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS
HQ		-				_			Ň	Core Loss 39.1m - 40.3m (continued						
					0	0	- - - 1 56 -	40.3 		CLAYSTONE. Very fine grained with trace fine to medium grained clasts, orange brown to light grey, very low strength, extremely to highly weathered Core Loss 40.6m - 42.0m		<vv< td=""><td></td><td></td><td></td><td></td></vv<>				
					60	0	- 1 55 - -	- 422 - 426		SANDSTONE. Fine to medium grained, orange brown to light grey, poorly sorted, angular to sub-rounde clasts, extremely low to very low strength, extremely to highly		</td <td></td> <td></td> <td></td> <td></td>				
					20	0	- 1 54 - -	42.9 43 - - -	$\left \right\rangle$	weathered, highly fractured throughout Core Loss 42.6m - 42.9m SANDSTONE. Fine to medium - grained, tan to orange-brown, poorly sorted, extremely low to very low strength, extremely to highly	- / •	W- IW				
					100	0	- 1 53 - -	- 44 - 44 . €		weathered. Abundant medium grained, sub-rounded to rounded quartz grains Core Loss 44.6m - 45.1m						
					50	0	- 1 52 - -	45	\times	SANDSTONE. Fine to medium grained, light brown to light grey, poorly sorted, medium to high strength, highly to moderately		IW- /IW				
					100	100	- 1 51 - -	- 46 - -		weathered						
					70	50	- 1 50 -	- 4 7 ^{6.9} 47.2	X	Core Loss 46.95m - 47.25m		(W- 1W				
					100	100	- - 1 49 -	- - 48 - -		minor orange brown veining, poorly sorted, angular to sub-rounded grains, generally very low to low strength with occasional medium strength bands, highly weathered with some extremely weathered bands.						
					100	100	- - 1 48 - -	- 49 - - -				 				
							_	-		d in conjunction with Parsons Brincke						

BOREHOLE NO.

Boi Pro	oject reho oject	: le Lo Nui	ocation: mber:	RAD FISH 214	DW/ HEF 547	AST RS F 9A	e 2 Ridge	E		, Energy and Tourism				Date C Record Log Ch	ecked B	d: 6/8/06 NH
			Mounting: iameter:	Inve 97 n		gato	or MK	-5/M/	ACK	Hole Angle: Bearing:	90° 	Surf Co-o	ace RL: ords:			N 8386789.992 GDA_94
1	Bo	reho 3	ble Informa		5	6	7		8	Fie 9	eld Materia	10 III	scriptio	n 12		13
METHOD -	SUPPORT	WATER	WEI CONSTRI				RL(m)	DEPTH(m)	LOG	50IL/ROCK MATERIAL FIELD I	DESCRIPTION	SING		D AVERA H DEFE SPACI	GE CT NG	STRUCTURE AND ADDITIONAL OBSERVATIONS
ΗQ					43	10	- - -	- 50.4 - -	\times	Core Loss 50.45m - 51.1	n	XW- HW				
					50	0	1 46 - - - 1 45	51	\times	SANDSTONE. Fine to me grained, light brown to lig minor orange brown veini sorted, angular to sub-rou grains, generally very low \strength with occasional I \strength bands, highly we \with some extremely wea \bands.	ht grey with ng, poorly inded to low medium athered					
					50	0	- - 1 44 - -	- - 53 - - -	,	Core Loss 51.5m - 52.25 SANDSTONE. Fine to me grained, light brown to lig poorly sorted, generally a sub angular with occasion sub-rounded clasts, extre very low strength, extrem weathered Core Loss 53.1m - 56.6m	edium ht grey, ngular to nal mely low to ely to highly	/ XW- / HW				
					0	0	- 1 43 - -	- 54 -								
					0	0	- 1 42 -	- 55 - - -	X							
					20	0	- - 1 41 -	- - 56 - -		SAND. Fine to medium g	rained,	XW			 	
					0	0	- - 14 0 - -		<u></u>	generally brown, with occ fragments of lithic sandst Core Loss 56.6m - 60.6m	asional one	/				
							1 39 - -	58 - - -	\times							
					33	0	- 1 38 - -	- 59 – -								
							_	-								

BOREHOLE NO.

Pro Bo		ct: ole	Loca	ation: er:	RAD)WA HER	AST RS F			irces,	Energy and Tourism			D R)at Rec	e (cor	Corr ded	Immenced: 29/7/06 Inpleted: 6/8/06 By: NH ked By: MKD
				ounting: neter:	Inve 97 n		gato	r MK	(-5/M/	CK			ace RL: ords:)02 642	m 5.501 N 8386789.992 GDA_9
				Informa	ation						Field Material						-	
1	2		3	4		5	6	7	,	8	9	10	11			1:		13
Н МЕТНОВ	SUPPORT		WAIER	WE CONSTRI	LL JCTION	CORE ⁻ RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	OIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING		,6 н	5	DEFI SPAC mi	ING	STRUCTURE AND ADDITIONAL OBSERVATIONS
						13	0	- - - 136 - - - - -			SANDSTONE. Fine to coarse grained, light brown, angular to subangular grains, poorly sorted, extremely to highly weathered, generally extremely low strength with // some medium strength bands. // Core Loss 61.1m - 62.4m	XW- HW						 Some coarse grained angular quartz between 60.9m - 61.1m. Recovered as poorly cemented sands with some hard angular fragments of sandstone
						0	0	- - - 1 34 - -	- 62∉ - 63 – - -		CONGLOMERATE. Medium to coarse grained, with fine grained matrix, grey-brown-orange brown, matrix supported, extremely low strength (as a rock mass), extemely weathered. Maximum clast size 30mm, polymictic, no orientation noted. Matrix weathered to a sandy clay. Abundant fine to medium grained	xw						Drill head shuddering as it descends indicating loose coarse gravels and probable cobble sized particles
						0	0	- +333 - - - - + - +32 - -	- 64 - - - - 65 - - -	\times	angular to sub-angular quartz grains j Core Loss 62.6m - 64.1m							
						33	0	- - 1 31 - -	- - 66 - -									
								- - 1 30 -	66 .6 - 67.1 - 67.1		Clayey Sandy GRAVEL. Fine to coarse grained, angular to sub-rounded, medium to high plasticity clay. Abundant quartz gravel within clayey	XW		 		 		-
						33	0	- - - 1 29	- - - 68 - - -	\times	Clayey Sandy GRAVEL. Fine to	xw		 		 		-
						100	0	- - - 1 28 - -	- - 68. <u>6</u> - 69 - - -		coarse grained, angular to sub-rounded, medium to high	XW- HW						
									69:6	\mathbf{X}	Interbedded with clay of high plasticity with some medium to coarse grained sand, brown to light							

BOREHOLE NO.

	ject	:	ocation:	RAD	WA	ST			irces	Energy and Tourism			Date Comm Date Comp Recorded E	leted	
			mber:	2145									Log Checke	•	
			Mounting: iameter:	Inve: 97 m	-	jato	or MK	-5/MA	CK	Hole Angle: 90° Bearing:		rface RL: -ords:	197.002 m E 246425.		N 8386789.992 GDA_94
			ole Informa	ation						Field Materia					
1	2	3	4		5	6	7		8	9	1	0 11 INFERREI	12 AVERAGE		13
METHOD	SUPPORT	WATER	WEL CONSTRU		RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION			SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS
HQ					10	0	-	1 1	\times	\brown, hard Core Loss 69.6m - 70.5m (continued)	I				
					75	0	- +26 -	70.5 70. 6 70.8 70.8 71 - - -		SILTSTONE. Orange brown - maroon. Extremely low to very low strength, extremely to highly weathered, massive, some Fe oxidation. Interbedded with clay of high plasticity with some medium to coarse grained sand, brown to light					
					26	0	- 1 25 - -	- 72 - - -	\times	Core Loss SILTSTONE. Orange brown - maroon. Extremely low to very low strength, extremely to highly weathered, massive, some Fe oxidation. Interbedded with clay of high plasticity with some medium to	41111111111				
				-	100	0	1 24 -	73 ²⁹	, <u> </u>	coarse grained sand, brown to light brown, hard CLAY, high plasticity, orange brown, with some fine to coarse grained	4) 47 17	+ - + + - +			
				-	÷		-	-	 	Core Loss 71.6m - 72.95m					
					100	0	1 23 - -	74 - - -	· _ ·	with some fine to coarse grained sand, very stiff to hard, MC>PL SILTSTONE. Maroon with occasional orange brown mottling, extremely low strength, extremely weathered,					
							- + +22	- 75-		massive. Recovered as clayey silt/silty clay					
					100	0	-	-		Occasional bands of fine to coarse grained angular gravel					
				-			- 1 21 -	- 76 -	· _ ·						
					100	0	-	-	· _ · ·						
				+	20	0	1 20 -	77 -	 						our change to mottled ow-brown/maroon at Im
				\vdash	10	0	-	- 77: 6 -	 , 	LIMESTONE. Very fine to fine	_H'				
				-	20	0	1 19 - -	78- 78.1 - 78.4		grey and black veining, high to very high strength, highly weathered, massive, crystalline texture, siliclastic (notable fine quartz grains throughout)					
					100	0	- - 1 18	- 79-		I throughout) I Solution cavities infilled with calcite, quartz and dark grey mineral (?). Some Fe staining.					
				F	40	0	-	79.1 79.3 		Core Loss 78.1m - 78.45m LIMESTONE. Very fine to fine grained, orange brown/grey with light					
					40	40	+	79 .6 79 .6	Ķ	grey and black veining, high to very high strength, highly weathered, massive, crystalline texture, siliclastic			* -=	Sam	nple: FRBH01

BOREHOLE NO.

Project: RADWASTE 2 Date Completed: Borehole Location: FISHERS RIDGE Recorded By: Project Number: 2145479A Log Checked By: Drill Model/Mounting: Investigator MK-5/MACK Hole Angle: 90° Surface RL: 197.002 m Borehole Diameter: 97 mm Bearing: Co-ords: E 246425.501 N 8386 Borehole Information Field Material Description 1 2 3 4 5 6 7 8 9 10 11 12 0 ½ CONSTRUCTION ½ É Q SOIL/ROCK MATERIAL FIELD DESCRIPTION O MPa AVERAGE DEFECT	SHEET 9 OF 9															ARS ®	YEA		
Project Number: 2145479A Log Checked By: Drill Model/Mounting: Investigator MK-S/MACK Hole Angle: 90 Surface RL: 197.002 m Borehole Diameter: 97 mm Bearing:	29/7/06 6/8/06	leted:	ate Comple	Da	I			1	, Energy and Tourism	Jrces		Έ2	AST	DW/	RA			ject:	Proj
Drill Model/Mounting: Investigator MK-S/MACK Hole Angle: 90° Surface RL: 197.002 m Borehole Information Field Material Description E246425.501 N 8386 Borehole Information Field Material Description 1 2 3 5 2 4 5 6 7 8 9 011 12 1 2 5 0.0.ROCK MATERIAL FIELD DESCRIPTION 1 2 0 1 2 0 1 0 10 1 2 0 1 0 10 1 0 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 1 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 10 10	NH MKD	•									E	RIDGI							
Barchole Diameter: 97 mm Bearing: — Co-ords: E 246425.501 N 8386 Borehole Information Field Material Description 9 9 9 10 11 12 2 3 4 5 6 7 8 9 9 10 11 12 12 12 12 12 12 12 12 12 12 12 13 12 13 12 13 12 13 14 13 14 16 8 11 10 11 11 13 14 14 83 HO I I I Inforciphicity		-	-				Curf	000			C E/NA	MI2							
Borehole Information Field Material Description 1 2 3 4 6 7 8 9 10 11 12 0	86789.992 GDA								-	ACK	- 5/ IVI <i>I</i>		-	-		-			
1 2 3 4 5 0 7 8 9 10 11 12 12 0 10 11 12				_					-	<u> </u>									
0 U	13		12			<u> </u>				8	7		6	_					_
HC Imposition cavities infilled with calcite. Imposities infilled with calcite. Imposities infilled with calcite. How and the set of	STRUCTURE AND ADDITIONAL OBSERVATIONS		DEFECT SPACING mm	2	ENGTH s(50) MPa		ATHERING	DESCRIPTION	SOIL/ROCK MATERIAL FIELD	APHIC LOG	TH(m)	(u		RE Z OVERY	ELL RUCTIO	W CONSTI	IER	PORT	HOD
2 -			000000	臣e	ı≥ı⊃i	╝┙	WE/			GR/	DEP	RL(r	RQI	COF			MA	SUF	
	-RBH01	Borehole						with calcite, leral (?). 	I throughout) Solution cavities infilled w quartz and dark grey min- Some Fe staining. Core Loss 79.1m - 79.3m LIMESTONE. Very fine to grained, orange brown/gr grey and black veining, hi high strength, highly weat massive, crystalline textu (notable fine quartz grain: throughout) Solution cavities infilled v quartz and dark grey min- Some Fe staining. Core Loss 79.6m - 79.8m LIMESTONE. Very fine to grained, orange brown/gr grey and black veining, hi high strength, highly weat massive, crystalline textu (notable fine quartz grain throughout) Solution cavities infilled v quartz and dark grey min- Some Fe staining. (contin Core Loss 80.1m - 80.55) LIMESTONE. Very fine to grained, grey - brown, hig high strength, highly weat high strength, and throughout texture in places, siliclast Abundant quartz in places	-	80.1 80.1 80.1 80.5 80.5 80.5 80.5 80.5 80.5 80.5 81 - - 82 - - 82 - - 83 - - 83 - - 83 - - 83 - - 83 - - 83 - - - 83 - - - 83 - - - - - - - - - - - - -	- - - +116 - - - +115 - - - +117 - - - +113 - - - +112 - - - +112 - - - +111 - - - +110 - - - - +110 - - - - - +110 - - - - - - - - - - - - - - - - - -							

BOREHOLE NO.

SHEET	1	OF

sore	ect: eho	le L	ocat mbe		R/ Fl	ADW	IAS RS			urces	Energy and Tourism			C F)ate (Recor	Com ded	menced: 7/8/06 pleted: 8/8/06 By: NH ced By: MKD
			Mou liam		-	vest ′ mn	-	or MK	(-5/M/	ACK	Hole Angle: 90° Bearing:		face RL: ords:		219. E 24		n).496 N 8389961.821 GDA_94
					matio	n					Field Materia			n			
METHOD 1	SUPPORT N	3 3	C	V CONS	4 VELL TRUCTI				DEPTH(m)	GRAPHIC LOG	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING 01	11 INFERRE STRENG Is(50) MPa	тн	1: AVER DEFI SPAC mi	AGE ECT CING m	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
	SUP	WATER				CORE	ROD	RL(m)	DEP	GR⊿	COMMENCE CORING AT 0 m	WEA	ਸਤੋ⊐≥≖	:FI	9 <u>8</u> 9	800 800 800	
IQ				AN A	Solid pipe section 0.0m - 18.0m Cement seal 0.0m 6.0m			- - 2 19 - -	0.2 - - 1- -		Silty SAND. Fine to medium grained, grey brown, low plasticity LATERITE. Recovered as Clayey Sandy GRAVEL, fine to coarse grained, mottled red brown-light grey with some orange brown, dense, dry, well cemented.	/-					 Sample: FRBH02 1.0m-1.3m
						100		- 2 18 - - - 2 17	1.5 1.6 - 2 - - - -		Core Loss 1.5m - 1.6m LATERITE. Recovered as Clayey Sandy GRAVEL, fine to coarse grained, mainly light grey with some red brown and orange brown, dense, dry, well cemented.	~					
						100		- - - 216 -	3- - - - 4- -								
					Backfilled	100	0	- 215 - - - - 214 -	44 - 5- - - - - - - - - - - -		SILTSTONE. Light grey, extremely low to low strength, generally extremely weathered with occasional harder layers. Abundant angular gravel sized fragments of siltstone in places (orange-brown in colour) Recovered as clay @5.6m with some angular gravel clasts, occasional well cemented layers throughout	XW					 Sample: FRBH02 7.95m-5.25m
					6.0m - 17.0m	100	0	- - 213 - -	- - - 7- -								
						60	0	- 2 12 - - -	- 7.9 8 - - -	\sim	Core Loss 7.9m - 8.6m						
						86	0	2 11 - -	8.6 - 9 .0 - -		SILTSTONE. Light grey, extremely low to low strength, generally extremely weathered with occasional harder layers. Abundant angular gravel sized fragments of siltstone in places (orange-brown in colour), (massive	XW XW		+- - 			
						\vdash		2 10	9. <u>7</u> 9.8	 X	SILTSTONE. Light grey, extremely low to low strength, generally extremely weathered with occasional	XW					

BOREHOLE NO.

FRBH02

	ect eho	:: ble L	.ocat		RAI	DW/ HEF	AST RS F			irces	, Energy and Tourism			Date Com Date Com Recorded Log Chec	npleted: By:	SHEET 2 OF 4 3: 7/8/06 8/8/06 NH MKD
				inting:	Inve 97 r		yato	or Mł	(-5/M/	CK	5		ace RL:	219.766		
BOI				eter: nform:	-	nm					Bearing: Field Materia		ords: scription	E 24/20	9.490 1	N 8389961.821 GDA_94 Z
1	2	3		4		5	6		7	8	9	10	11	12		13
METHOD	SUPPORT	WATER	(WE CONSTRI	LL UCTION	CORE C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING			0	STRUCTURE AND ADDITIONAL OBSERVATIONS
HQ						86	0	-	1		harder layers. Abundant angular gravel sized fragments of siltstone in places (orange-brown in colour),	XW				
						66	0	- 209 -	10.5 - 10 .6 11 -		massive Occasional sandy layers Core Loss 9.75m - 9.85m SILTSTONE. Light grey, extremely	XW-				
						100	100	- - 2 08 -	- - - 12-		low to low strength, generally extremely weathered with occasional harder layers. Abundant angular gravel sized fragments of siltstone in places (orange-brown in colour), massive					ole: FRBH02 n-11.6m
								-	-	· · · · ·	Occasional sandy layers (continued) Core Loss 10.5m - 10.8m SILTSTONE. Light grey - purple/maroon, extremely low to very					
l						100	100	2 07 - -	13-	· ·	low strength, extremely to highly weathered, highly fractured (brecciated)					
								-	-	· _ ·	occasional very fine to medium grained sandstone layers					ole: FRBH02 n-13.8m
						100	100	2 06 - - - 2 05	- 14 *: - -		Increase in Sandy layers. Grading to and interbedded Siltstone (as above) and very fine to coarse grained Sandstone, generally angular to sub angular grains very thinly bedded, extermely low to very low strength,				10.01	
				Ber	ntonite al 17.0m 8.0m	100	100	- - - 2 04 - -	15 - - 16 -		extremely to highly weathered					ole: FRBH02 n-15.8m
				Gra filte 17. 31.	er pack .0m -	100	100	- 203 - - - 202	- 17 - - - -							
				scr sec	otted teen ction .0m - .0m	80	80	- - - 201 -	18# - 18.3 - - - 19 – -		Core Loss 18.0m - 18.3m Interbedded Siltstone (as above) and very fine to coarse grained Sandstone, generally angular to sub angular grains very thinly bedded, extermely low to very low strength, extremely to highly weathered	XW- HW			-	
								- - 2 00	-							

Parsons Brinckemoff Australia Pty Ltd. Version 5.1 ENGINEERING CORED BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 13/6/08

	ß
_	100 YEARS ®

BOREHOLE NO.

	ect: hole	e Lo	ocation: nber:	RAD	WA IER	ST SF			irces,	Energy and Tourism				Da Re	ate Co ecorde	mmenceo mpleted: ed By: ecked By:	d: 7/8/06 8/8/06 NH MKD
			Mounting: iameter:	Inve 97 m	-	ato	r MK	-5/M/	ACK	Hole Angle: 90° Bearing:		irfac	e RL: ls:	_	219.76 E 2472		N 8389961.821 GDA_94
В	Bor	eho	le Inform	ation						Field Materia	al D	esc	riptior	ı			
1	2	3	4		5	6	7		8	9	1	0	11		12	_	13
METHOD	SUPPORT	WATER	WE CONSTR		CURE RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION		WEALHERING EL 0.03	INFERREE STRENGTH Is(50) MPa	H 0	AVERAG DEFECT SPACINO mm	3	STRUCTURE AND ADDITIONAL OBSERVATIONS
-1Q	0)	>			5.6	Ľ.	ш.			Interbedded Siltstone (as above) and	X١	N-10		<u>>ш</u> -	-0404	- 60	
					06	06	- - - 1 99	- - 20.8 212 1.6		very fine to coarse grained Sandstone, generally angular to sub angular grains very thinly bedded, extermely low to very low strength, extremely to highly weathered (continued)	,	W				 	
				_	100	90	- - - 1 98	-		Core Loss 20.85m - 21.0m Interbedded Siltstone (as above) and very fine to coarse grained Sandstone, generally angular to sub angular grains very thinly bedded, extermely low to very low strength,	ΓX\ Η	N- W					
		· · ·			100	100	- - - - 1 97 -	22 - - 23		extremely to highly weathered							
		, , , , , ,		-	100	100	- - 1 96 - -	- - - 24 * € - -		SANDSTONE, Fine to coarse grained, brown, orange-brown, light grey, very low to low strength, extremely to highly weathered,						23.7m Abund throug Abund	lle: FRBH02 n-24.0m dant cavities phout Jant fine angular throughout
					06	33	- 1 95 - -	- 25 25:2 25:3	, X	generally angular to subangular grains, recovered as sand in places	- X1	N-				 	
		· · · ·		-	86	73	- 194 - - - 193 -	- 2557 - 257 - 26 27 -	X	SANDSTONE (as above) Core Loss 25.5m - 25.7m SANDSTONE, Fine to coarse grained, brown, orange-brown, light grey, very low to low strength, extremely to highly weathered, generally angular to subangular grains, recovered as sand in places	- <u>H</u> X1	w					le: FRBH02 1-26.2m
	1	10/06			60	42	- - - 1 92 - -	- - 27.7 - 28.7 - 28.3	\times	Core Loss 27.7m - 28.35m							
		· · ·			100	100	- - 191 - - - - 190	20 <u>3</u> - - 29 96 - - 29 6		SANDSTONE, Fine to coarse grained, brown, orange-brown, light grey, very low to low strength, extremely to highly weathered, generally angular to subangular grains, revovered as sand in places Interbedded fine to coarse grained Sandstone and grey-maroon Siltstone. Low strength, highly weathered (similar to interbedded Sandstone and Siltstone above)		W- W				graine angula	ning generally finer ed @ 28.6m with less ar quartz increase in strength & ase in weathering

BOREHOLE NO.

н	EE.	Г4	OF	4

Field Material Description 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 0 WELL CONSTRUCTION Bare Well CONSTRUCTION Bare Well CONSTRUCTION Bare Construction Bare Construction Bare Soll/ROCK MATERIAL FIELD DESCRIPTION Bare Soll/ROCK MATERIAL FIELD DESCRIPTION Bare Bare Soll/ROCK MATERIAL FIELD DESCRIPTION Bare HW Bare Image: Construction Bare Soll/ROCK MATERIAL FIELD DESCRIPTION Bare HW Bare Image: Construction Bare Soll/ROCK MATERIAL FIELD DESCRIPTION Bare HW Bare Image: Construction Bare Image: Co	8/8/06 NH	Date Commenced: Date Completed: Recorded By: .og Checked By:	C F		1	, Energy and Tourism	irces,		E 2	AST RS F	eparti ADW/ ISHEF 14547	ra Fis	ocation: nber:	e L	ject: eho	Boi
1 2 3 4 5 6 7 8 9 10 11 12 Average before the second seco	N 8389961.821 GDA_94						\CK	(-5/M/	or MK		7 mm	: 97	iametei	e D	eho	
No No<					eld Material								le Infor			
HQ 8 8 8 9 8 8 199 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 STRUCTURE AND ADDITIONAL OBSERVATIONS	AVERAGE DEFECT SPACING mm	INFERRED STRENGTH Is(50) MPa	THERING	DESCRIPTION								CONS			
- -					to gth, highly gular quartz	medium grained, brown orange-brown, low streng weathered, some fine an gravel <i>(continued)</i>			- - - - - - - - - - - - - - - - - - -	06						

BOREHOLE ENGINEERING LOG

Client: Project Boreho Project	le Lo	ocation: nber:	Departe RADW FISHEF 214547	ASTE RS RI	2	source	es, E	nerg	y an	d Tourism		Date Commen Date Complete Recorded By: Log Checked B	ed: 10/8/06 NH
		Mounting: iameter:	Investig 105 mn	-	MK-5	MACK	ζ.	Drille		C. Butler c No:	Surface RL Co-ords:		14 N 8384672.521 GDA
Jorenie			ole Infor		on						Field Material E		14 14 050 407 2.52 1 007
1 2	3	4			5	6	7	8	9			11 12	13
METHOD SUPPORT	WATER	WE CONSTR		RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FI		MOIST VS FI SS VI VST D VST D H VI	STRUCTURE AND ADDITIONAL OBSERVATIONS
RAB ME			Id pipe section Dm - 18 0m imment grout m - 6.0m ckfilled 6.0m - .0m	- - 203 - - 202 - - 201 - - 201 - - 200 - - - 200 - - - 199 - - 199 - - - 199 - - - 199 - - - 199 - - - -		FIE	SAL			Silty SAND. Fine to correddish brown, low pla Sandy GRAVEL. Fine i grained, red-brown wit grey (LATERITE)	sticity to medium h some light ed-brown to light asily broken by r, slight increase s. some cannot		
				- 19 4 -	-			· ·	-	on with Parsons Brincker			

BOREHOLI	E NO
----------	------

BOREHOLE ENGINEERING LOG

100

HEET	2	OF	3

	ject: eho	le Lo	ocation: nber:	RADW	ASTE 2 RS RIDGE		es, E	Energ	y ar	nd Tourism	Da Re	te Comme te Comple corded By g Checked	eted: 10/8/06 r: NH	
			Mounting: iameter:	Investi 105 mr	gator MK n	-5/MACI	K		Oriller: C. Butler Surface RL: 203.725 m Oriller Lic No: Co-ords: E 244973.814 N 8384672.521					
			Boret	nole Infor	mation					Field Material				
1	2	3			5	6	7	8	9	10	11	12	13	
В МЕТНОD	SUPPORT	WATER		ELL	RL(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION			STRUCTURE AND ADDITIONAL OBSERVATIONS	
RAB			If Grand States	entonite seal .0m- 16.8m ravel filter pack .8m - 30.0m	- - + - + - - + - - - - - - - - - - - - -					Some red-brown colour @ ~8.0m (continued)				

BOREHOLI	E NO
----------	------

BOREHOLE ENGINEERING LOG

Bor	ject rehc	:: ole Lo	ocation: mber:	Depart RADW FISHEF 214547	ASTI RS R	E 2	sourc	es, E		_	nd Tourism	Da Re Lo	te Comme te Complet corded By: g Checked	ted: 10/8/06 NH By: MKD
			Mounting: iameter:	Investi 105 mr	-	r MK-5	/MACI	K	Drill Drill		C. Butler Surface RL ic No: Co-ords:		203.725 m E 244973.8	814 N 8384672.521 GDA_
1	2	3	Boreh	ole Infor	rmati	on 5	6	7	8	9	Field Material I	Des		13
МЕТНОD	SUPPORT	WATER	WEI CONSTRU		RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIVE DENSITY /CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
RAB		10/06			- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -					SILTSTONE (dominant), mottled red-brown to light grey interbedded with SANDSTONE Slight increase in strength (continued) Internedded SANDSTONE and SILTSTONE. Fine to medium grained sandstone. Mottled reddish-brown/light grey. Many fragments cannot be broken by hand SANDSTONE. Fine to medium grained with some coarse grained angular quartz clasts, generally reddish-brown with some light grey			
					478 - - - 4777 - - - 4776 - - - - - - - - - - - - - - - - - -	- 26- - - - - - - - - - - - - - - - - -					SANDSTONE (extremely weathered). Recovered as Sandy CLAY, medium to high plasticity, red-brown, fine to coarse grained	w		Becmming wet but no free water recovered from borehole during drilling

BOREHOLE ENGINEERING LOG

Pro Bor Pro	ject	le L Nui	ocation: nber:	RADW FISHEF 214547	asti RS R '9a	E 2 IDGE				_	nd Tourism	Da Re Lo	ate Comme ate Comple ecorded By og Checked	ted: 10/8/06 : NH By: MKD	
			Mounting: iameter:	Investi 105 mr	-	r MK-5	MACH	(Drille Drille		C. Butler Surface F c No: Co-ords:	L:	191.302 m E 243989.) 553 N 8386358.2	18 GDA
				ole Infor	mati						Field Materia				
1	2	3	4 WE CONSTR			5	6	7	8 FOG	BOL ©	10	1	RELATIVE DENSITY /CONSISTENCY	13 STRUCTURE AI	
METHOD	SUPPORT	WATER			RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTIC		VS FB ST MD VST MD VST MD H VD	ADDITIONAL OBSERV	ATIONS
RAB				lid pipe section Om - 18.0m ement grout Om - 6.0m	1 91 	0.30			0 (SM.	Silty SAND. Fine to coarse grained, reddish brown, low plasticity Sandy GRAVEL. Fine to medium	1			
					1 90	2.00 2			0	<u> </u>	grained, red-brown with some light grey (LATERITE)				
					189 - 188	3			· ·	ł	SILTSTONE. Mottled red-brown to ligh grey, dry, fragments easily broken by hand	t			
		0/8/0			187	4.00 4					No samples recovered below 4.0m	_			
					186	5			· · · ·		depth due to substantial water inflow. all samples were saturated with all fines being washed away.				
				ickfilled 6.0m - .0m	- 1 85	6			 	ļ	Borehole was extended to 30.0m below	v			
					- 184	7			· · · ·	-	existing surface levels. Rock types inferred from completed lo				
					- 1 83	8.00 8			— · — ·	ł	of FRBH03				
					- 1 82	9			· _ ·	ļ					
					- 1 81	10			 	+					
					180 E	11-				+					
					1 79	12			· _ ·	ļ					
					1 78	13.0013 14									
			Be 16	ntonite seal .0m- 16.8m	1 77 	15									
					1 76	16.0016									
			Gr.	avel filter pack .8m - 30.0m	1 75	17									
				otted screen	174 	18									
			se 🖂 se	ction .0m-30.0m	1 73 - - 172	19.0019			· · · · ·						
		10/06			<u>1</u> 72	20			· ·	ł					
		10/00			170	21				ł					
					169	22			· ·	ļ					
					- 168	23.023			· ·						
					- 167	24									
					- 166	25.025									
					- 1 65	26									
					- 164	27.027			• • • • • • •						
					- 1 63	28									
					- 1 62	29				ļ					

•

BOREHOLE ENGINEERING LOG

SHEFT	1	OF	1

Pro Bor Pro	ject	le L Nui	ocation mber:	RADW FISHEI 214547	ASTE 2 RS RIDGE '9A					d Tourism	Date Commence Date Completed Recorded By: Log Checked By	d: 9/8/06 NH
			Mounti Jiamete	-	gator MK	-5/MACk	(Drille		C. Butler Surface RL c No: Co-ords:		N 8389170.461 GDA
501				rehole Info								N 0000 11 0.401 ODA
1	2	3	00		5	6	7	8	9	Field Material I	11 12	13
METHOD	SUPPORT	WATER	CON	WELL STRUCTION	RL(m) DEDTH(m)		SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		STRUCTURE AND DDITIONAL OBSERVATIONS
RAB N		10/06		Solid pipe section 0.0m - 12.0m Cement seal 0.1m - 9.0m Bentonite seal 9.0m - 10.0m					GP	Sandy GRAVEL. Fine to coarse grained, red brown to orange brown, with some low plasticity fines (LATERITE) SILTSTONE. Mottled red brown to light grey, fragments easily broken by hand, some fragments showing brecciation and infilling Occasional hard angular gravel fragments, gradual colour change to red-brown, light grey, maroon @ 5.0m. Slight increase in strength. more angular fragment recovered, cannot be broken by hand		Surface veneer of silty sandy gravel, fine to coarse grained grey, sub rounded to rounded, low plasticity, dry , loose. Similar to gibber gravels

100

D.

BOREHOLE ENGINEERING LOG

Pro For Pro Drill	ject I Mo	: le Lo Nur	ocation: mber: Mountinç	RADW FISHE 214547 g: Investi	ASTI RS R 79A gato	e 2 Ridge			Drille	er:	nd Tourism C. Butler Surface RL	Da Re Log	te Comme te Comple corded By g Checkec 214.520 m	eted: :: I By: 1	SHEET 2 OF 3 9/8/06 9/8/06 NH MKD
or	eho	le D	iameter:	105 mi hole Info					Drille	er Li	c No: Co-ords: Field Material			35 N 8	3389170.461 GDA
1	2	3	DOIE		mau	5	6	7	8	9	10	11	12		13
METHOD	SUPPORT	WATER	W CONST	ELL RUCTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		S ADDITI	TRUCTURE AND ONAL OBSERVATIONS
RAB				Gravel filter pack 10.0m - 30.0m	- 204 - - 203 - - 202 - - 201 - - 201 - - - 201 - - - - - - - - - - - - - - - - - - -						Occasional hard angular gravel fragments, gradual colour change to red-brown, light grey, maroon @ 5.0m. Slight increase in strength. more angular fragment recovered, cannot be broken by hand (continued) Colour change to mainly light grey reddish brown (no maroon colour noted). Decrease in strength and reduction in fragment size recovered Colour change to mottled orange-brown/light grey. Fragment can be broken by hand	D			
					- 498 - - - 497 - - - - - - - - - - - - - - - - - - -						SANDSTONE. Fine to medium grained, mottled red-brown/ light grey, dry. Recovered as sand with occasional lithic fragments SILTSTONE. Generally light grey in colour, some fine to medium grained angular quartz grains. Slight increase in average grain size to approximately very fine to fine grained sand SANDSTONE. Fine to medium grained, light brown/tan to light grey, dry Recovered as sand, abundant fine to medium grained quartz in places	-			

BOREHOL	E NO
---------	------

IGINEERII	NG LO	G			F		H05 3 OF 3	
purism		Dat Red	e Comme e Comple corded By Checkee	eted /:	:	9/8/06 9/8/06 NH MKD		
C. Butler	Surface RL: Co-ords:		214.520 n E 245824		N 83	89170.4	61 GDA	94 Z_5
Fiel	d Material D	esc	ription					
10		11	12			13		
/ROCK MATERIAL FIELD	DESCRIPTION	MOISTURE		AD		RUCTURE A NAL OBSER		
ease in average grain rse grained with occas ular quartz gravel, bec	ional fine	Da						
ease in fine angular qu -21m	artz gravel							

The second of the formation Field Material Description 1 2 3 3 0 0 0 10 10 10 1 2 3 3 0 0 0 0 10 10 10 10 1 1 1 5 0 7 0 10 <td< th=""><th colspan="6">Borehole Diameter: 105 mm</th><th colspan="5">Driller Lic No: Co-ords: E 245824.35 N 83891</th><th>.35 N 8389170.461</th></td<>	Borehole Diameter: 105 mm						Driller Lic No: Co-ords: E 245824.35 N 83891					.35 N 8389170.461		
Bit is in the construction Example is in the intervent is in the construction Bit is intervent is interv											-			
Open to the standard protein to	1	2	3	4	-	5	6	7	8	9	10	11		
Open to the standard protein to									g	_			DENSITY /CONSISTENCY	
g mm mm Increase in average grain size to fine to g 194 model of average grain size to fine to g model of average grain size to fine to g 194 model of average grain size to fine to g model of average grain size to fine to g 193 model of average grain size to fine to g model of average grain size to fine to g 193 model of average grain size to fine to g model of average grain size to fine to g 193 model of average grain size to fine to g model of average grain size to fine to g 193 g model of average grain size to fine to g 193 g model of average grain size to fine to g 193 g model of average grain size to fine to g 194 g model of average grain size to fine to g 195 model of average fine angular quartz gravel 196 model of average fine angular quartz gravel 197 model of average fine angular quartz gravel 198 model of average fine angular quartz gravel 199 model of average fine average fine average fine average fine average fine ave			:	WELL		Ê			CLO	MBC	SOIL/ROCK MATERIAL FIELD DESCRIPTION	끮		STRUCTURE AND
g mm mm Increase in average grain size to fine to g 194 model of average grain size to fine to g model of average grain size to fine to g 194 model of average grain size to fine to g model of average grain size to fine to g 193 model of average grain size to fine to g model of average grain size to fine to g 193 model of average grain size to fine to g model of average grain size to fine to g 193 model of average grain size to fine to g model of average grain size to fine to g 193 g model of average grain size to fine to g 193 g model of average grain size to fine to g 193 g model of average grain size to fine to g 194 g model of average grain size to fine to g 195 model of average fine angular quartz gravel 196 model of average fine angular quartz gravel 197 model of average fine angular quartz gravel 198 model of average fine angular quartz gravel 199 model of average fine average fine average fine average fine average fine ave	ЬН	L L L	E H	CONSTRUCTION	Ē	TH(r		PLE	ЫНД	sγl		STU	ᇤᆃᅴᄛᆋᅀᅘ	>
g mm mm Increase in average grain size to fine to g 194 model of average grain size to fine to g model of average grain size to fine to g 194 model of average grain size to fine to g model of average grain size to fine to g 193 model of average grain size to fine to g model of average grain size to fine to g 193 model of average grain size to fine to g model of average grain size to fine to g 193 model of average grain size to fine to g model of average grain size to fine to g 193 g model of average grain size to fine to g 193 g model of average grain size to fine to g 193 g model of average grain size to fine to g 194 g model of average grain size to fine to g 195 model of average fine angular quartz gravel 196 model of average fine angular quartz gravel 197 model of average fine angular quartz gravel 198 model of average fine angular quartz gravel 199 model of average fine average fine average fine average fine average fine ave	MET		WAT		RL(n	DEP	TES'	SAM	GRA	nsc		Ň	ST S	_
angular quartz gravel becoming damp 193 102 102 102 102 102 102 102 102 102 102			-		_		-			-	Increase in average grain size to fine to			-
increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fine angular quark gravel increase in fin	A				_	-					coarse grained with occasional fine			
Increase in fine angular quartz gravel 93 22 122 132 132 132 132 132 132					101	-					angular quartz gravel, becoming damp			
Increase in the angular quarks gravel 903 122 192 192 192 193 194 194 195 195 195 195 195 195 195 195					194	-								
Increase in the angular quarks gravel 903 122 192 192 192 193 194 194 195 195 195 195 195 195 195 195						-				1				
1 1					Γ	21.0 21 —					Increase in fine angular quartz gravel			
1 1					-	-					@ ~21m			
1 1					Ē.	-				ł			<u>iiiii</u>	
Hold Hold Hold Hold Hold Hold Hold Hold					193	-								
Hold Hold Hold Hold Hold Hold Hold Hold					-	-								
Image: Some red-brown colouration Image: Some red-brown colouration 190 Some red-brown colouration <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>22 –</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-	22 –								
Image: Some red-brown colouration Image: Some red-brown colouration 190 Some red-brown colouration <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-	-								
Image: Some red-brown colouration Image: Some red-brown colouration 190 Some red-brown colouration <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					-	-								
Colour change to light grey	q				192	-				1				
Colour change to light grey	1/0/0				-	-							11111	
Colour change to light grey	<u> </u>				-	23 -								
Colour change to light grey	קר				-	-								
Colour change to light grey					-	-				1				
Colour change to light grey					1 91	-				1				
Colour change to light grey	5				-	_								
Colour change to light grey	25				-	24.024 -								
Colour change to light grey	00				-	_					Some red-brown colouration		<u>iiiii</u>	
Colour change to light grey	2				-	-				1				
Colour change to light grey					1 90	-								
Colour change to light grey					-	-								
Colour change to light grey	3				-	25.025-								
Colour change to light grey					-					1	Distinct colour change to red-brown.			
Colour change to light grey	É.				-									
Colour change to light grey	Į				1 89	25.50				+ -	SANDSTONE. Predominantly medium		11111	
Colour change to light grey	F			[::目::]	-	_					grained with occasional coarse grains			
Colour change to light grey					-	26-					visible (quartz) with some lines, dry	D		
Colour change to light grey	5				-								11111	
Colour change to light grey	Ц Ц				-	_				1				
Colour change to light grey					1 88	_				1				
Colour change to light grey					-	_								
Colour change to light grey				[: 目:]	-	27 -								
Colour change to light grey					-									
Colour change to light grey					-	_								
Colour change to light grey	19				1 87	_								
	Ū				-	_								
	n E				-	28-								
					+					1				
	ž				+	_								
	la PTY LTO				1 86	_								
					-	_			:::::	1				
	Suan				F	29 11/20								
	AUS				F	20.0029				ł	Colour change to light grey			
					F					ł				
	CKe				1 85					1				
	ō				F					1				
	2012				-				<u></u>					
				This h	oreho		ould be	hear	in coni	uncti	END OF BOREHOLE AT 30.00 m	na c	standard no	tes
				1113 0	510110			544				. ıg 3		

Client:

Project: Borehole Locati Project Number:

Department of Resources, Energy and Tor RADWASTE 2 FISHERS RIDGE

tion:	FISHE
vr.	21454

2145479A

Drill Model/Mounting: Investigator MK-5/MACK

Driller:

FRBH01 0.0-5.6 m

FRBH01 5.6-11.3 m

FRBH01 11.3-17.0 m

FRBH01 17.0-22.6 m

FRBH01 28.35-33.9 m

FRBH01 33.9-39.7 m


FRBH01 39.7-45.1 m

FRBH01 50.85-56.6 m

and the second second	The Part of the	- States Lead	
рания и совется Rida	F O	2102701A	
FRBHO1 56.6m-> 62.		DEST 2/8/06	
	CORE LOSS	Coas Loss	
CORE LOSS SIGN - 58	In John	58-1m -> 59-6m	
ELECTRICE MANAGE ELECTRICE AND A DESCRIPTION	Core Loss 59:6 -> 60:6m		
JAN La	bi'in e	CORE Loss 61.1m -> 62.4m	-
Core Lo 611> 62-	4m		p2.6m

FRBH01 56.6-62.6 m

FRBH01 68.2-74.4 m

FRBH01 74.4-80.1 m

FRBH01 80.1-80.6 m

FRBH02 6.0-11.6 m

2102701A DEST FISHERS RIDGE FRBH02 7/8/06 11.6m -== 17.5m

FRBH02 11.6-17.5 m

FRBH02 17.5-23.05 m

FRBH02 23.05-28.7 m

FRBH02 28.7-31.0 m

TEST PIT NO.

MSTP01

	_	100 YEARS	>								SHEET 1 OF 7
Tes	ject: st Pit	Locati Numbe		RA Mu	partn DWA Ickaty 15479	STE y Sta				Date (Recor	Commenced: 5/3/08 Completed: 5/3/08 rded By: CRP Checked By: MKD
Exc	avat	ion Me	thod:	Jo	hn De	ere	400		face RL: ords:		613 m /9377 N 7935738 GDA_94 Z_53
٦	est l	Pit Info	ormatio	n			Field Material	Des	cription		
1		2	3	4	5	6	7	8	9	10 °	11
WATER	RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		HAND PENETROMETER 2 (kPa)	STRUCTURE AND ADDITIONAL OBSERVATIONS
∧ N F G W E	- - - - - - - - - - - - - - - - - - -		S	ampl 6576		ISM ISP	Silty SAND. Fine to coarse grained, red brown, low plasticity silt. Silty SAND. Fine to coarse grained, red brown, low plasticity silt, trace pale orange mottling. SAND. Fine to coarse grained, red. END OF TEST PIT AT 3.00 m				- End of hole at 3.0m

👁 Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING TEST PIT LOG RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08

TEST PIT ENGINEERING LOG

TEST PIT NO.

MSTP02

	-	100 YEARS	6									SHEET 1 OF
Pro Tes		t Loca			RA Mu	DWA Ickat	ASTE y Sta	of Resources, Energy and Tourism 2 ation			Date Reco	Commenced: 5/3/08 Completed: 5/3/08 rded By: CRP
	-	Numl tion N		. d.		45479 hn De		400	<u> </u>	rface RL:	-	Checked By: MKD 457 m
	Java			Ju.	30		eere	400		-ords:		N 7935528 GDA_94 Z_53
1	Test	Pit In	forn	natio	on	5	6	Field Material	Des 8	cription 9	10	11
+		2		3	4			1	0	9 RELATIVE DENSITY /CONSISTENCY	TER	
WATER	RL(m)	DEPTH(m)		TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	VS FB ST MD ST MD H VD H	HAND PENETROMETER (kPa)	STRUCTURE AND ADDITIONAL OBSERVATIONS
N F	-						SM	Silty SAND. Fine to coarse , red brown, low plasticity silt.	D			
G W	-	0.20	-	5	Sampl 16576	2	SM	Silty SAND. Fine to coarse , red, low plasticity silt.				rootlets
E	3 21		-									10011013
	-	0.60 —	-				SM	Silty SAND. Fine to coarse , red, low plasticity silt, trace pale orange mottling.				aeolian sand
		1										
	-		-									
/08	3 20		-									
1/9/1 18/0	-		-									
LUGS.GPJ GEVIECH.GDI 18/8/08	-	2										
J LUGO.GF	- 3 19		-				SP	SAND. Fine to coarse grained, pale orange / red, medium dense.				
	-											
JWASIE	-	0										
א א חפ	-	3			Sampl 16576	e		END OF TEST PIT AT 3.10 m				End of hole at 3.1m
	F		1									
10 IE0	3 18		1									
NEEKI	F		1									
ENG	Ļ		-									
1.c nois		4	-									
-ta. ver			-									
alia Pty i			-									
t Austra	3 17											
ckerhot	F											
ons Brin	F		1									
Lars	1				T	his te	st pit	log should be read in conjunction with Parsons Brinckerh	off's a	accompanyir	ng stanc	lard notes.

TEST PIT NO.

MSTP03

		100 YEARS	ŝ								SH	EET 1 OF 1
Tes	ject: st Pit	Locati Numbe		RA Mu	partn DWA Ickaty 45479	ASTE y Sta				Date Recor	Completed: 5/ ded By: C	3/08 3/08 RP KD
	-	ion Me			hn De		400		face RL:	325.	619 m	
—	oot	Dit Inf	ormatio				Field Materia		ords:	E 3/	'9094 N 7934954 G	DA_94 Z_53
1	esti	2	3	4	5	6		8	9	10	11	
WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIVE DENSITY /CONSISTENCY BL S SSL SS H	HAND PENETROMETER ((kPa)	STRUCTURE AND A OBSERVATIO	DDITIONAL NNS
F G W E	- - - - - - - - - - - - - - - - - - -	- - 1- - - - 2-				SM	Silty SAND. Fine to coarse grained, red brown, low plasticity silt.				rootlets	
	- 3 23 -		-			SP	SAND / SANDSTONE. Fine to coarse grained, red, trace pale orange mottling, weakly cemented.					
	- 322 - - - 321		-				END OF TEST PIT AT 3.20 m				End of hole at 3.2m	

C Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING TEST PIT LOG RADWASTE COMBINED LOGS. GPJ GEOTECH.GDT 18/6/08

TEST PIT NO.

MSTP04

		100 YEARS	5								SHEET 1 OF 1
Pro Tes		Locati Numb		RA Mi	partn DWA Ickat 45479	ASTE y Sta				Date Reco	Commenced:5/3/08Completed:5/3/08orded By:CRPChecked By:MKD
Exe	cava	tion Me	ethod:	Jo	hn De	eere	400		face RL:		
	Tost	Dit Inf	ormatio	n	-		Field Material		-ords:	E 3/	79064 N 7934562 GDA_94 Z_53
1		2	3	4	5	6	7	8	9	10 °	11
WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		HAND PENETROMETER d (kPa)	STRUCTURE AND ADDITIONAL OBSERVATIONS
N	-					SM	Silty SAND. Fine to coarse grained, red brown, low plasticity silt, rootlets.	D			
	- - - - - - - - - - - - - - - - - - -	0.20 	- - - - - - -	ampl 6576		SM	Silty SAND. Fine to coarse grained, red brown, low plasticity silt.				
	3 20 -					SP	SAND. Fine to coarse grained, red, trace silt, weakly cemented.				
	- 3-19 - - 3-18 -	- - - 4- - -					END OF TEST PIT AT 3.00 m				End of hole at 3.0m

C Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING TEST PIT LOG RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08

TEST PIT NO.

MSTP05

		100 YEARS	ġ									SHEET 1 OF 1
	ient:						of Resources, Energy and Tourism				Commenced:	5/3/08
	ojec				DWA						Completed:	5/3/08
		t Locat Numb			uckat 45479		ation				ded By: hecked By:	CRP MKD
	-	ation Me			hn De		400	S	face RL:		971 m	
	Cave		eulou.	30		eere	400		-ords:			180 GDA_94 Z_53
Г	Test	: Pit Inf	ormati	on			Field Material				-	
1	_	2	3	4	5	6	7	8	9 RELATIVE	10 ㎡		11
					ő	Ы			DENSITY /CONSISTENCY	ЛЕТЕ		
2	:	(E H		Щ	HICL	YMB	SOIL/ROCK MATERIAL FIELD DESCRIPTION	LURE	e	TRON	STRUCTURE	AND ADDITIONAL RVATIONS
WATER	RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL		IOISI	VS FB ST VL ST MD VST DD H VD	HAND PENETROMETER 5 (kPa)		
>	· œ			0		SM	Silty SAND. Fine to coarse grained, red / brown, low	D		ΤŒΞ		
F	F	0.20					plasticity silt, roots.					
G						SM	Silty SAND. Fine to coarse grained, red, low plasticity silt.					
E	-	-	-									
		-	1									
	-	-	-									
	64.0											
	3 18	1-	1									
	-	-	-									
	F	-	-									
æ												
8/6/0		-	1									
DT 1	-	-	-									
CH.G	047											
OTE	3 17	2-	1									
с С	-	-	-									
S.GP												
LOG	-	-	-									
INED	-	2.50				SP	SAND. Fine to coarse grained, pale orange / yellow,					
OMB							trace silt, weakly cemented.					
TEO	-	-	-									
WAS	3 16											
RAC							END OF TEST PIT AT 3.00 m				End of hole at	3.0m
FOG	-	-	-									
T PIT												
TES		-	1									
SING	-	_										
NEE												
ENG	-	-	-									
5.1	3 15											
ersion		4 -	1									
td. V€	-	-	-									
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING TEST PIT LOG RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08												
tralia	Γ	-	-									
f Aus	F	-										
erhof												
Brinck	F	-	-									
ons E	3 14											
Pars			-	-	- This te	st pit	log should be read in conjunction with Parsons Brinckerho	off's a	accompanvi	ng stand	lard notes.	
0						1				0		

TEST PIT NO.

MSTP06

		YEARS	ŝ										SHEET 1 OF
Clie			_				of Resources, Energy and Tourism	_			Comme		5/3/08
	ject:		an								Comple		5/3/08 CRP
		Locati Numb			uckat 4547		ation				rded By Checkeo		MKD
	-						400	<u></u>	face DL	-		<i>i</i> Dy.	
Exu	ava	tion Me	etnoù.	JU	ohn D	eere	400		rface RL: -ords:		.606 m 78985	N 79337	748 GDA_94 Z_53
Т	ost	Pit Inf	ormati	ion	1		Field Material				0000		TO OD
1	551	2	3	4	5	6		8	9	10			11
	Γ				ų	T_		T	RELATIVE DENSITY /CONSISTENCY	HAND PENETROMETER (kPa)			
		Ê			CLO	MBO	SOIL/ROCK MATERIAL FIELD DESCRIPTION	믭		OME	ST	RUCTURE	AND ADDITIONAL
WATER	Ê	DEPTH(m)	STD	SAMPLE	GRAPHIC LOG	USC SYMBOL		MOISTURE	ਜ਼ਖ਼ੑੑੑੑਸ਼ਫ਼ੑੑੑੑ	a) (D)		ORSE	RVATIONS
WA	RL(m)	DEF	FIELD TEST	SAN	GR				VST ST VST H	HAN (KP:			
F						SM	Silty SAND. Fine to coarse grained, red brown, low plasticity silt.	D					
G	-	0.20	-			SM	Silty SAND. Fine to coarse grained, red, low plasticity						
w							silt.						
Е	F	-				:							
						:							
	3 14	-	1			:							
	L	-				:							
						:							
	-	1-	-			:							
	F	-				:							
						:							
	-	-	1			:							
	3 13	-				:							
	0.0												
	-	1.80	-			SM	Silty SAND. Fine to coarse grained, pale orange /	-					
							yellow, low plasticity silt, weakly cemented.						
	-	2-	1			:							
		-		Samp 1657	01 8 - - - 66 -	:							
		2.30											
	-					<u> </u>	SANDSTONE. Fine to coarse grained, medium to high strength.	\vdash			Refu	sal at 2.4r	n
							END OF TEST PIT AT 2.40 m						
	3 12	-											
	-	-	1										
	Ļ	3-	-										
	-	-	-										
	Γ	-											
	011												
	3 11	_											
	Ļ	-	-										
	-	4 -	-										
					1								
	F	-	1										
	L	-											
		-											
	3 10	-	-										
					1								
ı	F	-	-										
					1								

Par

0

TEST PIT NO.

MSTP07

—		100 YEAR5 @	ŝ								SHEET 1 OF 1
Tes	oject: st Pit	Locati Numbe		RA Mu	partn DWA uckaty 45479	ASTE y Sta				Date (Recor	Commenced: 5/3/08 Completed: 5/3/08 rded By: CRP checked By: MKD
Exc	avat	ion Me	ethod:	Jo	hn De	ere	400		face RL: -ords:		958 m /8556 N 7933649 GDA_94 Z_53
			ormatio	_			Field Material				
1	<u> </u>	2	3	4	5	6	7	8	9 RELATIVE	10 10	11
WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		VD VETROM	STRUCTURE AND ADDITIONAL OBSERVATIONS
R F G	-		-			SM	Silty SAND. Fine to coarse grained, red brown, low plasticity silt, rootlets.	D			
W	- - 3 09 -	0.30 - - 1- -				SM	Silty SAND. Fine to coarse , red, trace pale orange mottling, low plasticity silt.				
	-	1.50				SP	SAND / SANDSTONE. Fine to coarse grained, pale yellow / orange, weakly cemented, trace silt.				
	<u>308</u> - - 307 -						END OF TEST PIT AT 2.00 m				Refusal on high strength sandstone at 2.0m
,	- - - 305	- 4- - -									

C Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING TEST PIT LOG RADWASTE COMBINED LOGS. GPJ GEOTECH.GDT 18/6/08

P	
	100 YEARS ®

TEST PIT NO.

MSTP08

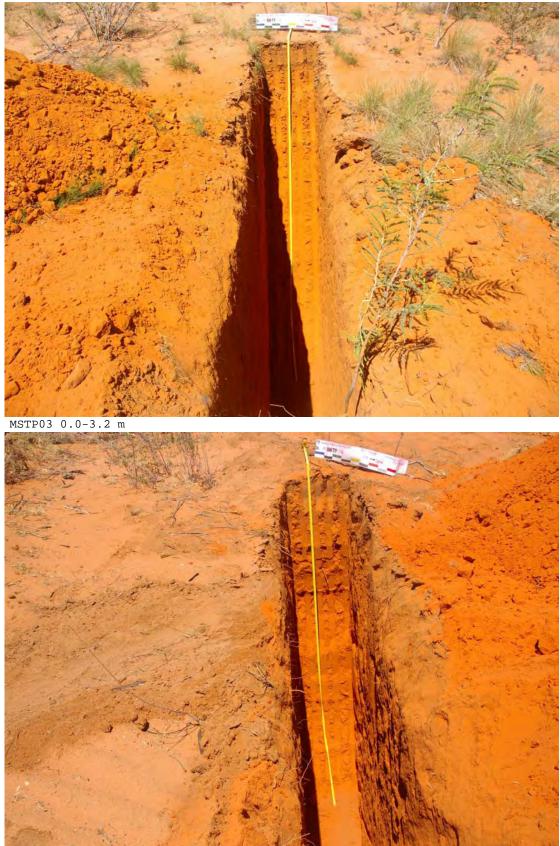
		100 YEARS @											SHEET 1 OF 1
Tes	oject: st Pit	Locati		RA Mu	partn DWA Ickaty 15479	ASTE y Sta				Date (Recor	Comme Complet ded By:	ted:	5/3/08 5/3/08 CRP MKD
	-	tion Me			hn De		400		face RL: -ords:	301.	362 m		1 GDA_94 Z_53
	Test	Pit Info	ormatio	n			Field Material						
1		2	3	4	5	6	7	8	9	10 07		1	1
WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		HAND PENETROMETER 3 (kPa)	STF	RUCTURE A OBSER	ND ADDITIONAL /ATIONS
R G W E	- 301 - - 300 - - - 299	- - 1- - 1.70 - - - - - - - - - - -	c				Silty SAND. Fine to coarse grained, red brown, trace silt. GRAVEL. Fine to coarse grained, sandstone gravel fine to coarse grained, low strength, highly weathered, pale orange / brown with iron (laterite) staining.						
	- 298 - 297 - 297	- 3- - - 4- - - -			<u>•</u> [}		END OF TEST PIT AT 2.60 m				End o	f hole at 2.	Sm

Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING TEST PIT LOG RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08

TEST PIT NO.

MSTP09

Tes	ject: st Pit	: t Locati Numbe		RA Mu	partn DWA Ickaty 15479	STE y Sta				Date Recor	Commenced: Completed: rded By: Checked By:	5/3/08 5/3/08 CRP MKD
Exc	ava	tion Me	thod:	Jo	hn De	ere	400		face RL: -ords:		493 m 7226 N 7933	687 GDA_94 Z_53
	est	Pit Info					Field Material				1	
WATER 1	RL(m)	DEPTH(m)	FIELD ⁶	4 SAMPLE 4	GRAPHIC LOG	0 NSC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	9 RELATIVE DENSITY /CONSISTENCY BJ J L S S S S	HAND PENETROMETER 0 (kPa)		11 E AND ADDITIONAL ERVATIONS
F G W E	<u>~</u> - 305 -	0.20		8ampl 16576		SM	Silty SAND. Fine to coarse grained, red brown, low plasticity silt. Silty SAND. Fine to coarse grained, red, low plasticity silt.	<u>≥</u> D		H d X)	rootiets	
	- - -					¢	fine to coarse grained.				Refusal on hig sandstone at	n strength 1.3m
	- 3 03 - -	- - 3-										
	- 3 02 -	- - - 4										
	- 3 01 -	-										


TEST PIT NO.

MSTP10

		100 YEARS									SHEET 1 OF 1
Pro Te		Locati Numbe		RA Mu	partn DWA uckaty 45479	STE y Sta				Date (Recor	Commenced: 5/3/08 Completed: 5/3/08 rded By: CRP checked By: MKD
Ex	cavat	tion Me	thod:	Jo	hn De	ere	400		face RL: ords:		526 m 76820 N 7933824 GDA_94 Z_53
	Test	Pit Info					Field Material				
WATER	RL(m)	DEPTH(m)	S FIELD	4 SAMPLE	GRAPHIC LOG	00 USC SYMBOL	7 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	9 RELATIVE DENSITY /CONSISTENCY 8 H J M M M M M M M M M M M M M M M M M M	HAND PENETROMETER 0 (kPa)	11 STRUCTURE AND ADDITIONAL OBSERVATIONS
F G W E	- 309 - -	- - - 1_					Sandy GRAVEL. Fine to coarse grained, pale orange / red, fine to coarse sand, some pebbles, quartz sand / gravel, sandstone highly weathered, low strength, recovered as sandy gravel, increasing strength with depth, becoming pale yellow.	D			
TECH.GDT 18/6/08	- 308 -				<u>). </u>		END OF TEST PIT AT 1.20 m				Refusal on high strength purple/red silt/sandstone at 1.2m
ASTE COMBINED LOGS.GPJ GEO	- - 307 -	-									
GINEERING TEST PIT LOG RADW	- - 306 -	3									
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING TEST PIT LOG RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08	- - 3 05	- 4- - -									
Parsons Brinc	-	_		1	This tee	st pit	log should be read in conjunction with Parsons Brinckerh	off's a		ng stand	lard notes.

MSTP02 0.0-3.1 m

MSTP04 0.0-3.0 m

MSTP06 0.0-2.4 m

MSTP08 0.0-2.6 m

MSTP09 0.0-1.3 m

MSTP10 0.0-1.2 m

Ø

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

Client: Project: Borehole Project I Drill Moc		e L			RAI	DW/ ckat	AST Jy S			irces	Energy and Tourism			Date Com Date Com Recorded Log Check	pleted: By:	2/3/08 3/3/08 NH/CRP MKD
			Mou liame				Ма	ck			Hole Angle: 90° Bearing:		rface RL: -ords:	321.253 E 379138		7935553.642 GDA_9
	Bor	eho	ole Ir	nforn	nation						Field Materia	al D	escription			
1	DRT 5	3	с	W		rery 5	6	7	l(m)	GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION		0 11 INFERRED STRENGTH Is(50) MPa 000-00 U U U U U U U U U U U U U	12 AVERAGE DEFECT SPACING mm		13 STRUCTURE AND ADDITIONAL
	SUPPORT	WATER				CORE ^C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPH	COMMENCE CORING AT 0 m	i te	KH&L KE			OBSERVATIONS
)))		-			Solid pipe			-	_	-	CORE LOSS 0.0m-1.5m					
					section 0.1m-22.2m Cement grout 0.0m-6.0m	0	0	3 21 -	-	\						
					0.011-0.011			-	- 1-	Х						
								3 20	-							
							0	-	1.5		SAND. Fine to medium grained, red brown, loose to medium dense, some fines, dry.					
								- 3 19	2-							
								-	-							
								-	- 3-							
						100	20	3 18 -	-							
								-	3.9		SANDSTONE. Fine to medium	-H\			-	
								- 3 17	4		grained, light grey with orange brown and red brown bands, very low to low strength, highly to extremely	E'	N			
									-		weathered.					
						100	50	- 3 16	5-							
								-	-							
					Backfilled 6.0m-18.6m			-	- 6-	• • • • • •					Samp	SityBandaron
								3 15 -	6. 2 _ 6.5	· ·	SILTSTONE. Fine grained, light grey / white, slightly weathered, medium \ to high strength variable.				F Reater.	e, no recovery due to quartz infilled
						100	65	-	- 6.9 7 -		SANDSTONE. Fine grained, light grey to white, medium to high strength, slightly weathered to fresh,				-	ation cracks at 6.5m
								- 3 14	7.2	· ·	\ becoming fine to medium grained \ with some coarse grains at 6.8m. \ SILTSTONE. Very fine grained, light	i j l			- nigniy	fractured
									7.7		grey / white, slightly weathered, medium to high strength. SANDSTONE. Fine grained, light				rythmic	sequences/banding
						100	100	- 3 13	8-	· ·	grey to white, medium to high strength, slightly weathered to fresh Interlaminated SILTSTONE and	/			near ve	ertical fracture
						-	Ť	-	-	· ·	SANDSTONE. Sandstone with fine to medium grained quartz, medium to high strength, slightly weathered to					
								-	8. <u>7</u> 9 –		fresh.					nfilled (quartz)
								3 12 -	_		SANDSTONE. fine to coarse grained, grey to red-brown, slightly to highly weathered, medium strength,				dessic	ation crack
								-	-		angular to sub-rounded quartz, fining upwards				- becom	ing very coarse at

BOREHOLE NO.

Pr Bo	ore	ect: ehol	e Lo	ocati nbei		RAD)W/ kat	AST Iy Si			rces	Energy and Tourism			Date Com Date Com Recorded Log Check	oleted: By:	2/3/08 3/3/08 NH/CRP MKD
					nting: eter:	Mari 96 n		Ma	ck			Hole Angle: 90° Bearing:		face RL: ords:	321.253 ı E 379138		935553.642 GDA_9
	I	Bor	eho	ole Ir	nform	ation						Field Materia	al De	scription			
		SUPPORT N	WATER	С	4 WE ONSTR		CORE COVERY	6 0	RL(m)	DEPTH(m)	GRAPHIC LOG	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MEATHERING 1	INFERRED STRENGTH Is(50) MPa	SPACING mm		13 STRUCTURE AND ADDITIONAL OBSERVATIONS
HO3 ME		SU	/M				100 CC		 3 11 - - - 3 10 -	E - - - - - - - - - - - - -		SILTSTONE/CLAYSTONE. light grey to white, very fine to coarse grained, with some medium grained red-brown spots, core is of medium strength but can be scratched by knife, some pockets fine to medium grained (continued)			1000	phenocry nail can lustre, w (soapsto Sample Chert pie enterolith througho	urse grained ysts of soft (finger scratch) white, dull hite streak ne) 10.65m-10.95m eces at 10.85m, nic. Marbling effect nut. Mudstone with neral (talc?).
									- - 309 -	- 11.8 12 - 12.3 - 12 6		BASALT. Fine grained (crystalline texture), purple with white , highly to extremely weathered, low to very low strength, quartz, feldspar, augite (green) BASALT. light grey to white, very fine to coarse grained, with some	HW EW			Box 2 core eas	ily broken by hand
						-	100	100	- 308 - -	- 13 - - - - - 14 -	· _ /	medium grained red-brown spots, core is of medium strength but can be scratched by knife, some pockets fine to medium grained				white min calcareo highly we easily in	nt augite and soft neral (talc?), not us, sand grains, sathered, break up hand. 13.8m-13.9m
							100	100	- 307 - - 306 -			BASALT. Fine to very coarse grained, grey with grey layers, extremely weathered, extremely low strength, some brown layers throughout (~100mm). BASALT. Brown with green mineralisation, very fine to coarse grained (crystalline), extremely weathered, extremely low strength, augite mineral throughout				 Fault, sli 	ckensides, augite.
							100	100	- - 3 05 -	- 16 <i>-</i> ^{16<u>1</u> -}		(sometimes along banding)- horizontal. BASALT. Fine to coarse grained (crystalline), brown with white minerals throughout, red brown, extremely weathered, extremely low	_				
							100	100	- - 304 - -	- 17 - - - -		strength.				- Box 3	
					Be	entonite al .6m-20.0m	100	100	- 303 - - -	18 - - - 19 -	\wedge					black mi	gite (<10%), some neralisation, ese oxide?
						-			3 02 - -	-	\wedge						in black sation to 30% at so increase in

CORED BOREHOLE ENGINEERING LOG

BOREHOLE NO.

	=			•															MSBH01 SHEET 3 OF 5
Pro Bor	ent: ject eho ject	le L		ition: er:		RAI	DW/ ckat	AST ty S			urces	, Energy and Tourisr	n				Date Com Date Com Recorded Log Chec	pleted: By:	i: 2/3/08 3/3/08 NH/CRP MKD
				untin	-	Mar 96 r			ck			Hole Angle:			ace R	L:	321.253		
OI				neter		ation	nm					Bearing:	 eld Materia		ords:	ion	E 3/913	5.394 N	1 7935553.642 GDA_94
1	2	3			4		5	6		7	8	9		10	1	1	12		13
	SUPPORT	WATER		CONS	WEL	L JCTIOI	CORE ^C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD	DESCRIPTION	WEATHERING	INFEF STREI Is(MI 0.3 0.3 0.3 0.3 0.3 0.4 0.0 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0	NGTH 50) ₽a	AVERAGE DEFECT SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS
	0	~			Slott	ted	100 50 100 100	53 0 0 20 100	 <u>∞</u> 301 - - 300 - - 299 - - 298 - -<	22- 22- 22- 23- 23- 23- 23- 23- 24-		BASALT. Crystalline, ve grained, mainly brown w grey-green yellow brown black mineralisation thro (30%), some colour ban below 28.9m ~100 to 15 20° (ight and dark band weathered, medium to r gritty feel.	hith and metallic bughout ding noted 0mm thick at s), highly	× HW				water open l Water Highly	r loss v fractured, near al open and infilled
	15	104/20	008.				100 100		- - 2966 - - - - 295 - - - - - -	- 25 - - - - 26 - - - - - - - - - - - - - - - - - - -								rough	al fracture, clean, , irregular use in strength and
							100	100	2 94 - - - 2 93	- - - 28 –	,							core c crysta	uality, becoming more

Parsons Brinckemoff Australia Pty Ltd. Version 5.1 ENGINEERING CORED BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS. GPJ GEOTECH. GDT 18/6/08

This borehole log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.

29

292

100

BOREHOLE NO.

MSBH01

Pro Bo		le Lo	ocation: mber:	RAD	WA: katy	STE / St			irces	, Energy and Tourism			Date Com Date Com Recorded Log Check	oleted: By:	2/3/08 3/3/08 NH/CRP MKD
			Mounting: iameter:	Mark 96 m		Mac	:k			5		face RL: ords:	321.253 r E 379138		7935553.642 GDA_9
		_	le Informa	ation						Field Material	_	· ·			
METHOD 1	SUPPORT	WATER 0	4 WEI CONSTRI		DVERY	RQD	L(m)	DEPTH(m)	GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING 01	INFERRED STRENGTH Is(50) MPa	12 AVERAGE DEFECT SPACING mm		13 STRUCTURE AND ADDITIONAL OBSERVATIONS
HQ3 N					100 100 100 100			$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		BASALT. Crystalline, very fine to fine grained, mainly brown with grey-green yellow brown and metallic black mineralisation throughout (30%), some colour banding noted below 28.9m ~100 to 150mm thick at 20° (light and dark bands), highly weathered, medium to high strength, gritty feel. <i>(continued)</i>			 	 Fractur rough, Occasis through with wh Darker continu segrega (**?) nc Fractur rough, augite. 1.5m un recover 1.5m un recover Fractur rough, augite. Fractur Fractur Fractur Fractur Fractur 	onal similar fractures lout, some infilled lite mineral (calcite) / lighter banding, es throughout, some ation of minerals ted in places e, 60°, irregular, infilled with black l. e, 60°, irregular, infilled calcite,

BOREHOLE NO.

Bore	ect: ehol	le L	ocation: nber:	Depa RAD Muc 2145)WA kat	AST by S	FE 2		irces	, Energy and Tourisn	1				Date Com Date Com Recorded Log Checl	pleted By:	: 3/3/08 NH/CRP
			Mounting: iameter:	Marl 96 m		Ма	ack			Hole Angle: Bearing:	90° 	Surf Co-o			321.253 E 37913		N 7935553.642 GDA_94
		ehc	ole Informa	ation						Fi	eld Materia	al De	scrip	otion			
1	2	3	4		5	6		7	8	9		10	_	11	12		13
METHOD	SUPPORT	WATER	WEL CONSTRU		CORE [–] RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD	DESCRIPTION	픈		ERRED ENGTH s(50) MPa	AVERAGE DEFECT SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS
2	0)	>				<u> </u>	-		$\overline{\mathbf{X}}$								
							281 - 280 - 280 - 279 - 278 - 278 - 278 - 2777 - 277 -	- $ -$		END OF BOREHOLE A	Γ 40.20 m						3H01 terminated at
							2 72 - - -	-	h.c.	ad in conjunction with Pars			L				

	ect: ehol	e L	ocation: mber:	Departe RADW/ Muckat 214547	ASTE : ty Stat	2	source	es, E	nerg	y an	d Tourism	Date Commence Date Completed: Recorded By: Log Checked By:	24/2/08 NH
			Mounting: Diameter:	Mark V 150 mn		ζ.			Drille Drille		Surface RL c No: Co-ords:		N 7934574.053 GDA_9
			Boreh	ole Infor	matio	n					Field Material I	Description	
1	2	3	4		5	5	6	7	8	9	10	11 12 RELATIVE	13
MEIHOU	SUPPORT	WATER	WE CONSTRI	LL UCTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		STRUCTURE AND DITIONAL OBSERVATIONS
942				skfill m-18.9m	- - - - - - - - - - - - - -						SAND. Fine to coarse grained, red brown, angular to sub angular, dry, loose to medium dense, quartz.		ace clay recovered

MSBH02

BOREHOLE ENGINEERING LOG

ļ

Client: Project: Borehol Project	le Lo	ocation: nber:	Departm RADWA Muckaty 2145479	STE 2	2	source	es, E	nerg	y an	d Tourism	Date Commenced Date Completed: Recorded By: Log Checked By:	d: 23/2/08 24/2/08 NH MKD
		Mounting: iameter:	Mark V I 150 mm					Drille Drille		c No: Co-ords:		N 7934574.053 GDA_9
		Boreh	ole Inforn	nation	1					Field Material	Description	
METHOD T	WATER	4 WEI CONSTRI	L JCTION	5 RL(m)	DEPTH(m)	FIELD 9	2 SAMPLE 2	©RAPHIC LOG ∞	USC SYMBOL	10 SOIL/ROCK MATERIAL FIELD DESCRIPTION	11 12 RELATIVE DENSITY CONSISTENCY W N S S S S S S S S S S S S S	13 STRUCTURE AND ITTIONAL OBSERVATIONS
RAB N STATES STA			tonile seal m-20.3m	- - - - - - - - - - - - - - - - - - -						BASALT. Fine to medium grained, light grey to white, with black spots / green throughout, medium to very high strength, slightly to highly weathered, abundant quartz, <i>(continued)</i>	I I I I I Pre I I I I I I Pre I I I I I Pre bat I I I I Pre bat Pre I I I I Pre Co Gre I	example at 10.0m. poblems getting rods ck down hole (partial lapse) rd, fine grained, some k red porphrytic ture - put hammer on lour change to light by rease in green mineral me trace green clay ghtly lower strength ow 15m edominantly green our below 16m, undant green mineral ck recovered as green rown sand with undant fines pperties of a clay

MSBH02

D	
	100 YEARS @

BOREHOLE ENGINEERING LOG

Client: Project: Borehol Project	le Lo	ocation: mber:	Depart RADW Mucka 214547	ASTE ty Sta	2	source	es, E	nerg	y an	d Tourism	Da Re	ate Commen ate Complete ecorded By: g Checked E	d: 24/2/08 NH
		Mounting: iameter:	Mark V 150 mr		k			Drille Drille		Surface RL c No: Co-ords:	:	322.839 m E 379064.87	7 N 7934574.053 GDA
		Boreh	nole Infor	matio	on					Field Material	Des	cription	
1 2	3	4			5	6	7	8	9	10	1'		13
METHOD SUPPORT	WATER	WE CONSTR	ELL	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURF	DENSITY /CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
RAB	104/20		ter pack J.3m-41m	- - - - - - - - - - - - - - - - - - -	 21 22 22 23 23 24 25 25 25 26 27 28 28 29					BASALT. Fine to medium grained, light grey to white, with black spots / green throughout, medium to very high strength, slightly to highly weathered, abundant quartz, <i>(continued)</i>			Mainly red brown / brown colour, less green mineral content - becoming slightly moist Mainly brown colour below 22m Switch to blade at 24m Increase in moisture content, recovered as brown sand, fine to medium grained with many fines. Decrease in moisture content - dry.

MSBH02

BOREHOLE ENGINEERING LOG

Image: Solution of the second seco	2/08	: 24/2/08 NH	Date Commenced Date Completed: Recorded By: Log Checked By:		d Tourism	y an	nergy	es, E	source	2	ASTE ty Sta	Depart RADW Mucka 214547	ocation: mber:	e L	ect: ehol		
1 2 3 4 5 6 7 8 9 10 11 12 13 0 10 11 12 13 Image: standard s	4.053 GDA	N 7934574.05			c No:					k							
O D LIG D LIG			escription	Field Material D						on	matio	ole Infor	Boreh				
grup de		13		10		9	8	7	6	5			4	3	2	1	
292 -	SERVATIONS	STRUCTURE AND DDITIONAL OBSERVA	MOISTURE A C F B C C C F B C C C F B C C C F B C C C C F B C C C C C C C C C C C C C C C C C C C			USC SYMBOL	GRAPHIC LOG	SAMPLE	FIELD TEST	DEPTH(m)	RL(m)	L JCTION	WEI CONSTRU	WATER	SUPPORT		
Image: constraint of the second se	our at and r and r and r and r and r and r and r and r	ecoming moist.	- Les -	grained, purple / brown, strength, highly	BASALT. Fin medium to hi weathered.					30.00 - - - - - - - - - - - - -	- - - - 292 - - - 291 - - 289 - - - 288 - - - 288 - - - 288 - - - 288 - - - 288 - - - 288 - - - 288 - - - 288 - - - -						

MSBH02

TOP .

BOREHOLE ENGINEERING LOG

HEET 5 OF 5

Prc Boi		le L	ocation: mber:	RADW	ASTE 2 Aty Stat	2	source	es, E	inerg	y ar	nd Tourism	Da Re	te Comme te Comple corded By: g Checked	ted: 24/2/08
			Mounting: Diameter:	Mark \ 150 m					Drill Drill		ic No: Surface RL Co-ords:		322.839 m E 379064.8	877 N 7934574.053 GDA_
			Boreh	ole Info	rmatior	۱				_	Field Material	Des	cription	
METHOD 1	SUPPORT N	WATER	4 WE CONSTRU		s RL(m)	DEPTH(m)	FIELD 9	2 SAMPLE	GRAPHIC LOG	nsc symbol 🛛	10 SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE 11	RELATIVE DENSITY /CONSISTENCY	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
RAB ME	ns	/M			군 - - - 2 82	DE - -	TE	SA		SU	MUDSTONE. Fine grained, colour change to white with some black spots, siliceous, high to very high strength. (continued)	MO	Состания 	
					- - - 281 - -	-41 - - - - 42 - -					END OF BOREHOLE AT 41.00 m			End of Hole at 41.0m
					- 280 - - - - 279	- 43- - -								
					- - - 278 -	44 - - 45 -								
					- 2777 - - - -	- - 46 - - -								
					2 76 - - - - 2 75 -	47								
					- - 2 74 - -	- - 49- -								
					- 2 73	-					ion with Parsons Brinckerhoff's accompany			

BOREHOLE NO.

MSBH03

	ject: eho		cation:	RAI	DW/ ckat	AST Jy S			rces	, Energy and Tourism	1			Date Com Date Com Recorded Log Chec	pleted: By:	4/3/08 CRP/NH	
			lounting: ameter:	Mar 96 r		Ма	ck			Hole Angle: Bearing:			ace RL: ords:	314.606 E 37896		N 7933736.591 GDA_9	4 Z_5
	Boi	rehol	e Inform	ation						Fi	eld Material	l De	scription	1			
1	2	3	4		5	6	7		8	9		10	11 INFERRED	12 AVERAGE		13	
METHOD	SUPPORT	WATER	WE CONSTR		CORE ^C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD	\ T 0 m	WEATHERING	STRENGTH Is(50) MPa 0000-0 UJJET	I DEFECT SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS	
НQ3			0.1 Ce	lid pipe ction Im-11.35n ement but I5m-5.0m	_		- - 3 14 -	0. 2 - 0.8		SAND. Fine to coarse, b SAND. Fine to coarse, re plasticity silt.	ed, some low	_			-		
							-	1 — 1.2 1.4	, , ,	Gravelly SAND. Fine to c fine to medium gravel. CORE LOSS 1.25m-1.45 SANDSTONE. Fine to c	5m — — — — —	HW			-		
		X///X///			17	25	3 13 - - -	- 2- 2.2		grained, pale yellow / ora fine grained quartz grave subrounded to angular, f matrix. Pebbly SANDSTONE. Fi	ine grained				- calcr	rete nodule	
					75	20	- 3 12 -	- 2.5 2.7 - 3-	X	grained, pale yellow orar grained, quartz gravel, su angular, fine grained ma CORE LOSS 2.55m-2.7r	nge, fine ubangular to trix/ m/	1			-		
					63	2	- - 3 11	3. <u>1.</u> - - 3.7	\times	Pebbly SANDSTONE. Fi grained, pale yellow orar (grained, quartz gravel, si (angular, fine grained ma CORE LOSS 3.15m-3.7r Pebbly SANDSTONE. Fi grained, pale yellow orar	nge, fine ubangular to / trix/ m ine to coarse				-		
					9		- - - 3 10	4 4 .0 4.0 - -		grained, quartz gravel, su angular, fine grained ma Sandy CLAY. Medium to plasticity, pale orange to fine to medium grained. SANDSTONE. Fine to co	ubangular to , trix low pale white, /						
			se	entonite al 0m-6.0m	100	53	- - - 3 09	4.8 5 - -		Grained, white to pale brok lorange / red brecciated, sections SANDSTONE. Fine to m grained, pale white to pal some pale grey / white s	own / grey, infilled / / nedium le pink,	/					
			bri 6.0	avel dged at)m pth			-	^{5.7} 6 –		Matrix. SANDSTONE. Fine to m grained, pale pink, brecc fractured (angular) with p white mudstone / siltston	iated / bale grey /	-		·	50mi	el patch bridged m clay, pale grey / e, medium to high icity	
					100	66	3 08 - -	- 7- 7. <u>1</u>		SANDSTONE. Fine to m	odium — — –	_			-		
							- 3 07 -	- - 8-		grained, pale pink, quart cemented fractures at 5- spacing, infilled with mud siltstone, <1mm wide, m highly weathered, mediu	z, infilled 15mm dstone / oderately to						
					100	69	- - 306 -	6 0		strength, >90% quartz.							
					100	55	- - 3 05 -	-							- slow	drilling	

💿 Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING CORED BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08

BOREHOLE NO.

4/3/08 4/3/08 CRP/NH MKD	: .	pleted By:	ate Com ate Com ecorded og Check	D R		1	lourism	Energy and	irces			AST ty S	DW/ ckat	RAI	cation: ber:	e Lo	ect: ehol	Bor
736.591 GDA_9	N 7933		314.606 I E 378968	rds:	Co-o		-	Hole Bear			ck		mm	: 96 r	lountin ameter	e Di	ehol	
13			12	cription	Des	eld Materia	9 Fi		8	7	-	6	5	mation 4	e Infor	eho 3	Bor 2	1
RUCTURE AND ADDITIONAL BSERVATIONS			AVERAGE DEFECT SPACING mm	INFERRED STRENGTH Is(50) MPa	EATHERING	DESCRIPTION		SOIL/ROCK MATE	DOJ	DEPTH(m)	RL(m)				CONS	WATER	SUPPORT	METHOD -
m-15.4m						e pink, thered, , highly with thin / clay <1mm e cemented grey / white.	NDSTON d, modera digiti wear strength wemented orange silt al fracture tone, pale	SANDSTONE grained, quart moderately to medium to hig fractured and layers of red / thick, occasio with silt / muds Quartz rich S/ medium grain weathered, m pale pink, infil with silt / muds 15-50mm spa		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \\ \\ \\ \end{array} \\ \\ 11 \\ \\ \\ \\ 11 \\ \\ \\ \\$	U)12 -	38 54 58 53 38 53 53 52	100	Slotted pipe section 11.35m-35.3		14M		HQ3 MET
										- - - 17 - - - - - - - - - - - - - - - - - - -	- - - 2 97 - -	38	100					

BOREHOLE NO.

Pro Bo	ent: ojec reho ojec	t: ble L		ation:	RAD)WA kat	AST y S			irces	Energy and Tourism		[F	Date Comm Date Compl Recorded B Log Checke	eted: y:	SHEET 3 OF 4 4/3/08 4/3/08 CRP/NH MKD
				ounting: neter:	Mar 96 n		Ма	ck			0		ace RL: ords:	314.606 m E 378968.4		'933736.591 GDA_94
	Bo	oreh	ole	Informa	ation						Field Material	Des	scription			
1	2	3		4		5	6	7	,	8	9	10	11 INFERRED	12 AVERAGE		13
METHOD	SUPPORT	WATER		WEI CONSTRU	JCTION	CORE - RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	STRENGTH Is(50) MPa	DEFECT SPACING mm		STRUCTURE AND ADDITIONAL OBSERVATIONS
HQ3						100	35	- - 294 - -	- 20# - - 21 - - -		SANDSTONE. Medium to coarse grained, pale pink / orange, highly to extremely weathered, very low to medium strength, highly fractured.	MW- HW EW			Sample 2	20.3m-20.65m er
						67	10	2 93 - - -	- - 22 - - 22 4		SAND. Coarse grained, very weak extremely weathered SANDSTONE.	-				
					-			2 92 - -	- 22€ 23- 23 2		SAND. Fine grained, very weak extremely weathered SANDSTONE.	-				
						100	0	- 2 91 -	23:4 - - 24 -		CLAY. White, low to medium plasticity. SANDSTONE. Fine to coarse grained, pale pink, extremely to highly weathered, very low to low strength, highly fracture and broken, bedding <10° from horizontal.	-				
						100	0	- 2 90	-							
					-	100	0	-	25 - - -							
					-	100	0	2 89 - - -	- 26- -							
						71	0	2 88 - -	- - 2727-6		SANDSTONE. Fine to coarse	-			rattling fr	rom rig
						100	0	- 2 87 - -	- - - 28 - -		grained, pale grey / pink, extremely to highly weathered, very low strength.					
					-	100	0	- 2 86 - -	28 <u>3</u> - 28 <u>7</u> 29 -	\mathbf{X}	CORE LOSS 28.35m-28.75m SANDSTONE. Fine to coarse grained, pale grey / pink, extremely to highly weathered, very low strength, highly fractured throughout with numerous sandy clay seams				losing wa	ater below 28.35m
					-	100	0	- 2 85 -	-		numerous sandy clay seams.					

BOREHOLE NO.

SHEET	4	OF	

Bor	ject: ehol	le Lo	ocation: nber:	RAI	DW/ ckat	AST Iy Si			irces	Energy and Tourisn	n			Date Comr Date Comp Recorded E Log Check	oleted: 3y:	: 4/3/08 4/3/08 CRP/NH MKD
			Mounting iameter:	: Mar 96 r		Ma	ck			Hole Angle: Bearing:	90° 		face RL: ords:	314.606 n E 378968		7933736.591 GDA_94
	Bor	reho	le Inforn							Fi	eld Materia	al De	scription			
METHOD 1	SUPPORT	WATER		4 ELL RUCTION	CORE ^C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG ∞	9 SOIL/ROCK MATERIAL FIELD	DESCRIPTION	픈	11 INFERRED STRENGTH Is(50) MPa COCCCCC UDDOCCCCC UDDOCCCCCCCCCCCCCCCCC	12 AVERAGE DEFECT SPACING mm		13 STRUCTURE AND ADDITIONAL OBSERVATIONS
HQ3				Filter pack 10.15m-35.3	^{5m}	0	- - 2 84 - -	- - - 31 –		SANDSTONE. Fine to c grained, pale grey / pink highly weathered, very k highly fractured through numerous sandy clay se (continued)	, extremely to ow strength, out with	1100	7669			
					93	0	- 283 - - - 282	- - 32 – - -								
					83	0	-	- 33 – -	· · · · · · · · · · · · · · · · · · ·						- sand la	ayer ~100mm
					100	99	- 2 81 - - -	- - 34 -								
					100	56	2 80 - - -	- - 35 – -		END OF BOREHOLE A	T 35.35 m				Boreho 35.35n	ble terminated at
							2 79 - -	- - 36 - -							00.001	
							2 78 - -	- 37 -								
							- 2 77 -	- - 38 -								
							- 2 76 -	- - - 39 –								
							- - 2 75 -	-								

BOREHOLE ENGINEERING LOG

BOREHOLE NO.

Client: Projec Boreho Project	ole L		RADW	ASTE 2 ty Station		es, E	inerg	y an		Date Commenc Date Completed Recorded By: Log Checked By	1: 24/2/08 NH
Drill Mo Boreho			-				Drille		Surface RL: c No: Co-ords:		3 N 7933479.24 GDA_9
			orehole Infor						Field Material D		<u>, 1,1,2,2,4,0,7,2</u>
1 2	3		4	5	6	7	8	9	10	11 12	13
METHOD SUPPORT	WATER	CON	WELL ISTRUCTION	RL(m) DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOIST VS FE ST M VST D H VI	STRUCTURE AND DDITIONAL OBSERVATIONS
BAS 1	5/04/20		Solid pipe section 0.1m-10.0m Cement grout 0.15m-3.0m Backfilled 3.0m-7.2m Bentonite seal 7.2m-8.5m Filter pack 8.5m-28m	301 					SAND. Fine to coarse grained, red brown, dry, angular to subangular, some fines, medium dense SAND. Fine to coarse grained, light brown, with some fine to medium subrounded gravel, dry, medium dense. Pebbly SANDSTONE. Fine to coarse grained, brown to red brown, subangular to subrounded, fine to coarse grained angular to subrounded gravel and pebbles, very low to low strength, highly weathered. SANDSTONE. Fine to coarse grained, light grey to white, some fine to coarse gravel and pebbles, some very fine grained from recovered (mudstone), highly to moderately weathered, high to very high strength, dry.		Air blade from surface

MSBH04

BOREHOLE ENGINEERING LOG

100

SHEET 2 OF 3

rojec	ct: iole ct N	lun	RAD ocation: Muck nber: 21454	WASTI aty St 479A	E 2 ation	source	es, E			d Tourism	Da Re Lo	ate ecc og (Comme Comple orded By Checkee	eted: y: d By:	i: 24/2/08 24/2/08 NH MKD
			Mounting: Mark ameter: 150 n		:k			Drille		c No: Co-ords:	:		01.208 n 377880		N 7933479.24 GDA_9
		-	Borehole Infe		on			I		Field Material I	200				
1 2	2 3	3	4		5	6	7	8	9	10	1	1	12		13
ME IHOU SUPPORT		WAIEK	WELL CONSTRUCTION	RL(m)	DEPTH(m)	FIELD	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE			-	STRUCTURE AND ITIONAL OBSERVATIONS
KAB		- - - - - - - - - - - - - - - - - - -	Slotted pipe section 10.0m-28.0m	2 91 - -	10.00 				-	MUDSTONE. Very fine grained, grey to white, with some red throughout, very low to low strength, highly to extremely weathered, dry to moist.				sar at l	nple mainly recovered ight grey to white vder
				- 2 90 - -	- 11 - -				-					gre	our change to green - y and white, with ne red throughout
		- - - - - - - - - - - - - - 		- - 2 89 - -	 12.00 12 					MUDSTONE. Very fine grained, red brown - pink - green, very low to low strength, highly to extremely weathered, dry to moist.					brown / pink layer 00mm thick
				- - 2 88 -	- 13 – -									we	ange to blade at 13m - t pink clay on hammer withdrawn from hole
				- 287 - - - 286	- 14 - - 15 -									rec	our change to green / brown / pink, slightly ist, slight increase in ength below 14.5m
				- - 2855 - - - -	- - 16 - - - - 17 -										
				284 - - - 283 - - - -	- - - 18 - - - - - 19 -									at	inly red brown / brown 18.2m ker red brown colour,
				2 82 - -	-				-					slig	ht increase in isture content

MSBH04

Borehole Information Field Material Description 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 1 L 3 4 5 6 7 8 9 10 11 12 13 1 L N N N N N N N N 1 L N N N N N N N N 1 L N N N N N N N N 1 L N N N N N N N N N 1 N N N N N N N N N N 1 N N N N N N N N N N 1 N N N <th>rc oi rc</th> <th>oject</th> <th>le L Nui</th> <th>ocation: mber:</th> <th>RADW Mucka 214547</th> <th>ASTE ty Sta '9A</th> <th>2 ation</th> <th>sour</th> <th>ces,</th> <th></th> <th></th> <th></th> <th>Date Commer Date Complet Recorded By: Log Checked 301.208 m</th> <th>ed: 24/2/08 NH</th>	rc oi rc	oject	le L Nui	ocation: mber:	RADW Mucka 214547	ASTE ty Sta '9A	2 ation	sour	ces,				Date Commer Date Complet Recorded By: Log Checked 301.208 m	ed: 24/2/08 NH
1 2 3 4 5 0 7 8 0 10 11 12 13 0 10 11 12 13 12 13 13 14 13 14							ĸ							03 N 7933479.24 GDA
0 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th>mati</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>						mati								
B 221						RL(m)			ш	DOG			RELATIVE DENSITY /CONSISTENCY	STRUCTURE AND
274 - - - - - - sample	RAB					281 - - 280 - - 279 - 278 - 278 - 278 - 277 - 277 - 277 - 276 - - 2776 - - 2776 - - 2776 - - 2776 - - - 2776 - - - - - - - - - - - - - - - - - -	- 21 - - - 22 - - - - - - - - - - - - - - -					SILTSTONE. Very fine grained, grey to red brown, extremely weathered brown is the strength of		powder, decrease in moisture content —colour change to dark grey
						-	-				- - - - - - - - - - - - -	END OF BOREHOLE AT 28.00 m		

BOREHOLE NO.

Project: RA Borehole Location: Mu Project Number: 214	DWAST ckaty S 5479A	E 2 station	irces,	Energy and Tourism				Date Com Date Com Recorded Log Check	pleted: By: ced By:	d: 4/3/08 4/3/08 NH MKD
Drill Model/Mounting: Ma Borehole Diameter: 96	rk V Ma mm	ick		Hole Angle: 9 Bearing:		Surfa Co-o	ice RL: rds:	309.227 ı E 376822		N 7933801.398 GDA_9
Borehole Information				Field	Materia	Des	cription			
1 2 3 4 QOHLAND KANANA CONSTRUCTIO	CORE ⁴ RECOVERY ⁵ RQD 9	RL(m) DEPTH(m)	GRAPHIC LOG ∞	9 OIL/ROCK MATERIAL FIELD DES COMMENCE CORING AT 0		WEATHERING 01	11 INFERRED STRENGTH Is(50) MPa	12 AVERAGE DEFECT SPACING mm 0 00000000000000000000000000000000		13 STRUCTURE AND ADDITIONAL OBSERVATIONS
Solid pipe Section 0.1m.11.0m grout 0.15m.3.0m	100 100 100 100 53 100 100 60 45 0 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SAND. Fine to coarse graine brown, loose. Sandy GRAVEL. Fine to coa grained, red brown, angular, SANDSTONE. Fine to mediu grained, mottled red brown / yellow brown, very low streng highly weathered, quartz. MUDSTONE. Mainly grey with brown and yellow throughout to extremely weathered, very low strength. SILTSTONE (interbedded with grained SANDSTONE). Mott layered purple / red brown / of weathered, low to medium st faint bedding planes at 20°, t bedded, laminated, some bro infilled sections ~200mm.	ith fine trength, thinly	EW HW EW			 hand some <50m occas drillin altern grey mainl brown infille red b bands brecc no be clean increat Samp Box 1 	rown, some shaley s <50mm throughout, iated, infilled. edding noted but breaks ly horizontally ase in strength ole 5.0m-5.3m

BOREHOLE NO.

MSBH05

Boi	ject reho	: le L	ocation: mber:	RAI	DW/ ckat	AST by S			urces	Energy and Tourism			Date Comm Date Compl Recorded B Log Checke	eted: y:	SHEET 2 OF 4 4/3/08 4/3/08 NH MKD
			Mountin Piameter	-		Ма	ck			5		ace RL: ords:	309.227 m E 376822.6		I 7933801.398 GDA_94 Z
	Bo	reho	ole Infor	mation						Field Material	De	scription			
1	2	3		4	5	6		7	8	9	10		12		13
METHOD	SUPPORT	WATER	CONS	VELL TRUCTION	CORE C RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING				STRUCTURE AND ADDITIONAL OBSERVATIONS
				Filter pack 10.0m-30.15 Slotted pipe secton 11.0m-30.15	m	100 100	- 2999 - - - 2998 - - - 2997 - - 2997 - - 2997 - - 2996 - - - 2995 - - - 2995 - - - 2995 - - - 2995 - - - 2995 - - - 2994 - - - 2993 - - - 2994 - - - 2995 - - - 2995 - - - 2997 - - - 2997 - - - 2997 - - - 2997 - - - 2997 - - - - 2997 - - - - 2997 - - - - 2997 - - - 2997 - - - 2997 - - - 2997 - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2995 - - - - 2992 - - - - 2992 - - - - 2992 - - - -			SILTSTONE (interbedded with fine grained SANDSTONE). Mainly siltstone, light grey / red brown, massive, occasional 20° laminated / zone, highly weathered, low to // medium strength. SANDSTONE. Fine to medium grained, red brown, very low to medium strength, highly weathered, thinly bedded 10-20°, slightly coarse grained, mainly medium grained at 12.25m. SILTSTONE (interbedded with fine grained SANDSTONE). Mainly siltstone, light grey / red brown, massive, occasional 20° laminated zone, highly weathered, low to medium strength. SANDSTONE. Fine to medium grained strength. SILTSTONE Light grey to red brown, some fine to medium grained sandstone bands <100mm.	EW			Samp	le 10.85m-11.25m le 17.65m-18.15m r fractured and clay l, recovered as clayey j, possible water inflow
				Thi	is bo	reho	le log	should	 be rea	d in conjunction with Parsons Brinckerhof	ffsa	accompanyii	ng standard no	tes.	

BOREHOLE NO.

MSBH05

Project: Borehole Project N	Location: lumber:	Departmen RADWAST Muckaty S 2145479A	TE 2 Station	sources	Energy and Tourisn	1		Date Com Date Com Recorded Log Check	pleted: 4/3/08 By: NH
	el/Mounting: Diameter:	Mark V Ma 96 mm	ack		Hole Angle: Bearing:	90° 	Surface RL Co-ords:		m 2.611 N 7933801.398 GDA_9
Bore	hole Informa	ation			-	eld Materia			
0 t	3 4 WEI CONSTRU			DEPTH(m) GRAPHIC LOG	9 SOIL/ROCK MATERIAL FIELD	DESCRIPTION	-0.00 -0.00	mm mm	13 STRUCTURE AND ADDITIONAL OBSERVATIONS
HQ3	5 	0000	- 289 - -	0 	SILTSTONE. Brecciated siltstone, numerous clay fractures, mosaic of silts fragments and clay sean low strength, extremely v (continued)	seams at tone ns, extremely	EW		
		100	288 - - - 287 -	21 .29 	SILTSTONE. Banded pu grey, highly to extremely very low strength, some sandstone layers (<50m throughout, thinly bedden highly fractured in places	weathered, fine grained m) d, massive?,	HW- EW		 Box 4 Sample 22.2m-22.5m
		100	2 86 - -	23 					
15/04	V/2008	100	285 - - - - 284 - _	- · · · · · · · · · · · · · · · · · · ·					 Mainly red brown colour with some light grey inclusions / veins, thin bedding ~10-20°
		100	283 - - -	26					
		100	282 - - - 281 -	28					- Sample 27.9m-25.2m
		100	2 80	29					

BOREHOLE NO.

MSBH05

Project	t: ble Lo t Nur		RADW Mucka 21454	VAST aty S 79A	re 2 Statio		irces	s, Energy and Tourism				Date Comr Date Comp Recorded E Log Checke	oleted: By: ed By:	SHEET 4 OF 4/3/08 4/3/08 NH MKD	-
		Mounting: iameter:	Mark V 96 mn		ack			Hole Angle: Bearing:	90° 		ace RL: ords:	309.227 n E 376822		7933801.398 GDA_	94
		le Informa						-	eld Materia					-	Ī
1 2		4		6		7	8	9		10	11	12		13	1
METHOD SUPPORT	WATER	WE CONSTRI		RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD	DESCRIPTION	ATH	INFERRED STRENGTH Is(50) MPa ©			STRUCTURE AND ADDITIONAL OBSERVATIONS	
_					279		— ·	FND OF BORFHOLE AT	[30 15 m				Borehol	e terminated at	-
					279 279 - - - 278 - - 277 - - 277 - - 277 - - 277 - - 277 - - 277 - - 277 - - 277 - - 277 - - 277 - - - 277 - - - 277 - - - -	$ \begin{array}{c} - \\ - $		END OF BOREHOLE AT	Г 30.15 m				Borehol 30.15m	e terminated at	
			Thie b			should	here	ad in conjunction with Pars	ons Rrinckert			9 standard n	otes		

MSBH06

D	R
	100 YEARS ®

BOREHOLE ENGINEERING LOG

Client:DepartmeProject:RADWASBorehole Location:Muckaty 9Project Number:2145479A							E 2	sour	ces, I	Energ	y an	d Tourism	Date Commence Date Completed: Recorded By: Log Checked By:	25/2/08 NH	
			Mountir	-	Mark V 150 mr		:k			Drill Drill	-	Surface RL c No: Co-ords:		N 7932584.685 GDA_9	
					ole Infor		on			T	01 21	Field Material I			
1	2	3		4			5	6	7	8	9	10	11 12	13	
METHOD	SUPPORT	WATER	CON	WEL STRU	L ICTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		STRUCTURE AND DITIONAL OBSERVATIONS	
RAB				Cem 0.15	d pipe section n-26.0m ient grout im-6.0m	- - - - - - - - - - - - - - - - - - -						SAND. Fine to coarse grained, red brown, angular to subangular, some fines, dry, loose to medium dense. SAND. Becoming coarser grained, red brown, angular to subangular, some fines, dry, loose to medium dense. Pebbly SANDSTONE. Fine to coarse grained, red brown / grey, fine grained gravel, some pebbles (quartz), angular to sub rounded, low to medium strength, highly weathered, dry, abundant quartz, lighter in colour below 6m	I I I pe I I I I fra I I I I fra I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <td>rrease in strength and bble size with some ongly cemented sand gments recovered rrease in strength, sence of medium to arse gravel and bbles ow drilling</td>	rrease in strength and bble size with some ongly cemented sand gments recovered rrease in strength, sence of medium to arse gravel and bbles ow drilling	

MSBH06

BOREHOLE ENGINEERING LOG

Client:Department of ResourcesProject:RADWASTE 2Borehole Location:Muckaty StationProject Number:2145479A								inerg	y an	d Tourism	Date Comme Date Comple Recorded By: Log Checked	ted: 25/2/08
Drill Model/Mounting: Mark V Mack Borehole Diameter: 150 mm								Drille Drille		Surface RL c No: Co-ords:		294 N 7932584.685 GDA_
			ole Infor		on					Field Material		
1 2	3	4		-	5	6	7	8	9	10	11 12	13
8 METHOD SUPPORT	WATER		LL JCTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	RELATIVE DENSITY CONSISTENCY BLACK ACONSISTENCY BLACK ACONSISTENCY BLACK ACONSISTENCY ACONSISTENCY BLACK ACONSISTENCY BLACK ACONSISTENCY BLACK ACONSISTENCY ACONSISTENCY BLACK ACONSISTENCY ACONSISTENCIA ACONSISTENC	STRUCTURE AND ADDITIONAL OBSERVATIONS
RAB				-						Pebbly SANDSTONE. Fine to coarse grained, light brown, fine to coarse grained gravel and pebbles (quartz), angular to sub rounded, high to extremely high strength, slightly weathered to fresh, dry. (continued) ORTHOQUARTZITE. Fine to coarse grained, light grey to white, angular to subangular, slightly weathered to fresh, very high to extremely high strength, dry.		 recovered mainly as powder with visible angular quartz, white, dry driller noted some bands drilled through produced less dust, possibly indicating ** very light grey
				2 95	-					on with Parsons Brinckerhoff's accompany		- back to white colour

MSBH06

BOREHOLE ENGINEERING LOG

ļ

		YEARS	ŝ										SHEET 3 OF 5
Pro Bor	Client: Project: Borehole Location: Project Number:				tment /ASTE aty Sta 79A	2	source	es, E	Energ		Date Commenc Date Completed Recorded By: Log Checked By	1: 25/2/08 NH	
	Drill Model/Mounting: Mark V Mack								Drille		Surface RL		
Bor	eho	le Dia	meter:	150 m					Drille	er Li	c No: Co-ords:		N 7932584.685 GDA_94
1	2	3	Boren 4	ole Info		5 5	6	7	8	9	Field Material D		13
METHOD	SUPPORT	WATER	WE CONSTRI	LL JCTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	RELATIVE DENSITY CONSISTENCY UNISSIENCY UNISSIENCY UNISSIENCY UNISSIENCY UNISSIENCY UNISSIENCY A UNISSIENCY A A A A A A A A A A A A A A A A A A A	STRUCTURE AND DDITIONAL OBSERVATIONS
RAB MET	16/0S		Ein 24. 54. 54. 54. 54. 54. 54. 54. 54. 54. 5	ntonite seal 5m-26m	L, L	21	FIELD	SAM	GRA	USC I	ORTHOQUARTZITE. Fine to coarse grained, light grey to white, angular to subangular, slightly weathered to fresh, very high to extremely high strength, dry. (continued)		some medium sized red prown / red grains <10%) - lithic fragments stopped drilling for lomins to chack for vater - NIL extremely high strength, rery slow drilling 10-15mm slow drilling 10-15mm slow drilling 10-15mm slow drilling (-15mm slow drilling (-25%)
					- 2 85	_							

Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENGINEERING BOREHOLE LOG (WELL) RADWASTE COMBINED LOGS.GPJ GEOTECH.GDT 18/6/08

This borehole log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.

MSBH06

D	P
	100 YEARS ®

BOREHOLE ENGINEERING LOG

client: roject: orehole Locatic roject Number:	RADW	VASTE aty Sta	2	source	es, E	nerg	y an	d Tourism	Date Commenced Date Completed: Recorded By: Log Checked By:	25/2/08 NH	
rill Model/Moun			k			Drille		Surface RL			
orehole Diame						Drille	er Li	c No: Co-ords:		N 7932584.685 GDA	
B	rehole Info	_	5 5	6	7	8	9	Field Material E	Description	13	
METHOD SUPPORT WATER 03	WELL STRUCTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		STRUCTURE AND DITIONAL OBSERVATIONS	
	Slotted pipe section 28.0m-48.0m	- - - - - - - - - - - - - - - - - - -						ORTHOQUARTZITE. Fine to coarse grained, light grey to white, angular to subangular, slightly weathered to fresh, very high to extremely high strength, dry. (continued)	I I Store I I Z5, Inclusion I I Inclusion I Inclusion Store I Inclusion Inclusion I Inclusion Inclusion <td< td=""><td>pped at 30m on /02/08 at 6pm le dipped 26/02/08 - no iter in hole as dust below 31m . ghtly darker colour ainly light grey to light own ghtly lower strength crease in dust at .5m but less than ove 31m) ainly red brown colour tween 32m and 33m nimal dust and sample covery crease in dust (less an above 31m) apped drilling for mins to chack for ter - NIL</td></td<>	pped at 30m on /02/08 at 6pm le dipped 26/02/08 - no iter in hole as dust below 31m . ghtly darker colour ainly light grey to light own ghtly lower strength crease in dust at .5m but less than ove 31m) ainly red brown colour tween 32m and 33m nimal dust and sample covery crease in dust (less an above 31m) apped drilling for mins to chack for ter - NIL	

MSBH06

	ß
=	
	100 YEAR5 ®

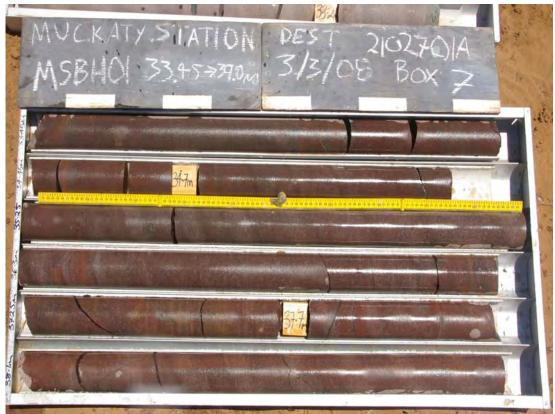
BOREHOLE ENGINEERING LOG

Client:Department of Resources,Project:RADWASTE 2Borehole Location:Muckaty StationProject Number:2145479A								Inerg	y an	d Tourism	Date Commence Date Completed Recorded By: Log Checked By	: 25/2/08 NH
Drill Model/Mounting: Mark V Mack Borehole Diameter: 150 mm								Drill Drill		Surface RL c No: Co-ords:		N 7932584.685 GDA_9
		Boreh	ole Infor	matio	n					Field Material I	Description	
0 IT	WATER 5			RL(m)	DEPTH(m)	FIELD TEST	7 SAMPLE	GRAPHIC LOG ∞	nsc symbol ∞	10 SOIL/ROCK MATERIAL FIELD DESCRIPTION ORTHOQUARTZITE. Fine to coarse		13 STRUCTURE AND DDITIONAL OBSERVATIONS
R4				- - - - - - - - - - - - - - - - - - -						grained, light grey to white, angular to subangular, slightly weathered to fresh, very high to extremely high strength, dry. (continued)	m	light increase in loisture content, slightly arker colour, some sturns clay**?
				2 69 - - - 2 68	46 - - -						N N 	linimal recovery
				- - - 267	47							linimal recovery
				- - - 266 - - -	- <u>48</u> - - - 49 - - - -					END OF BOREHOLE AT 48.00 m	4	orehole terminated at 8m. When rods were ithdrawn they were wet.
				2 65	-							

MSBH01 0.0-6.3 m

MSBH01 6.3-11.9 m

MSBH01 11.9-17.2 m


MSBH01 17.2-22.7 m

MSBH01 22.7-28.1 m

MSBH01 28.1-33.45 m

MSBH01 33.45-39.0 m

MSBH01 39.0-40.2 m

MSBH03 0.0-5.3 m

MSBH03 5.3-10.6 m

DEST 21027017A 9/3/08 Box 3 TUCKATY STATION 60,0 ISBH03 B.65- 11/1

MSBH03 10.6-16.0 m

MSBH03 16.0-21.15 m

MSBH03 21.15-25.80 m

MSBH03 25.8-30.85 m

MSBH03 30.85-35.35 m

MSBH05 0.0-5.3 m

MSBH03 30.85-35.35 m

MSBH05 0.0-5.3 m

MSBH05 5.3-10.8 m

2102701A MUCKATY STATION DEST MSBHOS 108-1695 6/3/08 Box 3 6/8/08 800 12:15 - 2th 15.15 MSBH05 10.8-16.45 m - 2102701A DET MUCKATY STATION

MSBH05 16.45-21.8 m

MSBH05 21.8-27.25 m

MSBH05 27.25-30.15 m

ß	B
—	100 YEARS ®

BOREHOLE ENGINEERING LOG

	t: ble L	ocation: mber:	Depart RADW Mucka 214547	ASTE ty Sta	2	source	es, E	Energ	y an		Da Re	te Comme te Comple corded By g Checked	ted: 21/2/08 : NH
		/Mounting: Diameter:	Mark V 150 mr		k			Drille Drille		c No: Co-ords:		313.324 m	736 N 7948164.503 GDA
			ole Infor		<u></u>			I		Field Material D			
1 2	3	4			5	6	7	8	9	10	11		13
METHOD SUPPORT	WATER	WE CONSTRI	LL JCTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		STRUCTURE AND ADDITIONAL OBSERVATIONS
			ment grout m-6.0m	- 3-13 - 3-12 - 3-12 - - 3-12 - - - - 3-10 - - - 3-10 - - - - - - - - - - - - -						SANDSTONE/ORTHOQUARTZITE. Fine to coarse grained, purple / red brown, some grey and brown, low to medium strength, highly weathered, quartz, mica, angular to subangular quartz grains, dry. SANDSTONE/ORTHOQUARTZITE. Fine to coarse grained, purple / red brown, some grey and brown, increase in strength to high / very high, becoming slightly weathered to fresh, quartz grains, dry. SANDSTONE/ORTHOQUARTZITE. Fine to medium grained, light grey to white, increase in strength to high / very high, becoming slightly weathered to fresh, quartz, mica, angular to subangular quartz grains, dry. SANDSTONE/ORTHOQUARTZITE. Fine to medium grained, light grey to white, increase in strength to high / very high, becoming slightly weathered to fresh, quartz, mica, angular to subangular quartz grains, dry. SANDSTONE/ORTHOQUARTZITE. Fine to medium grained, light grey to white, high / very high strength, slightly weathered to fresh, some layers highly weathered to subangular quartz grains, dry. SANDSTONE/ORTHOQUARTZITE. Fine to medium grained, light grey to white, migh / very high strength, slightly weathered to fresh, some layers highly weathered red brown / orange brown / brown layers, ~10mm, more weathered bands throughout, quartz, mica, angular to subangular quartz grains, dry.		>σωμώδΣτ	Surface cover of gravelly sand, fine to coarse gravel with cobbles, dry, loose, generally angular with some subrounded (pebbles) Orthoquartzite, fine to medium grained, SW to Fresh, high to very high strength, light grey / red brown, blocky, highly fractured (photo).

ß	ß
	100 YEARS ®

BOREHOLE ENGINEERING LOG

Image: Construction Image: Construction<	20/2/08 21/2/08 NH MKD	Date Commenced: Date Completed: Recorded By: Log Checked By:	C F	nd Tourism	y an	inergy	es, E	source	TE 2 Station	Departme RADWAS Muckaty 2145479A	ation: per:		ect: ehol	Bor
Borehole Information Field Material Description 1 2 3 4 5 6 7 8 9 10 11 12 Construction 10 11 12 10 11 12 Construction 11 12 Construction 11 12 Construction 20 Source Construction 11 12 Construction 11 11 12 Construction 11 11 11 11 11 11 11 11 11 11 12 11 12	79/816/ 502 004			c No:					ack		-			
1 2 3 4 5 6 7 8 9 10 11 12 Image: Construction of the set of the	7 940 104.503 GDA								<u> </u>				enoi	501
00/0000000000000000000000000000000000	13				9	8	7	6				3	2	1
903 -	RUCTURE AND INAL OBSERVATIONS				USC SYMBOL		SAMPLE	FIELD TEST	DEPTH(m)			WATER	SUPPORT	
295 -<	rogress through ey quartzite ay seams hout, hammer not ing ~50-100mm	Slow	ARTZITE. ght grey to ength, / l, weathered / bangular / ed) light grey to remely high	Fine to medium grained, white, high to very high s slightly to highly weather red brown / orange brow quartz, mica, angular to quARTZITE. Amorphou red brown, very high to e strength, slightly weather			SAU		10.20 - - - 11 - - 12 - - 12 - - 13 - - 13 - - 13 - - 13 - - 14 - - 15 - 16 - - 17 - - 18 - - 1920	- 30 - - - 30 - - - 30 - - - 30 - - - 29 - - - 29 - - - 29 - - - 29 - - - -			IN S	

	B
_	
	100 YEARS @

BOREHOLE ENGINEERING LOG

	ject: eho	le Lo	ocation: nber:	Depar RADW Mucka 21454	ASTE	2	sourc	æs, E	Energ	y an		Date Commence Date Completed: Recorded By: Log Checked By:	21/2/08 NH
			Mounting iameter:			:k			Drill Drill		Surface RL: c No: Co-ords:		N 7948164.503 GDA_9
			Bore	hole Info	rmati	on					Field Material D	· · · · · · · · · · · · · · · · · · ·	
1 METHOD	SUPPORT	WATER	W CONST	4 IELL RUCTION	RL(m)	ص DEPTH(m)	FIELD 9	2 SAMPLE	GRAPHIC LOG ∞	USC SYMBOL @	10 SOIL/ROCK MATERIAL FIELD DESCRIPTION	11 12 RELATIVE DENSITY ACONSISTENCY W H H H H H H H H H H H H H	13 STRUCTURE AND DITIONAL OBSERVATIONS
RAB A				Bentonite seal 66.0m-27.0m Filter pack 27.0m-46.0m Slotted pipe section 28.0m-46.0m	- 293 - 292 - 292 - - 291 - - 290 - - 290 - - 290 - - 290 - - 288 - - 288 - - 288 - - 288 - - 288 - - 288 - - 288 - - 286 - - 286 - - 286 - - 285 - - 285 - - 285 - - -	20.40					QUARTZITE. Amorphous, light grey to red brown, very high to extremely high strength with numerous low strength clay seams throughout, some highly weathered bands (red brown - brown), GUARTZITE. Amorphous, light grey to red brown, low to medium strength, some highly weathered bands (red brown - brown), highly weathered, high fines (clay) content at 20.4m. QUARTZITE. Amorphous, pink - white, low to medium strength, some highly weathered bands (red brown - brown), highly weathered.		ight decrease in ength, increase in clay intent

FIRE S

BOREHOLE ENGINEERING LOG

Proj	ect: ehol ect	le L Nui	ocation: mber:	RADW Mucka 214547	ASTE ty Stat '9A	2 tion	source	es, E		_	d Tourism	Date Completed:21/2/08Recorded By:NHLog Checked By:MKD				
			Mounting: Diameter:	Mark V 150 mr					Drill Drill		Surface RL c No: Co-ords:		N 7948164.503 GDA_			
				ole Infor		n					Field Material					
1	2	3	4		111au0		6	7	8	9	10	11 12	13			
	SUPPORT	WATER	WEL CONSTRU	L JCTION	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		STRUCTURE AND DITIONAL OBSERVATIONS			
RAB					283 - - 282 - - 282 - - 281 - - 281 - - 280 - - - 279 - - - 277 - - 277 - - 277 - - 277 - - 277 - - 277 - - - 277 - - - 277 - - - 277 - - - 277 - - - -				* * * * * * * * * * * * * * * * * * * *		QUARTZITE. Amorphous, grey white, low to medium strength, highly weathered.					

PP TEARS :

BOREHOLE ENGINEERING LOG

Project	le Lo Nur		RADW	ASTE 2 ty Statio		ces, I		-	d Tourism	Date Completed:21/2/08Recorded By:NHLog Checked By:MKD					
		Mounting: iameter:	Mark V 150 mn				Drill Drill		Surface RL c No: Co-ords:		ո 736 N 7948164.503 GDA_Չ				
		Boreh	ole Infor	mation					Field Material	Description					
1 2	3	4		5	6	7	8	9	10	11 12	13				
RAB METHOD SUPPORT	VATER	WEI CONSTRU	L JCTION	RL(m)	DEPTH(m) FIELD TEST	SAMPLE		USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	RELATIVE DENSITY ACONSISTENCY BUNC SSLSSH CONSISTENCY DENSITY ACONSISTENCY DENSITY ACONSISTENCY DENSITY ACONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS				
	si04/20			- 400 - 400 - 273 - 41 - 4					QUARTZITE. Amorphous, grey, low to medium strength, highly weathered. END OF BOREHOLE AT 46.00 m		End of borehole at 46m. Hammer blocked at 46m. No water encountered at end of drilling				

BOREHOLE NO.

Bor Pro	ject eho ject	le L Nui	ocat nbe Mou	er:	:	Depart RADW Mucka 21454 Mark \	ASTE aty Sta 79A	ation	90'	' Su	face RL:			
			iam		•	96 mm		Bearing:			ords:	E 382660.962 N 7947541.993	GDA_94	
1	Bo	reho 3	ble l	nfoi 5	mat	tion 6	7	Fic	eld N	10 10	scription	12		
METHOD	SUPPORT	WATER	CORE RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	INFERRED STRENGTH Is(50) MPa ©	AVERAGE DEFECT SPACING mm	STRUCTURE AND ADDITIONAL OBSERVATIONS		
ЪСС		N F			3 12	-		CORE LOSS 0.0m-0.4m	HW- FR					
-		G W E	63	0	- - - - 3 11	0.40 1.10	× × × × × × ×	ORTHOQUARTZITE. Fine to medium grained, red brown - light grey, extremely to highly weathered, extremely low to low strength. Top 0.6m recovered as gravels with section of clayey sands (extremely weathered) up to 300mm thick bedding						
			99	0	-	1.30	× × ×	variable*? (horizontal) in less weathered // sections, sub angular to sub rounded. // CORE LOSS 1.1m-1.3m						
			52	0	- - 3 10 -	2.20	× × ×	ORTHOQUARTZITE. Fine to medium yrained, red brown - light grey, extremely / to highly weathered, extremely low to low / strength, sub angular to sub rounded. CORE LOSS 1.7m-2.2m ORTHOQUARTZITE. Fine to medium grained, red brown - light grey, extremely						
				0	-	2.75	×	to highly weathered, extremely low to low strength, sub angular to sub rounded.	4			 Recovered fragments are very high strength but poor quality core (RQD=0 		
				_	- 3 09	3.00 3 -	××	CORE LOSS 2.65m-2.75m	SW-			strength but poor quality core (RQD=C))	
			55	0	- - - - 3 08	3.40		grained, red brown - light grey, extremely / to highly weathered, extremely low to low / strength, sub angular to sub rounded. ORTHOQUARTZITE. Light to dark grey, very high to extremely high strength fragments but highly fractured, slightly weathered to fresh, faint banding (light to uddr. grey noted*?), generally amorphous				 Recovered as angular orthoquartzite gravels (very high strength) 		
			100	0	-	4.65	× ×	but with some granular structure noted.	sw					
				0	- 307 -	- 5- -	× × × × ×	very high to extremely high strength fragments but highly fractured, slightly weathered to fresh, faint banding (light to dark grey noted*?), generally amorphous but with some granular structure noted. ORTHOQUARTZITE. Fine to medium	HW			 High to very high strength fragments, fractures generally ~10mm thickness 		
				0	+	-	××	grained (mainly fine grained), light grey with some orange staining around loose						
			0 83		- 3 06	6-	· × × ×	fragments, highly to slightly weathered, low to very low strength, **? fractures infilled with clay, no orientation, some light to dark banding.				Fractured and infilled (photo)		
			100	0	╞	6.60	× 	SILTSTONE. Grey / green, highly	-			may be a mudstone		
			83	0	- - 3 05	- 7.00 -7 -		weathered layers, medium strength, thinly bedded (~30°) some coarser (fine sand) laminae						
			100	10	-	-		SANDSTONE. (Quartz), fine to medium grained, mainly grey with some red/purple laminae, medium to high strength, highly weathered, sub angular to sub rounded, thinly bedded (25°-30°).				 highly fractured, all clay infilled 		
			100	0	- 304 -	- 8 - -			EW			 extremely weathered, recovered as gravelly clay 		
			100	0	- - 3 03	- 9- 9.20			HW			 becoming extremely to highly weather bedding not visible, medium grained 	ed,	
			100		_	-		MUDSTONE. Very fine grained, grey / green, very low to low strength, highly to extremely weathered, layers of brecciated siltstone with claystone infilling, no bedding visible, some red patches throughout, bedding / lamination at ~60°.				 bedding not visible, medium grained quartz grains in clay matrix Red colour between 9.4m-9.6m Box 2 		

BOREHOLE NO.

Pro Bor	•)			Date Commenced: Date Completed: Recorded By: Log Checked By:	28/2/08 29/2/08 NH MKD	
					•	Mark \ 96 mm		k Hole Angle: Bearing:	90° 		face RL: ords:	312.205 m E 382660.962 N 7	947541.993 GDA_9	
	_				ma	tion	_		_	aterial De		20 n		
METHOD 1	SUPPORT N	WATER 0	CORE RECOVERY 4	5 DD	RL(m)	DEPTH(m)	GRAPHIC LOG	8 SOIL/ROCK MATERIAL FIELD DESCRIPTION	1 111		11 AVERAGE DEFECT SPACING mm 0000000000000000000000000000000000	STRUCTURE ANI OBSERVA		
HQ3			100	71	302 - - - 301	- - - 11.10 - - 11.30		MUDSTONE. Very fine grained, grey / green, very low to low strength, highly to extremely weathered, layers of brecciated siltstone with claystone infilling, no bedding visible, some red patches throughout, bedding / lamination at ~60°. (continued) CORE LOSS 11.1m-11.3m MUDSTONE. Very fine grained, grey /	HW- EW			Numerous clay infilled orientation. Numerous fine to very fine grainer (saprolitic) Samale 20.6568 Until gravel and cobbles an elaverany differen byp recovering action of the	beds and layers of d SANDSTONE ne to coarse quartz d boulders with haffmaterial	
			83	0	- - 3 00	- - 12- -		green, very low to low strength, highly to extremely weathered, layers of brecciated siltstone with claystone infilling, no bedding visible, some Red patches throughout, bedding / lamination at ~60°.				 Probably not saprolitic siliceous siltstone infill 		
			100	0	- - 2 99	- - 13 - 13.40		CORE_LOSS_13.4m-13.65m						
			99	0	- - - 2 98	13.65 - - 14 -		MUDSTONE. Very fine grained, grey / green, very low to low strength, highly to extremely weathered, brecciated siliceous siltstone with clay/claystone	-					
			30	0	-	-		infilling, highly fractured						
			100	17	- 2 97 -	15 - - -						 core easily broken by h 	hand	
			100	100	-	- - 16-								
			100	0	2 96	16.30	$\overline{}$	CORE LOSS 16.3m-16.6m						
			0 40	0	- - 2 95	16.60		MUDSTONE. Very fine grained, grey / green, very low to low strength, highly to extremely weathered, brecciated siliceous siltstone with clay/claystone				 core easily broken by h Sample 17.1m-18.15m 		
			100	20	-	- - 17.65		CORE LOSS 17.65m-18.2m				 Coarse sand layer (50 	mm), purple	
			27	0	- 2 94 -	18 18.20 18.40 18.50	\times	MUDSTONE. Very fine grained, grey / green, very low to low strength, highly to						
			19 80	30	-			extremely weathered, brecciated siliceous siltstone with clay/claystone // infiling, highly fractured // ICORE LOSS 18.4m-18.5m //						
			100	100	2 93 - -	19.20 — – – –		MUDSTONE. Very fine grained, grey / \green, very low to low strength, highly to \wedge extermely weathered, brecciated \wedge siltstone with clay/claystone \winfilling, highly fractured \vedge CORE LOSS 18.9m-19.2m	 					

BOREHOLE NO.

Proj lore Proj	ect	le L Nui	ocat mbe	r:		Depart RADW Mucka 214547	ASTE)			Date Commenced Date Completed: Recorded By: Log Checked By:	i: 28/2/08 29/2/08 NH MKD
			Mou Diam			Mark \ 96 mm		Bearing:	90° 	Co-	face RL: ords:		N 7947541.993 GDA_94
1	Bor 2	rehole Information 3 4 5 6 7 8		eld N 9	laterial De	scription		12					
MEIDOD	SUPPORT	WATER	CORE RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	INFERRED STRENGTH Is(50) MPa 0.0.0.0.0 0.0.0.0 0.0.0.0 0.0.0 0.0.0 0 0.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 00 0	AVERAGE DEFECT SPACING mm 0000000000000000000000000000000000	OBSEF	AND ADDITIONAL RVATIONS
НЦЗ			100	100	2 92 - - - 2 91 - -	20.20		MUDSTONE. Very fine grained, grey / green, very low to low strength, highly to extremely weathered, brecciated siliceous siltstone with clay/claystone (infiling, highly fractured (continued) Mainly clay / saprolite with layers of grey siltstone (up to 100mm), medium strength, Clay is generally grey with some red + orange-brown throughout, very low to low strength	HW- EW			- Box 4	
			100		- 2 90 - -	22 - - - - - - - - - - - - - - - - - - -		CORE LOSS 22.9m-23.05m Mainly clay / saprolite with layers of grey	-				
			06	06	2 89 - - - 2 88 -	- - - 24 - - -		siltstone (up to 100mm), medium strength, Clay is generally grey with some red + orange-brown throughout, very low to low strength					
				100	- - 2 87 -	- 25.40 25.50		CORE LOSS 25.4m-25.5m					
			86	46	- - 2 86 -	- 26- - 26.50		Mainly clay / saprolite with layers of grey siltstone (up to 100mm), medium strength, Clay is generally grey with some red + orange-brown throughout, very low to low strength Increase in **, grey, medium to high strength, numerous clay layers ranging	SW-			 Box 5 Better recovery of control 	ore below 26m
			100	57	- - 2 85 -	20.00 - - 207 - - -		from 40mm to 100mm, ****???? SILTSTONE. Light grey/grey/white, slightly weathered, medium to high strength, laminated light grey/white/darker grey to dark grey, some coarser grained lenses, numerous clay layers -ranging from 10mm-100mm	EW				
			100	100	- - 2 84 - -	- 28 - - - - - -						 Cross lamination no 	oted (photo)
			92	92	- 2 83 - -	28.90 29.0 29 - - - -		CORE LOSS 28.9m-29.0m SANDSTONE. Very fine to medium grained (quartz), layered red-brown/grey, highly to extremely weathered, extremely low to low strength, grading to clay with medium grained quartz layers at ~29.8m	HW- EW				

BOREHOLE NO.

Client: Project: Borehole Lo Project Nur	nbe	r:		RADW Mucka 21454	ASTE ity Sta 79A	ation	1			Date Commenced: Date Completed: Recorded By: Log Checked By:	SHEET 4 OF 6 28/2/08 29/2/08 NH MKD
Drill Model/ Borehole D			•	Mark \ 96 mm		k Hole Angle: Bearing:	90		face RL: ords:	312.205 m	947541.993 GDA_9
Boreho						_		laterial De			947 941.993 GDA_9
1 2 3	4	5	ma	6	7	8	9	10	11	12	
METHOD SUPPORT WATER	CORE RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	INFERRED STRENGTH Is(50) MPa E0:0:0:0:0 0:0:0:0 U U U U U U U U U U U	AVERAGE DEFECT SPACING mm 0000000000000000000000000000000000	STRUCTURE AND OBSERVA) ADDITIONAL TIONS
HQ3	100	75	2 82 - - - 2 81 -			Interlayered CLAY and highly to extremely weathered SANDSTONE (quartz), some sections (<100mm) show lamination, clay is grey with red brown - orange brown veins and inclusions. Some shaley layers (fissile laminations)	HW- EW				
	100	100	- 2 80 - - - 279	- 32 - - - - 33 - -						core easily broken by h core easily broken by h	and
	100	100	- - 2 78 - -	- - 34 - -							
	100	100	- 2 77 - - - 2 76								
	100	100	_ - - 2 75 -	36.40		Interlayered CLAY and highly to extremely weathered SANDSTONE (quartz), slightly stronger.				 slightly stronger Box 7 	
	100	100	- 2 74 - - - 2 73	- 38 - - - - - 39 - -							
	100	100	-	39.40 - - -		Interlayered CLAY and highly to extremely weathered SANDSTONE (quartz), slightly weaker.				 Sample 39.85m-40.0m 	

Clier Proje Bore Proje	ect: hol	e Lo			:	Depart RADW Mucka 214547	ASTE		ı				Date Commenced:28/2Date Completed:29/2Recorded By:NHLog Checked By:MKI	/08
		del/l e D				Mark \ 96 mm		k Hole Angle: Bearing:	90 			face RL: ords:	312.205 m E 382660.962 N 7947541.	993 GDA_94
			_		ma	tion	7		Field Mate		aterial De		n 12	
+	2	3	4	5		6	7	8			10 INFERRED STRENGTH	11 AVERAGE DEFECT	12	
	SUPPORT	WATER	CORE RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	Ш	MPa MPa EH 10 13 13 13 13 13 13 13 13 13 13 13 13 13	SPACING mm	STRUCTURE AND ADDITION OBSERVATIONS	NAL
			100	100	2 72 - - - 2 71	- - - 41 –		Interlayered CLAY and highly to extremely weathered SANDSTONE (quartz), slightly weaker. (continued)	HW EW	1				
			100 1	100	-	- - 42-							- Box 8	
			100	100	2 70 - -	-								
					- 2 69 - -	43- - -								
			100	100	- - 268 - -	- 44 - - - -								
			0	0	- 2 67 -	45 - 45.50		SANDSTONE. Fine to medium grained,	HW	/				
			100	100	- - 2 66	- 46-20		mainly purple with grey layers thinly bedded/ thickly laminated, highly weathered, moderate strength, bedding / lamination at ~10°, some extremely weathered laminae. Grading into	HW	·				
			100	100	- - - 2 65	- - 47 – -		SANDSTONE. Extremely to highly weathered sandstone, weathering to claystone, some fine to medium grains throughout	EW				 fractured section of rock, possib by water Sample 46.9m-47.15m 	le inflow
					- - 2 64	- - 48 -							— Box 9	
			100	100	- - - 2 63	- - 49 – -								
					_	-							Sample 49.7m-49.9m	

BOREHOLE NO.

Client: Project: Borehole Location: Project Number:					Depart RADW Mucka 214547	ASTE		Date Commence Date Completed: Recorded By: Log Checked By:	29/2/08 NH			
Drill Model/Mounting: Borehole Diameter:					Mark V 96 mm		Hole Angle: Bearing:		° Surfa Co-o	ace RL: ords:	312.205 m E 382660.962	N 7947541.993 GDA_94
Borehole Information					tion		Fi	ield Material Descriptio		cription	1	
1 2	3	4	5		6	7	8	9	10	11		12
METHOD SUPPORT	WATER	CORE RECOVERY	RQD	RL(m)	DEPTH(m)	GRAPHIC LOG	SOIL/ROCK MATERIAL FIELD DESCRIPTION	WEATHERING	INFERRED STRENGTH IS(50) MPa E0.0 E0.0 E0.0 MPa E0.0 E0.0 HU HU HU HU HU HU HU HU HU HU HU HU HU	AVERAGE DEFECT SPACING mm	STRUCTURE OBSE	AND ADDITIONAL RVATIONS
				262							- Box 10	
				- - 261 - - 260 - - - 259 - - 259 - - 258 - - - 257 - - 257 - - 257 - - 257 - - 257 - - - 255 - - - - 255 - - - - - - 259 - - - - - - - - - - - - - - - - - - -			END OF BOREHOLE AT 50.20 m				- Box 10	
				2 53 - - -								

GBH02 0.0-4.9 m

GBH02 4.9-9.4 m

GBH02 9.4-14.8 m

GBH02 14.8-20.15 m

GBH02 20.15-25.65 m

GBH02 25.65-31.25 m

GBH02 31.25-36.7 m

GBH02 36.7-42.4 m

GBH02 42.4-48.05 m

GBH02 48.05-50.0 m

Appendix B

Laboratory test results

Laboratory test results

Laboratory Sample reference numbers and locations in laboratory test certificates.

Coffey Lab sample number	Site	Sample location
9042	MOUNT EVERARD	ME TP 01 0.8 - 1.2
9043		ME TP 07 0.4 - 0.8
9044		ME BH 01 6.7 - 7.0
9045		ME BH 01 12.1 - 12.4
9046		ME BH 01 22.85 - 23.1
9047		ME BH 01 59.55 - 59.9
9048		ME BH 02 10.8 - 10.9
9049		ME BH 02 13.4 - 13.6
9050		ME BH O4 2.0 & 3.0
9051	HARTS RANGE	HR TP 01 0.5 - 0.8
9052		HR TP 01 1.0 - 1.4
9053		HR TP 06 1.5 - 1.8
9054		HR BH 01 9.0 - 10.0
9055		HR BH 01 20.5 - 21.5
9056		HR BH 01 26.5 - 26.6
9057		HR BH 01 48.0 - 48.35
9058		HR BH 03 1.0m
9059		HR BH 04 2m & 3m
9060		HR BH 05 9m & 10m
9061	FISHERS RIDGE	FR TP 01 0.6 - 1.0
9062		FR TP 04 0.4 - 0.8
9063		FR BH 01 9.8 - 10.2
9064		FR BH 01 12.1 - 12.6
9065		FR BH 01 22.65 - 22.85
9066		FR BH 02 1.0 - 1.3
9067		FR BH 02 4.95 - 5.25
9068		FR BH 02 11.2 - 11.6
9069		FR BH 02 15.5 - 15.8
9070		FR BH 02 23.7 - 24.0
165761	MUCKATY STATION	MSTP01 1.5 – 1.6m
165764		MSTP04 1.3 – 1.5m
165765		MSTP06 2.0 – 2.2m
165768		MSTP09 0.5 – 0.8m
165902		MSBH01 10.65 – 10.95m
165904		MSBH01 28.1 – 28.25m
165908		GBH02 46.9 – 47.15m
165912		MSBH03 20.3 – 20.65m
165915		MSBH05 17.65 – 18.15m
165901		MSBH01 6.0-6.18m
165902		MSBH01 10.65-10.95m
165910		MSBH03 10.0-10.25m
165913		MSBH05 5.0-5.3m
165914		MSBH05 10.85-11.25m

excent in full

A.C.N. 056 929 483

14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

Particle	Size Distribu	ution & Att	terbe	erg Lir	nits	5						
Client:	PARSONS BR	NCKERHOFF					Job N	o.	0605	7/AA		
Address:	LEVEL 3, 101 I	PIRIE STREET	. ADEL	AIDE S	5 A	000	Date:		11-0	ct-06		
Principal:			,					rt No.	0605	7/AA-R3	8	
-							Reper				-	
Project:	SUBMITTED S											
Location:	RADWASTE 2 90			le Ident	ifica	lion		N	TP07	' , 0.4 - 0.	8 m	
Sample No.:	90	43	Samp	le luent								
	<u>A.S. sieve si</u>	<u>ze</u>	шт <u>1</u> 2 гш	- 150 µm - 300 µm	- 425 µm	- 1.18 mm	- 2,36 mm	- 4.75 mm - 6.7 mm - 9.5 mm	- 13.2 mm	- 19 mm - 26.5 mm - 37.5 mm	— 53 mm 75 mm	
100							-	_x ~ × ×		× × ×	***	
90 -				-			-					
BO -				·		.			• 2 1			
70 -						· · · · · · · · · · · · · · · · · · ·						
D 60		·		×					<u>.</u>			
50 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 10 50 50 50 50 50 50 50 50 50 50 50 50 50												
Cent												
ଅଁ 40 -				·								
30 -				: * *					-			
20						<u> </u>		:				
10												
0 + 0.001	0.01	/ · · · · · ·	0.1	Particle S	ize (m	1 m)	10				100	
· · ·	sil	t de la de la dela		sa			gravel				cobbles	
cla	y fine med	ium coarse	fine	me	dium	coarse	fine	្ព	nedium	coarse		
Particle Size	Distribution	AS1289 3.6.1	Attorb	eralimi	its ar	d Moistu	ire Cont	ent				
Sieve Size	% Passing	Specification	Allein		Test	a moista		ethod	F	Result	Spec	
150 mm	100		Liquid			9	6 AS12	89 3.1.2		35		
75 mm	100			c Limit		9	6 AS12	89 3.2.1	1	17		
53mm	100		Plasti	city Index	<	9	6 AS12	289 3.3.1		18		
37.5 mm	100			r Shrinka	-	9	1	289 3.4.1		9.5		
26.5 mm	100			ure Cont		9		289 2.1.1		ND		
19.0 mm	100			le Histor			=	ural State	=	Air Dried	. 🖸 Oven D	ried
13.2 mm	100			aration M		:	·	Sieved		Wet Sieve Curling	a	
9.5 mm	100		Linea	r shrinka	ge:			mbling Length:		250	mm	
6.7 mm 4.75 mm	100 100			not dete	rmine	d NO =	not obta	-	NP =	= non pla		
				ification	· · · · · · · · · · · · · · · · · · ·							
2.36 mm 1.18 mm	99 93					M PLASTI	CITY, BR		D, FINI	E TO COA	RSE GRAIN	ED
600 um	82 SANDY CLAT, MED							,				
425 um	76											
300 um	71											
150 um	64		Í									
75 um	56					SAMPL	E TEST	<u>ED AS F</u>	RECE	VED		
NATA	The tests, calibration document have been requirements which in 17025 and are tracea measurement. This	performed in accord nclude the requireme able to national stand	ance with nts of ISC ards of	NATA D/IEC	No. 4	Accredited 131 oved Signa	ature:	ry Da	4	21.0/	56	_

W J FIELDHOUSE (Tulo 4

geotechnics SPECIALISTS MANAGING THE EARTH

A.C.N. 056 929 483

14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

Partic	le S	ize Distrib	ution & A	tterb	erg Li	mits			
Client:		PARSONS BR	INCKERHOF	F			Job No.	06057/AA	
Address		LEVEL 3, 101				SA 5000	Date:	11-Oct-06	
Principa								06057/AA-R40)
Project:		SUBMITTED S							
Locatior Sample		RADWASTE 2	-2102701A 61	Isam	nle Ident	ification:		TP01, 0.6 - 1.0	m
Sample	<u></u>								
		<u>A.S. sieve s</u>	<u>ze</u>	т. 75 µп	— 150 µm 300 µm	— 425 µл 600 µл - 1.18 ллл	- 2,38 mm - 4.75 mm - 6.7 mm - 9.5 mm	- 13.2 mm - 19 mm - 26.5 mm - 37.5 mm	uiii 22
100 -	T	· · · · · · · · · · · · · · · · · · ·	country in the second				X	_x × × ×	× × ×
90 -							/		
BO -							/		
70 -					:				
ହ ₋₆₀ .								· · · · · · · · · · · · · · · · · · ·	
60 - Buisse d to - Buisse d - 40 -									
scent									
<u>40</u> -				· · · · · · · · · · · · · · · · · · ·	×				
30 -									
20 -				×					
20-					-				
10 -							······		
0 -				<u> </u>				: 	<u>: : : </u> 100
0,0	001	0,0	1	0.1	Particle S	ize (mm)			য়ান আনহাত্রী
	clay	S	I I			and		ravel	cobbles
		fine med	ium coarse	វីរ	ne mu	coarse	fine	edium coarse	
Particle S	Size Di	stribution	AS1289 3.6.1	Atte	rberg Lim	its and Moistu	re Content		
Sieve S		% Passing	Specificatio			Test	Method	Result	Spec.
150 m	ากา	100		Liqu	uid Limit	%	AS1289 3.1.2	26	
75 m	m	100		Plas	stic Limit	%	AS1289 3.2.1	17	
53mr	m	100		Plas	sticity Inde	x %	A\$1289 3.3.1	9	
37.5 m	nm	100		Line	ear Shrinka	age %	A\$1289 3.4.1	5.0	
26.5 m	nm	100		Moi	sture Cont	ent%	AS1289 2.1.1	ND	<i></i>
19.0 m	nm	100		San	nple Histor	y:	🔲 Natural State	🗌 Air Dried	🕗 Oven Dried
13.2 m	nm	100		11	paration N		🗹 Dry Sieved	Wet Sieved	
9.5 m	m	100		Line	ear shrinka	ige:	Crumbling		
6.7 m	m	99					Mould Length:	254	mm
4.75 π	nm	97			= not dete		not obtainable	NP = non plas	
2.36 m	nm	63		11	sification				
1.18 m	nm	50	1				RE GRAINED, PA	LE BROWN, WIT	TH SOME LOW
600 u	m	42		IPLAS	STICITY CL	AY			
425 u	m	39	1				· · · · · · · · · · · · · · · · · · ·		
300 u	ım	36	1						
150 u	m	27							
75 ur	m	21				SAMPL	E TESTED AS F	· · · · · · · · · · · · · · · · · · ·	
		The tests, calibration document have been				NATA Accredited	Laboratory Da	ite: 12/10/06	

Approved Signature:

W J FIELDHOUSE (Mulath

document have been performed in accordance with NAT/ requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full

geotechnics SPECIALISTS MANAGING THE EARTH

A.C.N. 056 929 483

14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

Par	ticle S	Bize Distrib	ution & Atl	terberg	Limits	;			
Clien	it:	PARSONS BR	NCKERHOFF				Job No. ()6057/AA	
Addr		LEVEL 3, 101 I)F SA 50	000	Date: 1	1-Oct-06	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)6057/AA-R41	
Princ	•						Report No. 0	00001/001/001	
Proje		SUBMITTED S							
Loca		RADWASTE 2				-		7004 04 08	
Sam	ple No.:	90	62	Sample lo	dentificat	ion:	FR	TP04, 0.4 - 0.8	
				Ę Ę	ĒĒĒ	Ē		13.2.mm 19.mm 26.5.mm 37.5.mm	
		<u>A.S. sieve si</u>	ze	75 µm 150 µn	300	1.18	2.38 mm 4.75 mm 6.7 mm 9.5 mm	13.2.mm 19.mm 26.5.mm 37.5 mm	22 U
	100		<u> </u>					<u> </u>	• • • • • • • • • • • • • • • • • • •
	100						×		
	90 -						/ /		
							X		
	80 -						1	· · · · · · · · · · · · · · · · · · ·	
							1		
	70 -						/		
D.	60 -						/		
tssir									
Percent Passing	50 -		· · · · · · · · · · · ·						
Le l	1					/			
L P	40					17			
	-					X			
	30				X				
	20								
	10		· · · · · · · · · · · · · · · · · · ·						
	0 +		/	0.1			1	0	100
	0.007			Part	icle Size (m	m)		avel	
	clay				sand			edium coarse	cobbies
	L	fine med	ium coarse	fine	medium	coarse	fine m	Editin	
Partic	le Size l	Distribution	AS1289 3.6.1	Atterberg	Limits an	d Moistur	e Content		
L	ve Size	% Passing	Specification		Test		Method	Result	Spec.
1	50 mm	100		Liquid Lin		%	AS1289 3.1.2	25	
	'5 mm	100		Plastic Li		%	AS1269 3.2.1	13	
5	53mm	100		Plasticity		%	AS1289 3.3.1	12	
	7.5 mm	100		Linear Sh	-	%	AS1289 3.4.1	6.0	
26	3.5 mm	100		Moisture		%	<u></u>	ND	
19	9.0 mm	100		Sample F			Natural State	Air Dried	🗹 Oven Dried
13	3.2 mm	100			on Method	:	Dry Sieved	Wet Sieved	
9	.5 mm	95		Linear sh	rinkage:			Curling	
-	.7 mm	84					Mould Length:	254	mm the
	75 mm	71			determine	d NO≓r	not obtainable	NP = non plas	
	36 mm	48		Classifica			RE GRAINED, BR		
	18 mm	34		FINES	r Sand, Fir	NE 10 COA	RE GRAINED, BR	OWN, RED, LOV	VI EASTION I
	00 um 25 um	30 28							
	25 um 00 um	28	1						
1	50 um	20		1					
1	75 um	14				SAMPLE	E TESTED AS R	ECEIVED	
L			is or measurements	covered by this	NATA	Accredited		te: 12/10/01	<u></u>
	\frown	document have been	performed in accord	lance with NAT	A No. 4			121.01	~
Ň	ATĀ		include the requirement able to national stand		Appr	oved Signati	ure:	1	
			document shall not b			IELDHOUSI	1	/	

A.C.N. 056 929 483

14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

Par	tic	e S	ize Distr	Att	tterberg Limits																		
Clien			PARSONS									_	Jo	b N	о.		06	057	/AA				
Addr		•	LEVEL 3, 1						-I A1	DE S		000	Da	te:			11	-Oc	t-06				
				0111		UIIL	,	7.01						por	4 N	•		1.0	/AA		12		
Princ	-	:											Vê	por		0.	υü	001	11-0-1	-1 (-	12		
Proje	ct:		SUBMITTE	D SA	MPL	ES																	
Loca	tion	:	RADWAST	E 2 -	2102	2701A														. <u> </u>			
Sam	ole l	No.:		9042	2			Sam	ple I	ldent	ifica	tion:				N	ΕT	P01,	0.8	- 1.	.2 m		
			<u>A.S. sie</u>	ve size	2			— 75 µm	— 150 µm	шт 006					- 4.75 mm	- 8.7 mm	- 9.0 mm	19-ша ФШ (1-	с — 26.5 mm	c — 37.5 mm	x — 53 mm	(— 75 mm	
	100			·			:	•					~				, ,						
	90 -						• •																
	80 -			10 H/r	1					:					•		*						
	70 -										X:		.,		i.		-						
cr.	60 -								×		:	-					•						
ssing	00 -									! !				-									
Percent Passing	50 -							*								y Lints H i j						. 1	
ercei							÷÷			•			:	:				. <u></u>					
ፈ	40 -		· · · · · · · · · · · · · · · · · · ·	·- ·· · ·										:		1					-		
	30 -]							: 			1. 	ij			_			
	20																						
	20 -						:			-			-	:									
	10 -																		ļ				
	0 -										-						-						
	0.0	01		0.01				0.1	Pa	rticle S	ize (1	1 nm)					10					19	00
				silt						1. 1. 1. 1.	ind						grav	el		22		cobbles	
		clay	fine	mediur	n	coarse	e	fi	10	me	dium	coarse		fine			medi	um		coars	se		
											14	n al 18 a la fr		ont		_							
			istribution			9 3.6.1 cificat	ion	Atte	rper(Test	nd Moist			ent			R	esu	lt		S	pec.
	<u>ve S</u> 50 m		% Passir 100	<u>'9</u>	spec	cinca		Liqu	id Li		i çai		% A			3.1.2			38				
	5 m		100						stic L				1			3,2.1			16				
-	i3mr		100					Plas	sticity	inde:	x		% A	AS12	89	3.3.1			22				
	.5 m		100					Line	ar S	hrinka	ige		% A	AS12	289 :	3.4.1			10.5				
26	5. 5 m	nm	100					Moi	sture	Cont	ent		% <i>I</i>	AS12	289	2.1.1			ND				
19	.0 m	m	100							Histor						State	2		ir Dr		_	⊡ov	en Drie d
13	8. 2 m	nm	100							ion M		d:		Dry				_	Vet S		eđ		
	.5 m		100	1				Line	ear sl	hrinka	ige:			Crur				Ц¢	Curlin	g	_	• •••	
-	.7 m		100							t dete	rmin	ad NO-	™ • not			ngth bla		IP =	250 поп	nla		nm	
	75 m		99						_				- not				_						
	36 m 18 m			IM PLAST	ICITY	BR	ow	N/F	ED.	FIN	E TC	o co	DAR	SE G	RAINED								
	10 II 00 u		80					SAN		, n													
	25 u		74																_				
	00 u		68					 									_						
	50 u		61																				
	'5 ur		52									SAMP		EST	ΈD	AS	RE	CEI	/ED				
			The tests, calib document have								NAT No.	A Accredite)ate:		2/1		/_	6	

document have been performed in accordance with NAT. requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced except in full. No. 431 Approved Signature:

W J FIELDHOUSE WILlich

A.C.N. 056 929 483

14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

Part	icl	e S	ize Distribu	ition & Att	erberg Limits				
Client			PARSONS BRI				Job No. C	6057/AA	
Addre					ADELAIDE SA 5000		Date: 1	1-Oct-06	
				inte officer,			-	6057/AA-R43	
Princi	-	:							
Proje	ct:		SUBMITTED SA						
Locat			RADWASTE 2					TR01 10 11	
Samp	le N	No.:	90	52	Sample Identification		HR	TP01, 1.0 - 1.4	
1	00 -		<u>A.S. sieve si</u>	<u>و</u>	75 µm 300 µm 250 µm 600 µm	1.18 mm	x - 2.38 mm x - 4.75 mm x - 6.7 mm x - 9.5 mm	x - 13.2 mm x - 19 mm x - 26.5 mm x - 37.5 mm	
	90 -					/			
	80 -				$\left \right = \left \right $				
	70 -					÷			
ssing	60 -					·		······································	
Percent Passing	50 -					· •			
Perc	40 -	• •							
	30 -								
	20								
	10 -								
	o							0	100
	0.0	01	0,01		0.1 Particle Size (mm)	1			
		clay	sil		sand			ravel	cobbles
		Ciay	fine med	um coarse	tine medium	coarse	fine m	edium coarse	
Dartio	10 5	ize D	istribution	AS1289 3.6.1	Atterberg Limits and N	loistur	e Content		
Sie			% Passing	Specification	Test		Method	Result	Spec.
	0 m		100		Liquid Limit	%	AS1289 3.1.2	20	
	5 mr		100		Plastic Limit	%	AS1289 3.2.1	12	
	3mn		100		Plasticity Index	%	AS1289 3.3.1	8	
37	.5 m	ım	100		Linear Shrinkage	%	AS1289 3.4.1	3.5	
26	.5 m	nm	100		Moisture Content	%	AS1289 2.1.1	ND	
19	.0 m	nm	100		Sample History:		Natural State	Air Dried	🕗 Oven Dried
13	.2 m	nm	100		Preparation Method:		🗹 Dry Sieved	Wet Sieved	
9.	5 m	m	100		Linear shrinkage:		Crumbiing	Curling	
	7 m		100				Mould Length:	254	mm
4.7	75 m	ım	100		ND = not determined	NO = 1	not obtainable	NP = non plas	tic
2.3	36 m	m	100		Classification:				
1.1	18 m	nm	98		SAND, FINE TO COARSE	GRAIN	ED, BROWN / RE	D, WITH SOME I	OW PLASTICI
60	00 u	m	83		CLAY				
42	25 u	m	68					·····	
30)0 u	m	53						
15	50 u	m	34						
_ 7	5 ur	n	24		S	AMPLE	E TESTED AS R	ECEIVED	
N		A	The tests, calibration document have been requirements which i 17025 and are traces measurement. This oxeent in full	performed in accord nclude the requireme able to national stand	ance with NATA nts of ISO/IEC ards of	d Signat	ure:	ite: 12/10/3	6

geotechnics SPECIALISTS MANAGING THE EARTH

A.C.N. 056 929 483

14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

Par	ticle	e S	ize Distrik	oution & At	terb	erg l	Lim	its						
Clien	t:		PARSONS B	RINCKERHOFF						Job No.	06057	/AA		
Addr				PIRIE STREE			= SA	5000		Date:	11-Oc	:t-06		
Princ							_ 0.1	••••		Report No.	06057	AA-R44	1	
	•	ŀ												
Proje			SUBMITTED											
Loca			RADWASTE									1.5 - 1.8		
Sam		0.:	9	053	Sam		entin	cation:					1	
			<u>A.S. sieve</u>	<u>size</u>	— 75 µш	120 mu	— 300 µm	— 600 µm 1.18 mm			13.2 mm			
	100 <u>–</u>			· · · · ·		:	:			**-	, ×→			
	90													
	80 -							/			-			
	70 -	÷									ļ			
Бu	60										: .:			
Percent Passing						1	/				-			
ut P	50 -					1	.							
erce	40 -					×	:	<u></u>			· 			
<u>م</u>	+0				/									
	30 🕂			· · · · · ·	×						<u> </u>			
						:					-			
	20													
	10													
	o 🗕										10		100	
	0.00)1	0	.01	0.1	Partic	le Size	(mm) 1					राज्य हो	
		clay		silt			sand				gravel		cobbles	
		onnà	tine п	edium coarse	ពែ	ie	mediu	n coars	se	fine	medium	coarse		
Partic	le Si	ze D	istribution	AS1289 3.6.1	Atte	rbera l	Limits	and Mois	sture	e Content				
	ve Si		% Passing	Specification			Те			Method	F	Result	Spe	:C.
	50 mn		100			id Limi			%	A\$1289 3.1.2		32		
7	'5 mm	n	100		H	tic Lim			%	A\$1289 3.2.1		12		
	53mm		100		u	ticity In			% %	AS1289 3.3.1 AS1289 3.4.1		20 7.5		
	7.5 mr		100 100			ar Shri sture C	-		%	1		ND		
	3.5 mr 3.0 mr		100		· · · · · · · · · · · · · · · · · · ·	nple Hi		<u> </u>		Natural State		Air Dried	⊡ Oven I	Dried
	3.2 mr		100			paratio	•	hod:		Dry Sieved		Wet Sieved	-	
9	.5 mn	n	99		Line	ear shri	inkage	:		Crumbling		Curling		
6	.7 mn	n	99							Mould Length		254	mm	
	75 mr		99			= not c		ined NC) = r	ot obtainable	NP =	non plas		
	36 mr		98			sificat				E GRAINED, BR			PLASTIC	ITY
	18 mr 00 un		95 85					GRAVEL	nital					
	25 un		74		1									
	00 un		62											
	50 un		42											
	75 um		32					SAM	IPLE	TESTED AS				<u></u>
			document have be requirements which	ons or measurements en performed in acco h include the requirem ceable to national star	rdance wi ients of 18	ith NATA	N	ATA Accred lo. 431 pproved Si			^{iate:} /	2/10/0	(·

W J FIELDHOUSE Martin

measurement. This document shall not be reproduced

of in full

A.C.N. 056 929 483

14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

Particle	e S	ize Distribu	ition & Att	erberg l	_imits			
Client:		PARSONS BRI				Job No. ()6057/AA	
Address:		LEVEL 3, 101 F	PIRIE STREET.		SA 5000	Date:	11-Oct-06	
Principal:				,		Report No.	06057/AA-R4	5
Project:		SUBMITTED S	AMPLES			-		
Location:		RADWASTE 2						
Sample N	o.:	90		Sample Ide	entification:	HR	TP01, 0.5 - 0.8	m
						E. E	EEE	
	•	<u>A.S. sieve si</u>	<u>/e</u>	— 76 ит — 150 ит	— 300 µл 425 µл 600 µлп 1.18 ллл	-2.36 mm -2.36 mm - 4.75 mm - 6.7 mm	13.2 mm 13.2 mm 19 mm 26.5 mm	- 53 mm - 75 mm
100						- * - * * *		
90 -	÷							
80 -					/			
70 -								
P 60 -				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
bussed 50 tuesced 40								
царана 150- 150- 150- 150- 150- 150- 150- 150-					*			
0 0 40								
30 -								
20				×				
10					. u			
0 + 0,00	1	0.01		0.1	1		0	100
		si		Particl	e Size (mm) sand	•	ravel	
	clay	fine med	n an	fine	medium coarse		edium coarse	coboles
			ne Maria andre en angelet andre en angelet angelet angelet angelet angelet angelet angelet angelet angelet ang					
Particle Siz Sieve Siz		stribution % Passing	AS1289 3.6.1 Specification	Atterberg L	imits and Moistur Test	Method	Result	Spec.
150 mm		100	Specification	Liquid Limit			17	
75 mm		100		Plastic Limi		AS1289 3.2.1	13	
53mm		100		Plasticity In		AS1289 3.3.1	4	
37.5 mn		100		Linear Shrin	nkage %	AS1289 3.4.1	1.0	
26.5 mn	n	100		Moisture Co		AS1289 2.1.1	ND	l
19.0 mn	n	100		Sample His		Natural State	🔲 Air Dried	🕗 Oven Dried
13.2 mn		100		Preparation		✓ Dry Sieved	Wet Sieved	
9.5 mm		100		Linear shrir	ikage:			~~~
6.7 mm		100		ND m not d	storminod NO-	Mould Length: not obtainable	250 NP = non plas	mm tic
4.75 mn		100		ND = not de				
2.36 mn		100 99		Classificati				
1.18 mm 600 um		99 84		SAND, FINE	TO COARSE GRAIN	ED, BROWN / RE	D, LOW PLASTIC	CITY FINES
425 um		67						
300 um		50						
150 um		32						
75 um		22			SAMPL	E TESTED AS R		,
		The tests, calibration	s or measurements c	overed by this	NATA Accredited	Laboratory Da	te: 12/10/	- C

document have been performed in accordance with NATA requirements which include the requirements of ISO/IEC 17025 and are traceable to national standards of measurement. This document shall not be reproduced voont in full

No. 431 Approved Signature:

Approved Signature: W. J FIFI DHOUSE Audau

FR TP01, 0.6 - 1.0 m 1.96 11.9 8.7 1.5 x E-8 GRAVELLY SAND, FINE TO COARSE GRAINED, PALE BROWN WITH SOME LOW	client : PARSON BRINCKERHOFF LEVEL 3, 101 PIRIE STREET principal : project : SUBMITTED SAMPLES location : RADWASTE 2 - 2101701A	, ADELAIDE SA 5000		job no : 06057/. laboratory : ADELA report date : October test report no. : 06057/.	IDE r 16, 2006
SAMPLE DENSITY MOISTURE CONTENT CONTENT PERMEABILITY IDENTIFICATION (Um3) (%) (%) (m/sec) SAMPLE NO. 9043 1.90 12.6 7.1 3.7 x E10 MET FPOT, 0.4 - 0.8 m 1.90 12.6 7.1 3.7 x E10 SAMPLE NO. 9043 1.90 12.6 7.1 3.7 x E10 PRASTICITY, MEDUIMA PLASTICITY, REDUIMA FINE TO COARSE GRAINED 2.14 7.1 5.6 6.2 x E10 SAMPLE NO. 9052 ARD 2.14 7.1 5.6 6.2 x E10 SAND, FINE TO COARSE GRAINED, SAND WITH SOME LOW PLASTICITY CLAY 1.96 11.9 8.7 1.5 x E8 SAMPLE NO. 9061 1.96 11.9 8.7 1.5 x E8 1.5 x E8 RRAW WITH SOME LOW PLASTICITY CLAY NOTES: 1. SAMPLES REMOULDED TO 98% OF MAXIMUM DRY DENSITY AT OPTIMUM MOISTURE CONTENT (MODIFIED)	est procedure : AS1289 6.7.2, 2.1.3	1		test date : 27/09/0	06 - 10/10/06
SAMPLE NO. 9043 MR TP07, 0.4 - 0.8 m SANDY CLAY, MEDIUM PLASTICITY, BROWN RED, FINE TO COARSE GRAINED SAMPLE NO. 9052 HR TP01, 1.0 - 1.4 m SAND, FILE TO COARSE GRAINED, BROWN RED, WITH SOME LOW PLASTICITY CLAY SAMPLE NO. 9061 FR TP01, 0.6 - 1.0 m GRAVELLY SAND, FINE TO COARSE GRAINED SAMPLE NO. 9061 FR TP01, 0.6 - 1.0 m GRAVELY SAND, FINE TO COARSE GRAINED PALE SAMPLE NO. 9061 FR TP01, 0.6 - 1.0 m R TP07, 0.6 - 1.0 m NOTES: 1. SAMPLES REMOULDED TO 98% OF MAXIMUM DRY DENSITY AT OPTIMUM MOISTURE CONTENT (MODIFIED)	SAMPLE				
ME TP07, 0.4 - 0.8 m SANDY CLAY, MEDIUM PLASTICITY, BROWN RED, FINE TO COARSE GRAINED SAMPLE NO. 9052 HR TP01, 1.0 - 1.4 m SAAND, FINE TO COARSE GRAINED, BROWN RED, WITH SOME LOW PLASTICITY CLAY SAMPLE NO. 9061 FR TP01, 0.6 - 1.0 m GRAVELLY SAND, FINE TO COARSE GRAINED, PALE BROWN WITH SOME LOW PLASTICITY CLAY NOTES: 1. SAMPLES REMOULDED TO 98% OF MAXIMUM DRY DENSITY AT OPTIMUM MOISTURE CONTENT (MODIFIED)	IDENTIFICATION	(t/m3)	(%)	(%)	(m/sec)
HR TP01, 1.0-1.4 m SAND, FINE TO COARSE GRAINED, BROWN RED, WITH SOME LOW PLASTICITY CLAY SAMPLE NO. 9061 FR TP01, 0.6-1.0 m GRAVELLY SAND, PALE BROWN WITH SOME LOW PLASTICITY CLAY NOTES: 1. SAMPLES REMOULDED TO 98% OF MAXIMUM DRY DENSITY AT OPTIMUM MOISTURE CONTENT (MODIFIED)	ME TP07, 0.4 - 0.8 m SANDY CLAY, MEDIUM PLASTICITY, BROWN RED, FINE TO COARSE GRAINED	1.90	12.6	7.1	3.7 x & 10
SAMPLE NO. 9061 FR TF01, 0.6 - 1.0 m 1.96 11.9 8.7 1.5 x E-8 GRAVELLY SAND, FINE TO COARSE GRAINED, PALE BROWN WITH SOME LOW PLASTICITY CLAY NOTES: 1. SAMPLES REMOULDED TO 98% OF MAXIMUM DRY DENSITY AT OPTIMUM MOISTURE CONTENT (MODIFIED)	HR TP01, 1.0 - 1.4 m SAND, FINE TO COARSE GRAINED, BROWN RED, WITH SOME LOW	2.14	7.1	5.6	6.2 x E-10
1. SAMPLES REMOULDED TO 98% OF MAXIMUM DRY DENSITY AT OPTIMUM MOISTURE CONTENT (MODIFIED)	SAMPLE NO. 9061 FR TP01, 0.6 - 1.0 m GRAVELLY SAND, FINE TO COARSE GRAINED, PALE BROWN WITH SOME LOW	1.96	11.9	8.7	1.5 x E-8
		1. SAMPL	OPTIMUM MOISTURE	CONTENT (MODIFIED)	

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document may not be reproduced except in full.

NATA Accredited Laboratory No. 431 Approved Signatory: Date: 17/10/06 W J FIELDHOUSE ALL

COPYRIGHT (c) Coffey Geotechnics Pty Ltd - 2006

				,0002 1144 102. (00) 020	
test results					
client : PARSON BRINCKERHOFF LEVEL 3, 101 PIRIE STREET	ADELAIDE SA 5000		job no :	06057/AA	
principal :	,		laboratory :	ADELAIDE	
project : SUBMITTED SAMPLES			report date :	October 16, 2006	
location : RADWASTE 2 - 2101701A			test report no.	: 06057/AA-R49	
test procedure.: AS1289 5.2.1, 2.1.1	,		test date :	16/10/06	
SAMPLE		MODIFIED CO	MPACTION TEST	-	
IDENTIFICATION	MAXIMUM DRY DENSITY (t/m3)	OPTIMUM MOISTURE CONTENT (%)			
SAMPLE NO. 9042					a construction of the second se
ME TP01, 0.8 - 1.2 m SANDY CLAY, MEDIUM PLASTICITY, BROWN RED, FINE TO COARSE GRAINED SAND	1.93	13.0			7
SAMPLE NO. 9051					
HR TP01, 0.5 - 0.8 m	2.14	6.5			1
SAND, FINE TO COARSE GRAINED, BROWN RED, LOW PLASTICITY FINES					
SAMPLE NO. 9053 FR TP01, (1.5 - 1.8 m) CLAYEY SAND, FINE TO COARSE GRAINED, BROWN RED, LOW PLASTICITY CLAY, TRACE OF GRAVEL	2.07	9.0			
remarks : SAMPLES TESTED AS RECE	IVED			·····	

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document may not be reproduced except in full.

Date : ,7/,0/06 NATA Accredited Laboratory No. 431 Approved Signatory: W J FIELDHOUSE (Herdod

COPYRIGHT (c) Coffey Geotechnics Pty Ltd - 2006

С	ali	fornia bea	ring ratio t	est result	S		
clier			IOFF FREET, ADELAIDE SA 50		job no :	06057/AA	
prin	cipal		REET, ADELAIDE SA 30		laboratory :	ADELAIDE	
proj	ect:	SUBMITTED SAMPLES	5		report date :	October 09, 2006	
loca	tion	RADWASTE 2 - 21027	701A		test report no. :	06057/AA-R34	
	•	edure : y compaction method :	AS1289 6.1.1 AS1289 5.1.1				
sam	ple n	umber :	9043	9043			
dept	h:	m	0.4 - 0.8	0.4 - 0.8			
loca	tion:		ME TP07	ME TP07			
date	sam	pled:	-				
date	test	ed:	3/10/06	3/10/06			
mat	erial	description:	-	-			
max	imun	n dry density: t/m ³	1.94	1.94			
opti	mum	moisture content: %	12.5	12.5			
field	l moi	sture content %	7.1	7.1			
reta	ined	on 19mm AS sieve: %	0	0			
+ 19) mm	material included:	No	No			
		dry density t/m ³	1.89	1.89			
	soaking	density ratio %	97.5	97.5			
	ore	moisture content %	12.8	12.8			
	bet	moisture ratio %	102.5	-			
test	buj	dry density t/m ³	1.89	-			
	r soakìng	density ratio %	97.5	-			
C.B.R.	after	moisture content %	15.8	-			
	num	ber of days soaked:	4	UNSOAKED			
	surc	charge: kg	9	9			
	moi	sture content 30 mm	18.7	-			
	afte	remaining r test % sample	15.5	-			
	swe	ell after soaking: %	0.6	-			
	реп	etration: mm	2.5	2.5			
		3.R. value: %	7	40			
rem	arks						

SAMPLES TESTED AS RECEIVED

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document may not be reproduced except in full.

NATA Accredited haboratory Date : 10-10-00 No. 431 Approved Signatory: G SIMPSON

COPYRIGHT (c) Coffey Geotechnics Ptv Ltd - 2006

geotechnics SPECIALISTS MANAGING THE EARTH

14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

client		PADSONS BRINCKERH	ring ratio to		job no :	06057/AA	
•	ct :		RET, ADELAIDE SA 500	00	laboratory : report date : test report no. :	ADELAIDE October 09, 2006 06057/AA-R35	
		edure: y compaction method:	AS1289 6.1.1 AS1289 5.1.1	·····			
samp	le n	umber :	9052	9052			
depth	1:	m	1.0 - 1.4	1.0 - 1.4			
locati	on:		HR TP01	HR TP01			
date	sam	ipled:	-				
date	test	ed:	3/10/06	3/10/06			
mate	rial	description:	-	-			
maxi	mun	n dry density: t/m ³	2.19	2.19			
optin	านท	moisture content: %	7.0	7.0			
field	moi	isture content %	5.6	5.6			
retair	ned	on 19mm AS sieve: %	0	0			
+ 19	mm	material included:	No	No			
		dry density t/m ³	2.15	2.15			
	soaking	density ratio %	98	98			
	ore sc	moisture content %	6.6	6.6			
	before	moisture ratio %	94.5	-			
1	p	dry density t/m ³	2.15	-			
R. test	soaking	density ratio %	98	-			
C.B.R.	after	moisture content %	8.9	-			
H		nber of days soaked:	4	UNSOAKED			
H		charge: kg	9	9			
ľ	moi	sture content 30 mm	9.9	-			
	afte	remaining ertest % sample	9.1	-			
- F		ell after soaking: %	0.04	-			
[pen	etration: mm	2.5	5.0			
	C.I	B.R. value: %	30	130			

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document may not be reproduced except in full.

NATA Accredited Laboratory No. 431 Approved Signatory: G SIMPSON . 1

Date: 10-10-00

remarks

cal	lifornia bear	ring ratio to	est result	S		
client :	PARSONS BRINCKERH(job no :	06057/AA	
-			laboratory : report date : test report no. :	ADELAIDE October 09, 2006 06057/AA-R36		
-	ocedure : // / / / / / / / / / / / / / / / / /	AS1289 6.1.1 AS1289 5.1.1				
sample	number :	9062	9062			
depth:	m	0.4 - 0.8	0.4 - 0.8			
ocatio	n:	FR TP04	FR TP04			
date sa	ampled:		-			
date te	ested:	3/10/06	3/10/06			
materia	al description:		-			
maxim	um dry density: t/m ³	2.22	2.22			
optimu	ım moisture content: %	8	8			
field m	noisture content %	5.8	5.8			
retaine	ed on 19mm AS sieve: %	0	0			
+ 19m	m material included:	No	No			
	dry density t/m ³	2.19	2.19			
soaking	density ratio %	98.5	98.5			
ore	3 moisture content %	7.0	7.0			·,
befo	moisture ratio %	87.5	-			
	²⁹ dry density t/m ³	2.19	-			
R. test	density ratio %	98.5	-			
C.B.R.	moisture content %	10.9	-			
	umber of days soaked:	4	UNSOAKED			
sı	urcharge: kg	9	9			
m	noisture content top 30 mm	13.2	-			
a	remaining fter test % sample	11.2	-			
	well after soaking: %	0.04	-			
p	enetration: mm	2.5	2.5			
	C.B.R. value: %	40	220			

SAMPLES TESTED AS RECEIVED

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document may not be reproduced except in full.

NATA Accredited Laboratory Date : 10-10-00 No. 431 Approved Signatory:

COPYRIGHT (c) Coffey Geotechnics Ptv Ltd - 2006

COPYRIGHT (c) Coffey Geotechnics Pty Ltd - 2006

Approved Signatory: W J FIELDHOUSE 6 Mart M

lient : PARSONS BRINCKERHOFF	job no : 06057/AA
LEVEL 3, 101 PIRIE STREET, A principal :	ADELAIDE SA 5000 laboratory : ADELAIDE
project : SUBMITTED SAMPLES	date : October 11, 2006
ocation : RADWASTE 2 - 2102701A	test report no. : 06057/AA-R37
est procedure : AS 1289 3.8.1 ample number: 9043 ample identification: ME TP07, 0.4 - 0	date sampled: material source:
test data	immersion of air dried crumbs
air dried crumbs	does not slake
an anou orambo	slakes Swell 7
me start of 11.05 am	
est:	does not swell (8
me dispersion	
ommences:	complete dispersion (1)
me dispersion	partial dispersion
ompleted:	no dispersion
remoulded material	immersion of remoulded material
me start of 11.27 am	
est:	disperses (3)
me dispersion ommences:	does not disperse
me dispersion	
ompleted:	calcite or gypsum
	present
material description	absent 🛛
	vigorous shaking
SANDY CLAY, MEDIUM PLASTICITY, BROWN RED, FINE	disperses
TO COARSE GRAINED SAND	flocculates (6)
ype of water used: <i>distilled</i>	Emerson 6 class number

COPYRIGHT (c) Coffey Geotechnics Pty Ltd - 2006

ent: PARSONS BRINCKERHOFF LEVEL 3, 101 PIRIE STREET, J	ADELAIDE SA 5000	job no :	06057/AA
incipal : oject : SUBMITTED SAMPLES cation : RADWASTE 2 - 2102701A		laboratory : date : test report no. :	ADELAIDE October 11, 2006 06057/AA-R39
st procedure : AS 1289 3.8.1 mple number: 9061 mple identification: FR TP01, 0.6 - 1	date sampled: .0 m	material source	e:
test data	immersio	n of air dried c	rumbs
air dried crumbs	does not slake		swell 7
estartof 11.05 am		da	swell (7) pes not swell (8)
e dispersion	complete dispersion		
ne dispersion mpleted:	partial dispersion		
remoulded material	immersion	of remoulded	material
ne start of 11.27 am st:	disperses		
ne dispersion mmences:	does not disperse		
ne dispersion mpleted:	calcite or gy		
material description	absent		
GRAVELLY SAND, FINE TO OARSE GRAINED, PALE BROWN, WITH SOME LOW PLASTICITY CLAY		vigorous shaking disperses flocculates	□ ⑤ ○ ○
pe of water used: <i>distilled</i> ater temperature: ^o C		Emerson class number	6

14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

COPYRIGHT (c) Coffey Geotechnics Pty Ltd - 2006

lient : PARSONS BRINCKERHOFF LEVEL 3, 101 PIRIE STREET, A	job no : 06057/AA
rincipal :	Iaboratory : ADELAIDE
roject : SUBMITTED SAMPLES	date : October 11, 2006
cation : RADWASTE 2 - 2102701A	test report no. : 06057/AA-R46
est procedure : AS 1289 3.8.1 Ample number: 9052 Ample identification: HR TP01, 1.0 - 1.	date sampled: material source:
test data	immersion of air dried crumbs
air dried crumbs	does not slake
	slakes Swell [] (7
me start of 11.05 am est:	does not swell (8
me dispersion	
ommences:	complete dispersion (1)
me dispersion	partial dispersion
ompleted:	no dispersion
remoulded material	immersion of remoulded material
me start of 11.27 am	disperses (3)
est:	
me dispersion ommences:	does not disperse
me dispersion	
ompleted:	calcite or gypsum
	present (4)
material description	absent
· · · · · · · · · · · · · · · · · · ·	
SAND. FINE TO COARSE	vigorous shaking
SAND, FINE TO COARSE GRAINED, BROWN, RED, WITH SOME LOW PLASTICITY CLAY	vigorous shaking disperses 🛛 (5)
GRAINED, BROWN, RED, WITH	disperses 🛛 (5)
GRAINED, BROWN, RED, WITH SOME LOW PLASTICITY CLAY	disperses 🛛 (5) flocculates 🗋 (6)
GRAINED, BROWN, RED, WITH	disperses 🛛 (5)

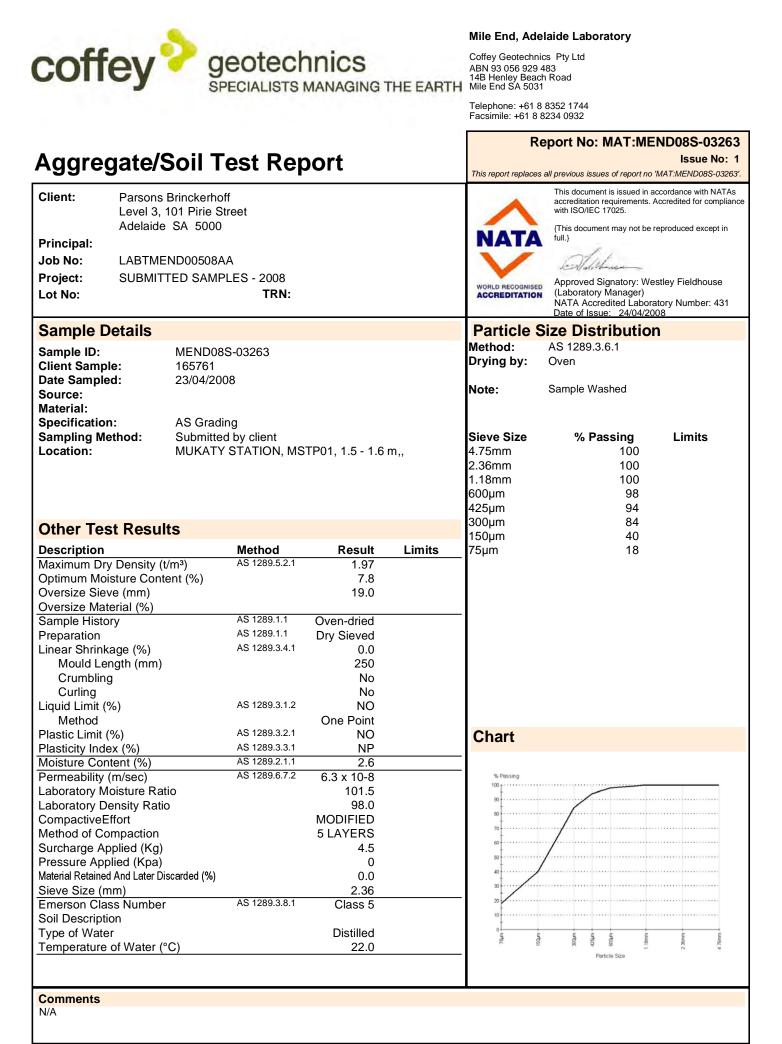
W J FIELDHOUSE ALL

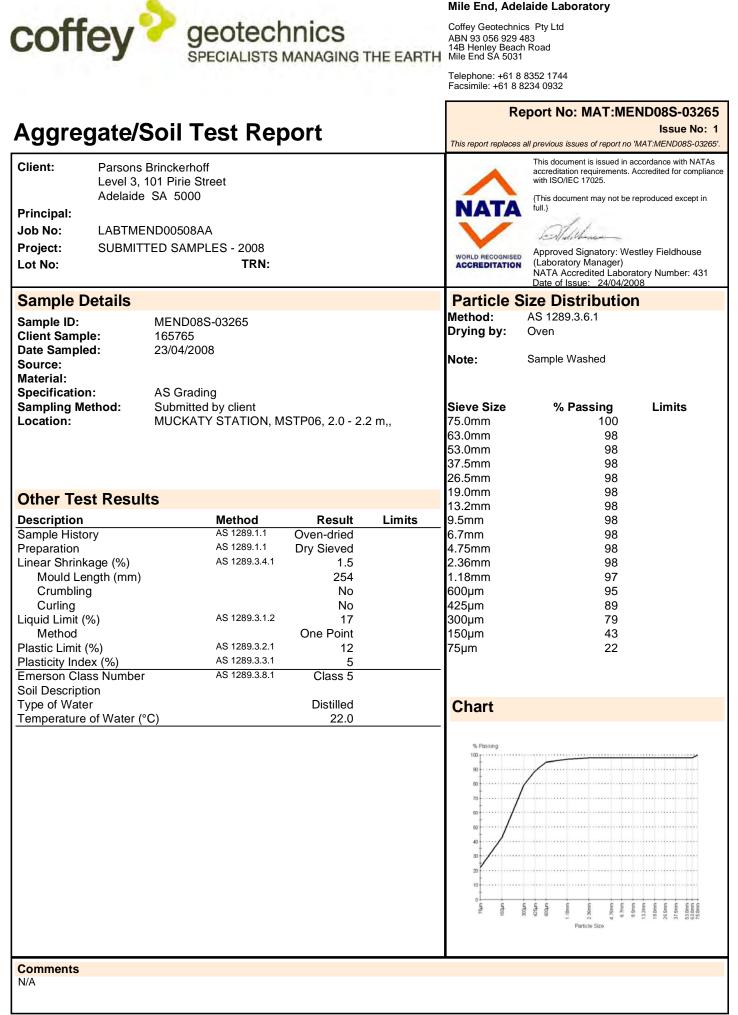
14B Henley Beach Road, Mile End, SA, 5031 Ph: (08) 8352 1744 Fax: (08) 8234 0932

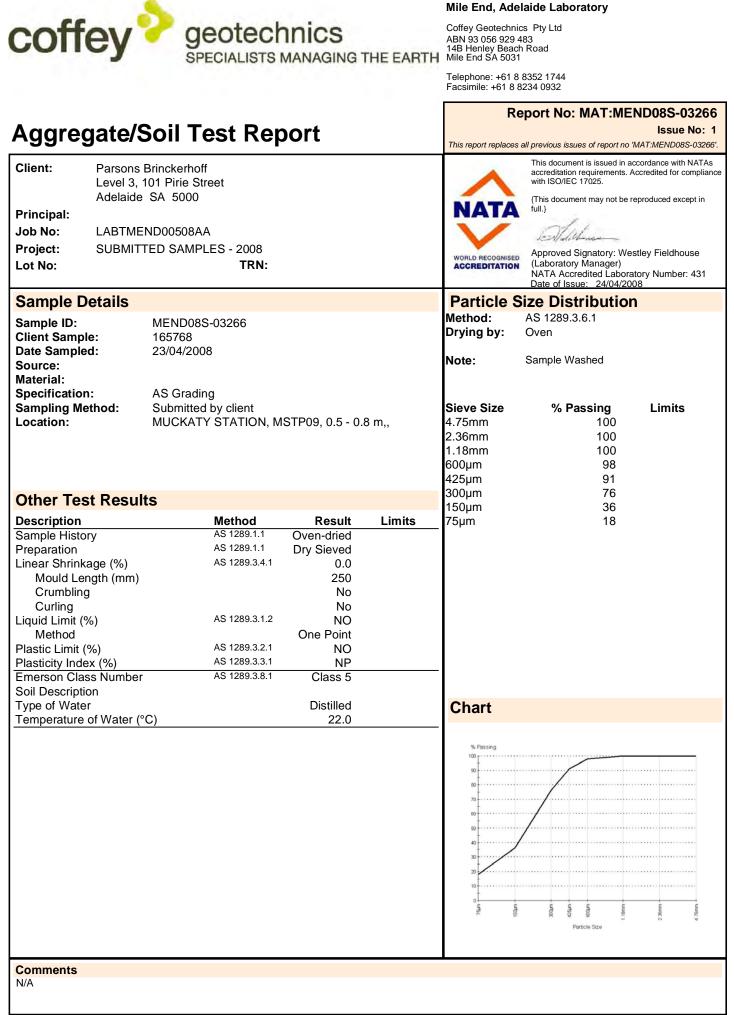
COPYRIGHT (c) Coffey Geotechnics Ptv Ltd - 2006

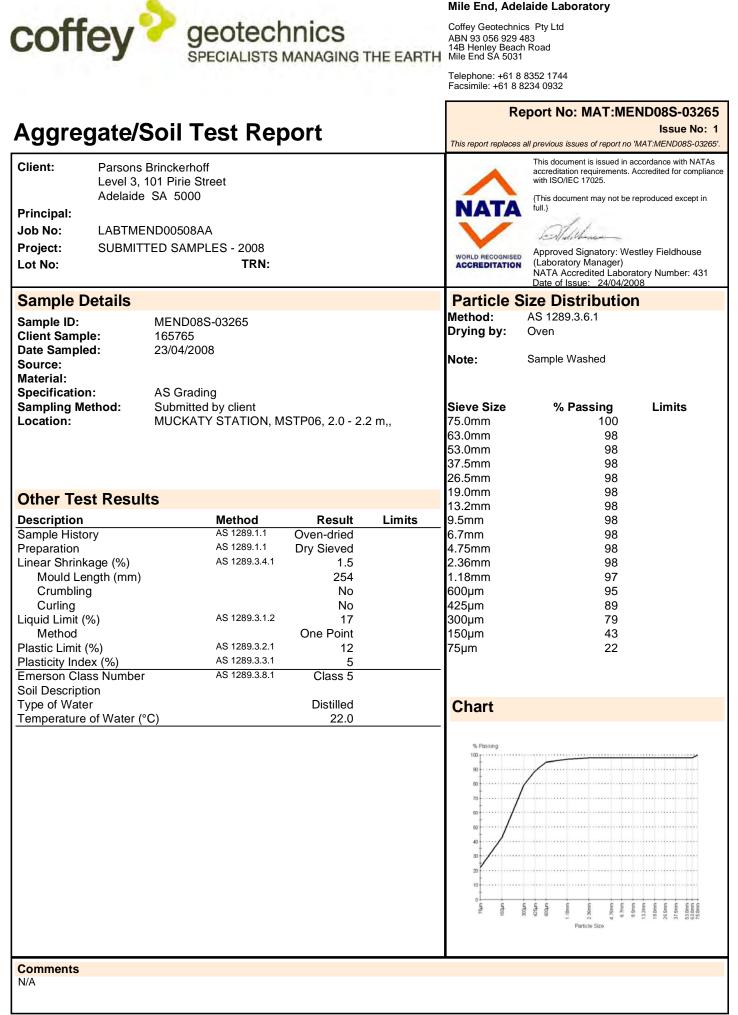
determination of	emerson class number
client : PARSONS BRINCKERHOFF LEVEL 3, 101 PIRIE STREET, A principal : project : SUBMITTED SAMPLES location : RADWASTE 2 - 2102701A	job no : 06057/AA laboratory : ADELAIDE date : October 11, 2006 test report no. : 06057/AA-R47
test procedure : AS 1289 3.8.1 sample number: 9042 sample identification: METP01, 0.8 - 1	date sampled: material source:
test data	immersion of air dried crumbs
air dried crumbs	does not slake
time start of 10.03 am test:	slakes Swell (7) does not swell (8)
time dispersion commences:	complete dispersion 1
time dispersion completed:	partial dispersion (2) no dispersion (2)
remoulded material	immersion of remoulded material
time start of 10.27 am test:	disperses (3)
time dispersion commences:	does not disperse
time dispersion completed:	calcite or gypsum present
material description	absent
SANDY CLAY, MEDIUM PLASTICITY, BROWN, RED, FINE TO COARSE GRAINED SAND	vigorous shaking disperses flocculates 6
type of water used: <i>distilled</i> water temperature: 20° C	Emerson class number 6

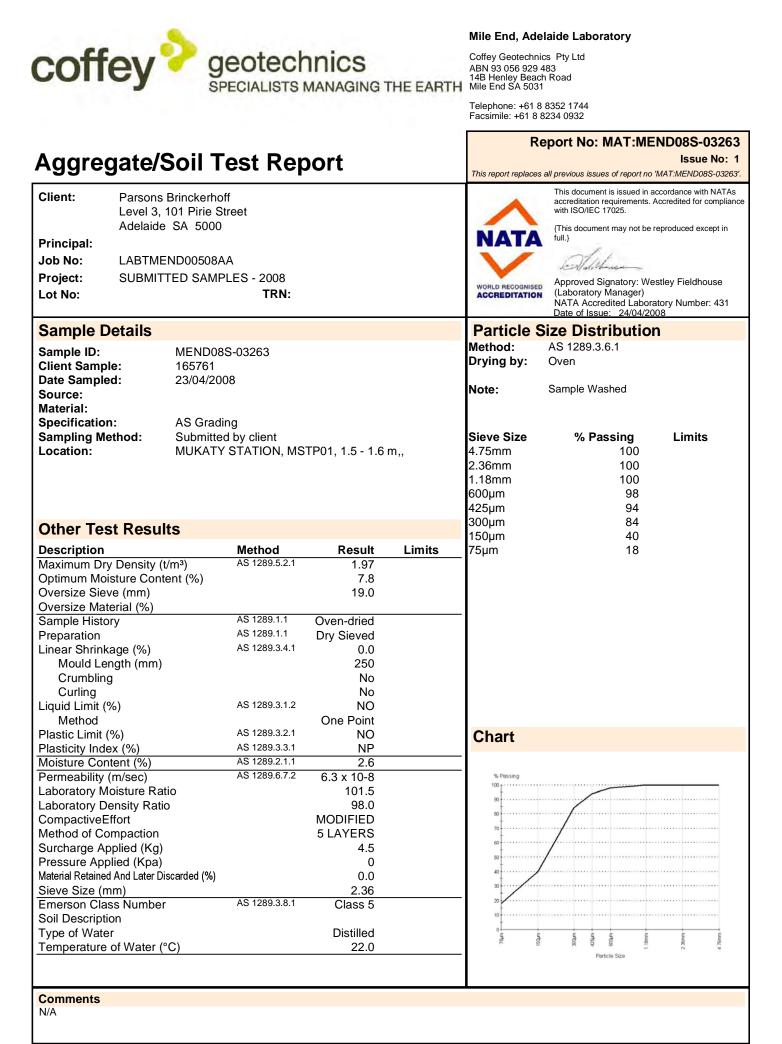
W J FIELDHOUSE The

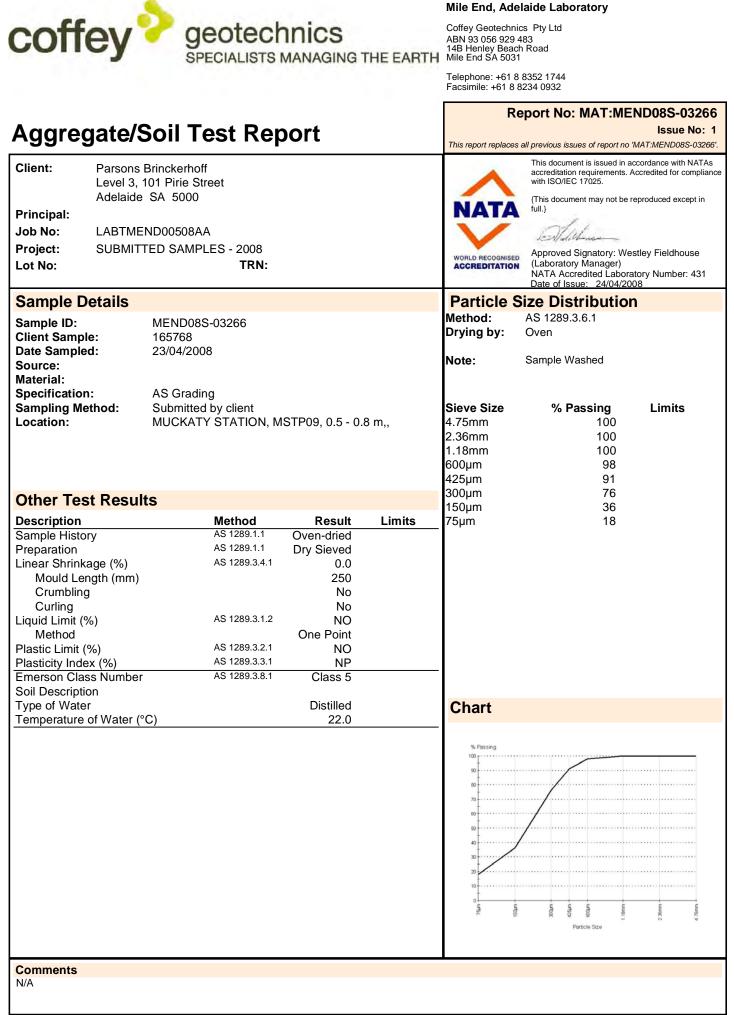



1668 Dandenong Rd Clayton Vistoria 3188 Ph; 03 9638 2277 Fex: 03 8538 2278 ABK 30 006 127 802


Results


Report No: 175537


	0810900/001 9042	0610900/002 9043	0610900/003 9052
	20/07/06 25/10/06	20/07/08 25/10/04	20/07/06 25/10/06
ANIONS (SOLUBLE) by ION CHROM	IATOGRAPHY, DRY WI	EIGHT	
Mothod: 208 Units: mg/kg			
Chloride	11	3.0	4.5
Sulphato	17	4.8	4.7
OVEN MOISTURE CONTENT			
Method: 100 Units: % w/w			
Moisture	6.1	6.0	4.8
ph measurement			
Mothod: 226 Units: pH Units			
pH (1:5 in UHP Water)	6.9	7.2	7.5



POINT LOAD STRENGTH INDEX REPORT

Coffey Geotechnics Pty Ltd A.C.N. 056 929 483

1 of 2 Page:

Client: PARSONS BRINCKERHOFF LEVEL 3, 101 PIRIE STREET, ADELAIDE SA 5000 Project: **Submitted Samples**

RADWASTE 2 - 2102701A Location:

Test locality:

axial/irregular lump test Adelaide

🗹 diametral test De D Т P 1

	[W	L	D	Р	De	ls	ls(50)	
Rock Sample Description	moisture condition	specimen width (axial/irregular lump)	sample length (diametral)	platen separation	load		P/D or P/De ²		COMMENTS
		(m	m)	(mm)	(kN)	(mm)	(MPa)	(MPa)	
ME BH 01 6.7 - 7.0	N	60.9	-	44.8	0.2	58.9	0.1	0.1	VL (axial)
ME BH 01 12.1 - 12.2	N	59.9	-	47.5	0.3	60.2	0.1	0.1	VL (axial)
ME BH 01 22.85 - 23.1	N	-	106.0	60.7	0.2	0.0	0.1	0.1	VL (diametral)
ME BH 02 13.4 - 13.6	N	-	105.0	59.7	1.4	0.0	0.4	0.4	VL (diametral)
HR BH 01 9.0 - 10.0	N	-	71.0	58.6	0.1	0.0	0.0	0.0	VL (diametral)
HR BH 01 20.5 - 21.5	N	146.1	-	34.9	0.2	80.6	0.0	0.0	VL (axial)
FR BH 01 9.8 - 10.2	N	-	85.0	59.8	0.1	0.0	0.03	0.03	VL (diametral)
FR BH 02 1.0 - 1.3	N	-	78.0	61.6	0.05	0.0	0.01	0.01	VL (diametral)
FR BH 02 4.95 - 5.25	Ν	-	-	-	-	-	-	•	INSUFFICIENT SAMPLE

50.6

35.2

0

60.6

0.00

NOTES:

SAMPLES TESTED AS RECEIVED

Ν

FR BH 02 11.1 - 11.6

Signature: W J FIELDHOUSE (

0.00

Job No. 06057/AA Date: 19/10/2006 Tested by: RD / MF Checked by: 9 Test Report No: 06057/AA-R55

Test Method : AS4133.4.1

VL (axial)

Date: (6/11/04

POINT LOAD STRENGTH INDEX REPORT

Coffey Geotechnics Pty Ltd A.C.N. 056 929 483

Page: 2 of 2

Job No. 06057/AA

Client:	PARSONS BRINCKERHOFF
	LEVEL 3, 101 PIRIE STREET, ADELAIDE SA 5000
Project:	Submitted Samples
Location:	RADWASTE 2 - 2102701A

<u>Adelaide</u>

Date: 19/10/2006 Tested by: RD Checked by:

Test Report No: 06057/AA-R56

Test Method : AS4133.4.1

Test locality:

✓ axial/irregular lump test

✓ diametral test

		W	L	D	Р	De	ls	ls(50)	
Rock Sample Description	moisture condition	specimen width (axial/irregular lump)	sample length (diametral)	platen separation	load		P/D or P/De ²		COMMENTS
		(m	m)	(mm)	(kN)	(mm)	(MPa)	(MPa)	
FR BH 02 15.5 - 15.8	N	-	95.5	59.8	0.2	0.0	0.06	0.06	VL (diametral)
FR BH 02 23.7 - 24.0	N	Ŧ	69.2	57.7	0.3	0.0	0.09	0.10	VL (diametral)

NOTES: SAMPLES TESTED AS RECEIVED

Signature: W J FIELDHOUSE

Wull

Date: 16/11/06

Unit 8/12 Mars Road, Lane Cove, 2066 Ph: (02) 9911 1000 Fax (02) 9911 1003

client : PARSONS BRINKER	RHOFF			job no : MEND	06057 AA				
principal :				laboratory : Lane (Cove West				
project : SUBMITTED SAMP	LES			report date : 9 Nov	ember 2006				
location : RADWASTE 2 - 21	02701 A			test report no. : RT-0 2	296				
test procedure,: AS 4133.4.	2: AS 41	33.1.1.1		test date : 31 Oc	t. & 8 Nov. 2006				
Sample		UNIAXIAL COMPRESSIVE STRENGTH							
Identification		ROCK CORE TEST RESULTS							
Borehole		BH 1	BH 1	BH 1	BH 1				
Sample Number		9054	9054	9054	9063				
Sample		1	2	3					
Depth	m	9.0 to 10.0	9.0 to 10.0	9.0 to 10.0	9.8 to 10.2				
Date Tested		31 October 2006	31 October 2006	31 October 2006	8 November 2006				
Number of Specimens tested		4	4	4	4				
Average Diameter	mm	58.6	59.1	61.6	60.8				
Height	mm	126	124	86	141				
UNIAXIAL	MPa	0.15	0.84	1.08	2.06				
COMPRESSIVE STRENGTH Wet Density	t/m ³	1.84	1.77	1.91	1.88				
Dry Density	t/m ³	1.76	1.72	1.80	1.80				
Moisture Content	%	4.4	2.8	6.0	4.0				
Time to Failure	min	1.85	1.77	2.47	4.46				
Mode of Failure		axial	axial	shear	axial				
Sample Description		sandstone	sandstone	sandstone	sandstone				
Height:Diameter Ratio		2.15:1	2.09:1	1.40:1	2.32:1				
Angle between axis of		massive	massive	massive	massive				
loading & bedding plane		The ave	erage Uniaxial Compressi						
		was 1.03 MPa							
		These tests	did not comply with AS	4133.1.2 in the follow	ing respects:				
				r of samples tested.					
		All samples were shorter than the requirements.							
		All tests	failed below the calibra	-					

A Wykeham Farrance/Civilab_1500kN compression machine was used.

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. This document may not be reproduced except in full.

NATA Accredited Laboratory No. 431 Approved Signatory: Alan Cocks Senior Geotechnician

COPYRIGHT (c) Coffey Geotechnics Pty Ltd - 2006

9 November 2006

Date

SOUTH AUSTRALIAN WATER CORPORATION MATERIALS SCIENCES UNIT SOILS & CONCRETE

East Terrace, Thebarton S.A, Telephone: 8207 1478 Fax: 82071493

A DESCRIPTION OF A	
Coffey Geocologues	
RECEIVED	
9 NOV 2006	
And a second	
WF	

PROJECT: P.B. RADWASTE 2

<u>CLIENT:</u> COFFEY GEOSCIENCES PTY. LTD.

JOB NO: 06057/AA

TESTING: Resistivity, Conductivity (1:5)

<u>TEST DATE:</u> 06/11/06

<u>CERT. NO:</u> 10728

BH	Depth (m)	Resistivity (ohm m)	Water added (ml)	Conductivity (1:5) dS/m
HR TP 01	1.0 – 1.4	8	0	0.03
	÷	124	50	
- 	•	81	90	

R 9/Slack Senior Technical Officer 06 November 2006

SOUTH AUSTRALIAN WATER CORPORATION MATERIALS SCIENCES UNIT SOILS & CONCRETE East Terrace, Thebarton S.A, Telephone: 8207 1478 Fax: 82071493

CLIENT: COFFEY GEOTECHNICS / PARSONS BRINCKERHOFF

LOCATION: 2102 701A - RADWASTE 2 - 4th SITE

JOB NO: 508 AA

TESTING: Resistivity

Electrical Conductivity (AS 4419)

TEST DATE: 29/04/08

CERT. NO: 11772

Sample I.D.	Depth (m)	Resistivity (ohm m)	Water added (mls)	Electrical Conductivity(dS/m)
08/426 165761 - MSTP01 08 S - 3263	1.5 - 1.6	00 1000 530	0 50 85 (Saturated)	0.040
08/427 165764 - MSTP04 08 S - 3264	1.3 - 1.5	5500 2030 1150	0 50 90 (Saturated)	0.015
08/428 165763 - MSTP09 08 S - 3266	0.5 - 0.8	∞ 1770 1010	0 50 85 (Saturated)	0.015

RUSlack

RUSlack Senior Technical Officer 29 April 2008

1000 Dendenong Ad Cleyton Vistoria 3100 Phi 03 0538 2277 Fex: 03 0638 2278 ABN 30 008 127 802

	Analytical Report	
Coffey Environments Pty Ltd (SA) Level 1, 2-3 GREENHILL ROAD WAYVILLE SA 5034	Batch Number Job Ref Sample(s) Received	: WESTLEY FIELDHOUS : 0610900 : 06057/AA : 25/10/2006 : 175537
<i>Methods:</i> 100 Molsture Content 208 Anions (Soluble) by Chromatograp 226 pH Measurement, Soil	hy, Dry Welght	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Attached Results Appro	ved by:	
Helen Lei B.App.Sci. (Biochemistry) Senior Analyst - Waters	This document is issued in accordance with NATA's accreditation requirements. Accredit for compliance with ISO//EC 17023.	Leanne Murray PhD (Organic Chemistry) Production Manager
Do	ATA ENDORSED DOCUMENT cument may not be reproduced except in full. (Chemical Testing) NATA Accreditation No.	

* This is the Final Report which supersedes any reports previously issued relating to the sample(s) included. All samples tested as submitted by client. # Denotes methods not covered by NATA scope of accreditation

Reported: Friday, 27 October 2008

,

.

.

.

1866 Dendenong Rd Cleyton Vistoria 3188 Ph: 03 9538 2277 Fex: 03 9538 2278 ABN 30 008 127 602

Report No: 175537

Results			
	0810900/001 9042	0810900/002 9043	0810900/003 9052
	20/07/08 25/10/06	20/07/06 25/10/05	20/07/06 25/10/06
ANIONS (SOLUBLE) by ION CHROM	IATOGRAPHY, DRY WI	EIGHT	
Mothod: 208 Units: mg/kg Chloride	11	3.0	4.5
Sulphate	17	4.8	4.7
OVEN MOISTURE CONTENT			
Method: 100 Units: % w/w			
Moisture	6.1	6.0	4.8
PH MEASUREMENT			
Method: 226 Units: pH Units			
pH (1:5 in UHP Water)	6.9	7.2	7.5

Reported: Friday, 27 October 2008

C	alif	fornia B	earing	g Ratio Tes	t Results		
clien	t :	PARSONS BRING LEVEL 3, 101 PIF		, ADELAIDE SA 5000		job no :	00508/AA
proje	ipal : ect : ion :	SUBMITTED SAN		8		laboratory : report date : test report no. :	ADELAIDE 18 June 2008 00508/AA-R1
est	proced	lure:		AS 1289 6.1.1			
abo	ratory	compaction metho	d:	AS 1289 5.1.1			
sam	ple nu	mber:		3263 / 3264 (COMBINED)	3263 / 3264 (COMBINED)	4	
dept	h:		m	1	•		
ocat	ion:			SAMPLE 165761 & SAMPLE 165764	SAMPLE 165761 & SAMPLE 165764		
date	samp	led:		UNKNOWN	UNKNOWN		
date	testec	1:		21/04/08	17/04/08		
mate	erial de	escription:		SAND, ORANGE	SAND, ORANGE		
naxi	mum (dry density:	t/m ³	1.97	1.97		
optin	num m	oisture content:	%	8.0	8.0		
ield	moistu	ure content:	%	2.6	2.6		
etai	ned on	19mm AS sieve:	%	0	0		
+ 19	mm m	aterial included:		No	No		
	0	dry density:	t/m ³	1.94	1.94		
	oakin	density ratio:	%	98.5	98.5		
	before soaking	moisture content:	%	7.9	7.9		
	bef	moisture ratio:	%	99	99		
	ing	dry density:	t/m ³	1.93	•		
	soakir	density ratio:	%	98	· · ·		
test	after	moisture content:	%	10.9	•		
C.B.R. test		per of days soaked:		4	UNSOAKED		
O	surch	arge:	kg	13.5	13.5		
	moist	ure content:	top 30 mm	11.1			
	after	test: %	remaining sample	10.8			
	swell	after soaking:	Samole %	0.37			
	penet	tration:	mm	2.5	2.5		
	C.B.	R value:	%	40	80		

remarks:

 This document is issued in accordance with
 NATA Accredited Laboratory

 NATA's accreditation requirements. Accredited for
 No. 431

 compliance with ISO/IEC 17025. This document
 Approved Signatory:

 may not be reproduced except in full.
 Approved Signatory:

21/4/07

hli L

Date:

WESTLEY FIELDHOUSE

SOUTH AUSTRALIAN WATER CORPORATION MATERIALS SCIENCES UNIT SOILS & CONCRETE East Terrace, Thebarton S.A, Telephone: 8207 1478 Fax: 82071493

CLIENT: COFFEY GEOTECHNICS / PARSONS BRINCKERHOFF

LOCATION: 2102 701A - RADWASTE 2 - 4th SITE

JOB NO: 508 AA

TESTING: Resistivity Electrical Conductivity (AS 4419)

TEST DATE: 29/04/08

CERT. NO: 11772

Sample I.D.	Depth (m)	Resistivity (ohm m)	Water added (mls)	Electrical Conductivity(dS/m)
08/426 165761 - MSTP01 08 S - 3263	1.5 - 1.6	00 1000 530	0 50 85 (Saturated)	0.040
08/427 165764 - MSTP04 08 S - 3264	1.3 - 1.5	5500 2030 1150	0 50 90 (Saturated)	0.015
08/428 165768 - MSTP09 08 S - 3266	0.5 - 0.8	∞ 1770 1010	0 50 85 (Saturated)	0.015

RY Slack

Senior Technical Officer 29 April 2008

Ended in the conserved of the cons	
Client Sample ID Elab Number 165761 Lab Number Lab Number 08-Aptil Matrix Sample Date Number 8-01 No 0.1 Number Apr 21, No 0.1 % 1 No 0.1 % 1 M 1.0 mg/kg 1 N 1.0 mg/kg 1 N 1.0 mg/kg 1 N 1.0 mg/kg 1 N 1.0 mg/kg 1	kleigh, Victoria 3166, Australia kleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au
Lab Number Lab Number OB-April OD-April	165765
Matrix Solid Solid <t< th=""><th></th></t<>	
Sample Date Sample Date Apr 21, 0.1 Current 0.1 0.1 0.1 10	Soil
LOR LOR Units 0.1 0 0.1 0 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 100 0.1 0.0 0.0 0.0 0.0 0.0 0.0 100 100 0.0 100 0.0	008 Apr 21, 2008
0.1 0.1 0.1 0.1 5 0.01 5 moke 10 10 moke 1 11 100 moke 1 11 100 moke 1	
6 mg/kg 1 0.01 % w/w 0 10 mits 1 10 mg/kg 1 100 mg/kg 1 10 mg/kg	1.8 2.5
0.01 %.w/w 0.1 0.1 10 10 110 mg/kg 110 100 110 100 110 mg/kg 110 100 110 <t< td=""><td>15 11</td></t<>	15 11
0.1 0.1 units 10 10 mg/kg 10 10 10 <td< td=""><td>6.7 -</td></td<>	6.7 -
10 10 mg/kg 1 100 100 100 mg/kg 1 100 10 10 10 10	6.8 7.1
Image: 100 100 <td< td=""><td>< 10 < 10</td></td<>	< 10 < 10
	< 100 -
10 Juga	34 -
	< 10 -

Page 2 of 3

		1	
	•		
Ĩ	-	•	r
	-	-	
I	1		

3 Kingston Town Close, Oakleigh, Victoria 3166, Australia Postal address: P. O. Box 276, Oakleigh, Victoria 3166, Australia Telephone: (03) 9564 7055 Fax: (03) 9564 7190 Email: mgt@mgtenv.com.au

MGT Report No. 225602 Page 3 of 3

Interim Analytical Report

Coffey Environments Pty Ltd (SA) Level 1, 2-3 GREENHILL ROAD WAYVILLE SA 5034

Contact	: WESTLEY FIELDHOUS
Batch Number	: 0612465
Job Ref	: 06057/AA
Sample(s) Received	: 08/12/2006
Interim Report No	: 178220

M. Herbstreit

Mark Herbstreit

B.App.Sci. Senior Analyst - Metals

Methods:

100 Moisture Content 252 Calcium Carbonate Content # 402-AES Elements by ICP-AES, Dry Weight 404FIMS Mercury by Vapour AAS, Dry Weight 406-MS Elements by ICP-MS, Dry Weight E3795 Walkley & Black - Total Organic Carbon

Interim report only. Please destroy when final report received.

Int

Leanne Murray PhD (Organic Chemistry) Production Manager

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025.

NATA ENDORSED DOCUMENT

Document may not be reproduced except in full.

NATA Accreditation No. 1645 (Chemical Testing) NATA Accreditation No. 14278 (Biological Testing)

All samples tested as submitted by client. # Denotes methods not covered by NATA scope of accreditation

Results	Interim Report No: 178220				
	0612465/001	0612465/002	0612465/003	0612465/004	0612465/005
	9044	9046	9047	9049	9050
	21/07/06	22/07/06	22/07/06	25/07/06	25/08/06
	12/12/06	12/12/06	12/12/06	12/12/06	12/12/06

CALCIUM CARBONATE CONTENT, % HCl S	SOLUBLE				
Method: 252 Units : %					
Calcium Carbonate #	Pending	Pending	Pending	Pending	Pending
ELEMENTS by ICP-AES, DRY WEIGHT					
Method:402-AES Units: mg/kg unless stated					
Aluminium	15000	12000	28000	11000	12000
Iron	22000	18000	18000	26000	25000
Sulphur #	31	53	47	100	81
MERCURY by VAPOUR-AAS, DRY WEIGHT					
Method: 404FIMS Units: mg/kg					
Mercury	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
METALS by ICP-MS, DRY WEIGHT					
Method: 406-MS Units: mg/kg					
Arsenic	<2.0	<2.0	<2.0	<2.0	2.6
Cadmium	<2.0	<2.0	<2.0	<2.0	<2.0
Chromium	30	32	24	47	32
Cobalt	8.4	5.2	8.7	12	6.5
Copper	16	9.9	14	16	10
Lead	9.0	6.5	15	13	8.9
Nickel	16	12	29	13	11
Silver	<2.0	<2.0	<2.0	<2.0	<2.0
Strontium	74	33	150	43	54
Tin	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium #	<2.0	<2.0	2.6	<2.0	<2.0
Zinc	25	24	7.7	17	13
OVEN MOISTURE CONTENT					
Method: 100 Units: % w/w					
Moisture	3.4	1.8	5.5	1.9	2.4
TOTAL ORGANIC CARBON in soil					
Method: E3795 Walkley & Black (W&B) Units: %					
Total Organic Carbon	Pending	Pending	Pending	Pending	Pending

ſ

Results Interim Report No: 17822					
	0612465/006	0612465/007	0612465/008	0612465/009	0612465/010
	9052	9054	9056	9043	9057
	21/07/06	14/08/06	14/08/06	20/07/06	15/08/06
	12/12/06	12/12/06	12/12/06	12/12/06	12/12/06

CALCIUM CARBONATE CONTENT, % HCI SOLUBLE

	JOHODHH				
Method: 252 Units : %					
Calcium Carbonate #	Pending	Pending	Pending	Pending	Pending
ELEMENTS by ICP-AES, DRY WEIGHT					
Method:402-AES Units: mg/kg unless stated					
Aluminium	8400	6300	12000	-	19000
Iron	18000	14000	27000	-	62000
Sulphur #	25	24	54	18	30
MERCURY by VAPOUR-AAS, DRY WEIGHT					
Method: 404FIMS Units: mg/kg					
Mercury	< 0.01	< 0.01	0.03	-	< 0.01
METALS by ICP-MS, DRY WEIGHT					
Method: 406-MS Units: mg/kg					
Arsenic	<2.0	<2.0	<2.0	-	<2.0
Cadmium	<2.0	<2.0	<2.0	-	<2.0
Chromium	31	21	30	-	100
Cobalt	5.3	6.9	16	-	51
Copper	6.9	14	20	-	59
Lead	3.6	5.0	14	-	18
Nickel	7.6	9.5	11	-	59
Silver	<2.0	3.4	<2.0	-	<2.0
Strontium	17	20	47	-	29
Tin	<2.0	<2.0	<2.0	-	<2.0
Uranium #	<2.0	<2.0	<2.0	-	<2.0
Zinc	8.9	14	22	-	76
OVEN MOISTURE CONTENT					
Method: 100 Units: % w/w					
Moisture	0.7	0.7	3.0	1.9	2.8
TOTAL ORGANIC CARBON in soil					
Method: E3795 Walkley & Black (W&B) Units: %					
Total Organic Carbon	Pending	Pending	Pending		Pending

Results		Interim Report No: 178220			
	0612465/011	0612465/012	0612465/013	0612465/014	0612465/015
	9059	9060	9062	9064	9065
	19/08/06	21/08/06	28/07/06	29/07/06	30/07/06
	12/12/06	12/12/06	12/12/06	12/12/06	12/12/06

CALCIUM CARBONATE CONTENT, % HCl S	SOLUBLE				
Method: 252 Units : %					
Calcium Carbonate #	Pending	Pending	Pending	Pending	Pending
ELEMENTS by ICP-AES, DRY WEIGHT					
Method:402-AES Units: mg/kg unless stated					
Aluminium	8800	8300	15000	9300	8700
Iron	16000	17000	120000	13000	120000
Sulphur #	18	24	13	16	23
MERCURY by VAPOUR-AAS, DRY WEIGHT					
Method: 404FIMS Units: mg/kg					
Mercury	< 0.01	< 0.01	0.03	< 0.01	< 0.01
METALS by ICP-MS, DRY WEIGHT					
Method: 406-MS Units: mg/kg					
Arsenic	<2.0	<2.0	9.6	<2.0	12
Cadmium	<2.0	<2.0	<2.0	<2.0	<2.0
Chromium	27	24	210	25	74
Cobalt	6.3	7.6	<2.0	<2.0	<2.0
Copper	9.0	13	10	6.0	31
Lead	4.6	4.0	24	5.5	9.2
Nickel	8.8	10	4.6	<2.0	2.6
Silver	<2.0	<2.0	<2.0	<2.0	<2.0
Strontium	17	26	13	5.5	4.1
Tin	<2.0	<2.0	<2.0	<2.0	<2.0
Uranium #	<2.0	<2.0	2.4	<2.0	3.5
Zinc	13	14	3.3	2.5	5.1
OVEN MOISTURE CONTENT					
Method: 100 Units: % w/w					
Moisture	1.0	1.2	1.0	1.0	0.8
TOTAL ORGANIC CARBON in soil					
Method: E3795 Walkley & Black (W&B) Units: %					
Total Organic Carbon	Pending	Pending	Pending	Pending	Pending

Results			Interim Report No: 178220
	0612465/016 9066	0612465/017 9070	
	7/08/06 12/12/06	8/08/06 12/12/06	
CALCIUM CARBONATE CONTENT, % HCI S	OLUBLE		
Method: 252 Units : %			
Calcium Carbonate #	Pending	Pending	
ELEMENTS by ICP-AES, DRY WEIGHT			
Method:402-AES Units: mg/kg unless stated			
Aluminium	11000	3800	
Iron	97000	2200	
Sulphur #	11	17	
MERCURY by VAPOUR-AAS, DRY WEIGHT			
Method: 404FIMS Units: mg/kg			
Mercury	0.02	< 0.01	
METALS by ICP-MS, DRY WEIGHT			
Method: 406-MS Units: mg/kg			
Arsenic	7.7	<2.0	
Cadmium	<2.0	<2.0	
Chromium	120	14	
Cobalt	<2.0	<2.0	
Copper	15	7.7	
Lead	20	4.0	
Nickel	2.1	<2.0	
Silver	<2.0	<2.0	
Strontium	2.5	24	
Tin	<2.0	<2.0	
Uranium #	<2.0	<2.0	
Zinc	3.1	3.8	
OVEN MOISTURE CONTENT			
Method: 100 Units: % w/w			
Moisture	1.1	0.6	
TOTAL ORGANIC CARBON in soil			
Method: E3795 Walkley & Black (W&B) Units: %			
Total Organic Carbon	Pending	Pending	
Sample Comments:			

0612465/001

Au not tested at Amdel Melbourne

MINERALOGY OF SAMPLES

1. INTRODUCTION

Samples were received from Ross Dingle of Coffey Geoscience, Adelaide with a request for determination of their mineralogy. They were from Job No. 06057/AA

2. PROCEDURE

The samples were air-dried, pulverized then analysed by X-ray diffraction to identify the minerals present.

3. RESULTS

The semi-quantitative mineralogy of the samples follows.

Mineral	9044	9046	9047	9052
Quartz	A-SD	SD		D
Plagioclase	Tr	Tr-A		Tr-A
K-feldspar	Tr-A	Tr-A		Α
Amphibole				Tr
Muscovite/illite	D	D	D	SD
Kaolinite	А	А		Tr
Calcite	Tr		A-SD	
Magnesite				Tr
Anatase				
Woodhouseite			·	

Mineral	9054	9057	9066	9070
Quartz	D	CD	Tr-A	CD
Plagioclase	Α	Tr		
K-feldspar	SD	А		
Amphibole	Tr			· · ·
Muscovite/illite	Tr	CD		Tr
Kaolinite		Α	D	CD
Calcite				
Magnesite				
Anatase		Tr	Tr	Tr
Woodhouseite			Tr	

Semiquantitative Abbreviations

- D = Dominant. Used for the component apparently most abundant, regardless of its probable percentage level.
- CD = Co-dominant. Used for two (or more) predominating components, both or all of which are judged to be present, in roughly equal amounts.
- SD = Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20.
- A ____ = __ Accessory. Components judged to be present between the levels of roughly 5 and 20%.
- Tr = Trace. Components judged to be below about 5%.

Pontifex & Associates Pty Ltd

MINERALOGY - PETROLOGY · SECTION PREPARATION

A.B.N. 25 007 521 084

26 Kensington Rd, Rose Park South Australia 5067 Tel: +61 8 8332 6744 Fax: +61 8 8332 5062

PO Box 91 Kent Town SA 5071 AUSTRALIA

Email: ian@pontifexpetrographics.com.au Website: www.pontifexpetrographics.com.au

MINERALOGICAL REPORT No. 8972 by Ian R. Pontifex MSc.

November 21st, 2006

то:	Mr Ross Dingle Mr Westley Fieldhouse Coffey Geoscience Pty Ltd 148 Henley Beach Road MILE END SA 5031
YOUR REFERENCE :	Your Job No. 06057/AA (Lab O/N Mend 061072)
MATERIAL :	Drill core pieces
IDENTIFICATION :	Sample Numbers 9046 to 9070 (not consecutive, nine in all)
WORK REQUESTED :	Thin section preparation, description and report to include photomicrographs (and XRD).
SAMPLES & SECTIONS :	Returned to you with this report.
DIGITAL COPY :	Enclosed with hard copy of this report.

PONTIFEX & ASSOCIATES PTY. LTD.

INTRODUCTION

Nine samples of drill core pieces are described in this report from petrographic thin sections. Most of these samples are very clay-rich with mottled limonite staining, and some looselyconsolidated/weakly-cemented ferruginous and ferruginised sands, all apparently from a deeply weathered (saprolitic/lateritic) profile.

Given these characteristics, all samples required extensive impregnation and processing of the sections in oil to minimise the loss of friable and water-sensitive components. Also, it will be understood that fine clays cannot necessarily be positively identified by optical microscopy and given the potential importance of clays in samples such as these, it was considered necessary to obtain XRD mineralogical analyses for this purpose.

In this respect, Coffey (Ross Dingle) had already arranged XRD on most of these samples with AMDEL and Pontifex was copied with that data 17/11/06, with the exception of sample numbers 9049, 9063 and 9068, not in the original Coffey request, therefore Pontifex separately arranged for XRD at AMDEL for these three samples. All XRD data is incorporated within the individual petrographic descriptions.

21 photomicrographs are also integrated with the descriptions as requested.

INDIVIDUAL DESCRIPTIONS

Sample 9046	Massive to weakly layered, unsorted fine to very coarse
MC, BH01	and immature sand, of quartz >> microcline > micas.
22.85 - 23.1m	Semi-consolidated, with up to 25 vol% intergranular weak
	clay cement (kaolin), incorporating minor porosity.

XRD :Quartz - dominant. Plagioclase - trace-accessory, K-spar - trace/accessory,Muscovite/illite - dominant, Kaolinite - accessory

Macroscopic

This handspecimen is seen to consist of random to weakly layered, apparent very loosepacked aggregate of unsorted medium to very coarse sand grains of quartz >> rock fragments, with ubiquitous weak clay cement plus porosity forming about ¹/₃ of the rock.

Microscopic

Petrographic examination of this thin section indicates about 75% unsorted loose-packed single crystal fragments and rock fragments, with about 25% intergranular clays > fine porosity. Individual components are listed and semi-quantified as follows (with these same characteristics shown in the following photomicrograph):

		Approx. vol. % f whole sample
*	Angular single-crystal fragments and lesser composite (rock) fragment	s
	of quartz >> microcline, with a size range of 1mm to 3.5mm maximum	n
	dimension	40%
*	Angular single crystal fragments and rare composite (rock) fragments of	f
	quartz >> microcline, with a size range of 0.15mm to 1mm	25%
	[Approx vol % microcline/K-spar included in the above, is about 20% a	S
	seen stained yellow on the section offcut treated with sodium cobalt	ti
	nitrite.]	
*	Flakes of mica (mostly altered/oxidised-limonitic muscovite)	>
	fragments of hornblende, alone or composite with quartz-feldspar as roc	k
	fragments, mostly <1.5mm	7-10%

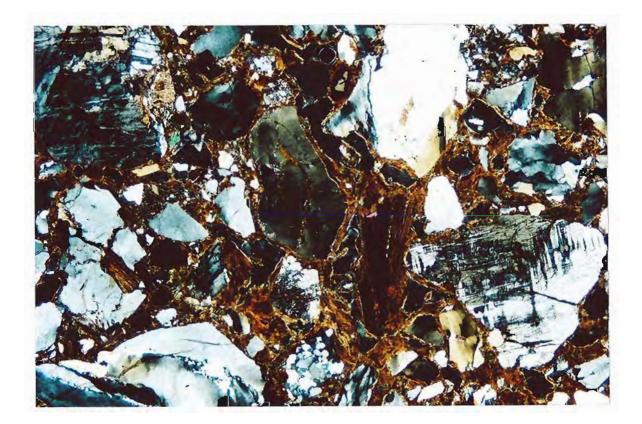
Sample 9047 MC, BH01 59.55 to 59.9m "Clay rock" (saprolitic?) Petrologically seen to have a broadly layered and combined pelletal structure, with supergene calcrete as an irregular network matrix. Sporadic brown "incipiently-lateritic" pisolites and minor quartz sand grains. XRD indicates that the dominant phyllosilicate is muscovite/illite.

XRD: Muscovite/illite - dominant, Calcite - accessory/subdominant

Macroscopic

This handspecimen consists predominantly of pale yellowish-cream, to buff-coloured clay, incorporating scattered and weakly layered equant to subrounded reddish brown (ferruginous) grains/small pebbles, of lateritic appearance. This appears to represent saprolite in a deeply weathered soil profile. Reaction to dilute HCl indicates "substantial" carbonate (calcite) largely camouflaged by the clay.

Microscopic


Gross mineralogy/composition of this sample as seen in thin section is:

		Approx. vol. % of whole sample
*	Clay, pale-cloudy to clear in thin section, commonly nodular/pelletal	40%
*	Clay, relatively intensely limonitic-brown-stained (pisolitic)	20%
¥	Carbonate, microcrystalline between the above	25%
*	Quartz sand grains	7-10%

[The AMDEL XRD indicates the clays to be illite]

The thin section reveals detail of an overall structure of crudely layered clay pellets/small nodules/pisolites, subrounded/subequant, diameter mostly 0.5mm to 1.5mm, rarely to 2.5mm. These are loose-packed and have similar average size within poorly defined layers, and in section seen to be pale, weakly iron stained to clouded.

*	Accessory grains of oxidised opaque-oxide garnets, tourmaline, goethite	
	pellets	2-3%
*	Intergranular 'clays' including recognisable fine altered muscovite,	
	mostly accretionary around the above grains/fragments as a weak	
	cement. The AMDEL XRD indicates these clays to be	
	muscovite/illite>> kaolinite	15%
*	Porosity occurs sporadically through the clay cement on a scale of <0.5	7-10%
	to 3mm, as seen in the section.	

Fig 1

Sample 9046

Fig 1 Sample 9046 0.45 mm Thin section (TS), crossed nicols (Xnic), magnification (x20). Typical field of view predominantly of a loose aggregate of unsorted angular grains and fragments of quartz (whitish) and microcline (cross-hatch twinned). Intergranular weak cement of limonitic kaolin (running grains) also porosity and rare muscovite (coloured).

Darker brownish, relatively intensely ferruginised and subrounded nodules/spheroids are generally larger, and more sparsely and randomly scattered. In this context, they seem to be pseudo-lateritic.

Microcrystalline to cryptocrystalline calcite forms discontinuous networks between the above and this appears to be a permeation of supergene calcrete. Minor scattered medium sand-size grains of quartz are weakly layered.

This sample also seems to be saprolitic, possibly a leached zone below laterite.

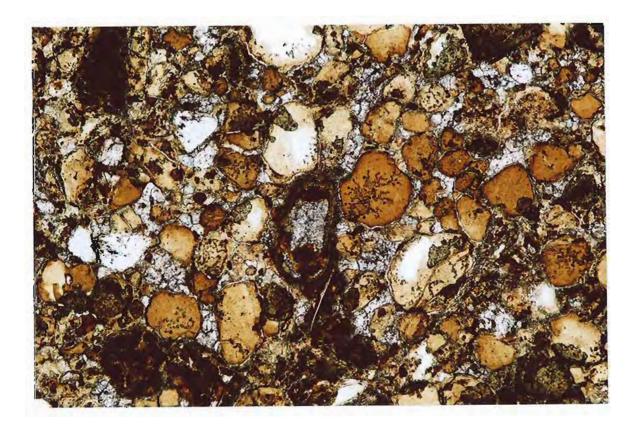
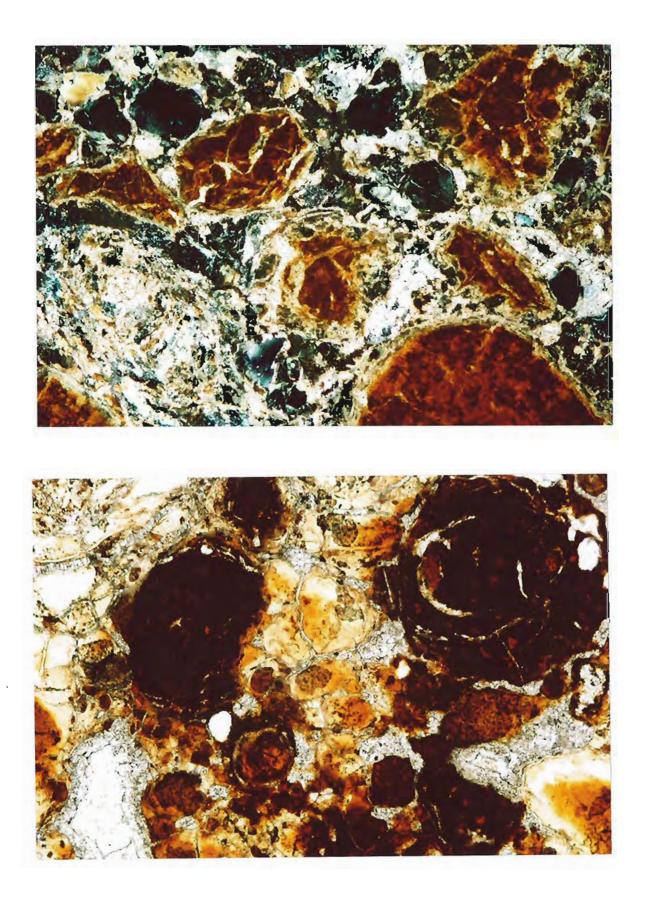
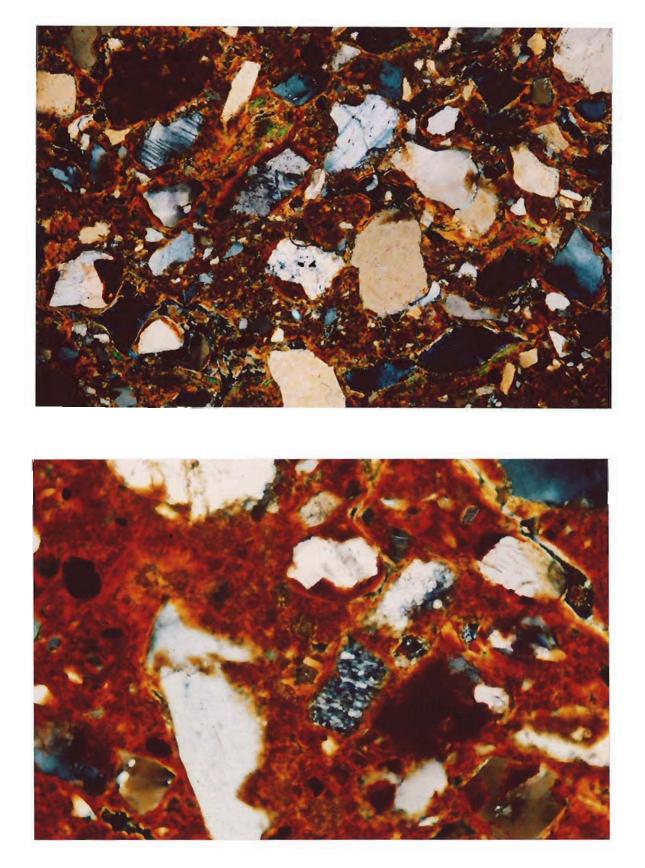



Fig 2 Sample 9047 TS. Ordinary light (OL), (x20). General view of loose-packed small nodules or pellets of clouded clay (illite according to XRD). Scattered clear angular grains of quartz. Matrix/cement of calcrete.

Figs 3 & 4 Sample 9047 0.18 mm TS, OL, (x50). Higher magnification, showing nodules of illite, also ferruginised/lateritic, weak cement of mostly clear calcrete. Sample 9049Massive to vaguely layered and poorly consolidated,
unsorted medium to very coarse quartz sandstone, with
13.4m - 13.6m13.4m - 13.6mminor grains of K-spar, detrital mica, opaque-oxide,
tourmaline.
Ubiquitous matrix/weak cement of
ferruginised clays (kaolinitic).

XRD: Quartz - dominant >> Kaolinite, muscovite > K-spar > hematite

Macroscopic


Hand specimen is fairly homogeneous, composed of massive, loosely consolidated, unsorted fine to very coarse quartz sand grains, weakly cemented by reddish-brown ferruginised clays \pm silt. Stained offcut shows minor scattered K-spar grains.

Microscopic

The petrography shows the detail of the above, with a gross mineralogy as follows:

		Approx. vol. % of whole sample
¥	Quartz, mostly single crystal fragments, angular, size range 0.1	to
	1.3mm, average about 0.5mm	50%
*	K-spar (microcline), same morphology, size range as quartz, l	ess
	abundant	5-7%
*	Detrital mica flakes and discrete grains or iron oxide >> tourmali	ne,
	garnets	7-10%
*	Ubiquitous phyllosilicate matrix/cement, ferruginised probably w	ith
	earthy hematite and goethite, more intense in some patches than	in
	others. [XRD indicates this matrix as kaolinite and muscovite (sericite)] 40%

The quartz grains have a weakly layered distribution, with some micas lying along the same plane.

Figs 5 & 6

Sample 9049

TS. Xnic (x50). Typical field of view, unsorted mostly angular grains of quartz >> K-spar and (coloured) mica flakes. Matrix/weak cement of ferruginous-clays, indicated by XRD to be hematitic-kaolinitic, possibly together with the reported muscovite (including illite?)

0.18 mm

Sample 9054 HR, BH01 9.0 to 10.0m Massive poorly consolidated, unsorted medium to very coarse quartz-rich sand. Subordinate grains of K-spar, minor/accessory muscovite, biotite, hornblende, opaque oxide, epidote, tourmaline, garnets, zircons, ?sillimanite. Weak cement of limonitic illitic clays with porosity.

XRD: Quartz - dominant. Plagioclase - accessory, K-spar - sub-dominant, Amphibole - trace, Muscovite/illite - trace.

Macroscopic

Hand specimen seen as a poorly consolidated, unsorted and medium to very coarse sand, loosely cemented by reddish brown ferruginised clay-matrix. Minor K-spar stained yellow on the section offcut. Accessory dark grains of iron oxide, micas ?mafic silicate.

Microscopic

Petrographically confirmed as a massive, heterogeneous/unsorted loose-packed aggregate of mostly subrounded quartz grains > K-spar, with numerous miscellaneous grain, all as listed below.

		Approx. vol. % of whole sample
*	Quartz grains, mostly single-crystal subrounded, 0.25mm to 5mm size	40%
*	Feldspar grains, K-spar >> plagioclase, same morphology and unsor	ted
	size as for quartz, some composite	25%
*	Detrital muscovite and (oxidised)-biotite	10%
*	Hornblende, dark green median size grains	7%
*	Opaque-oxide, median size grains (?hematite)	5-7%
*	Epidote > tourmaline and smaller garnets	5-7%
*	Kyanite, ?sillimanite, complex composite	<5%
*	Zircons, accessory small grains	<3%
*	Intergranular areas of weak limonitic-clay cement as rims on abo	ove
	grains, together with subequal porosity, total volume % approx	15-20%
The	XRD indicates that the clays are illitic and it is noted that the abundance	e of the various

accessory (heavy mineral) grains is too small to expect detection by XRD.

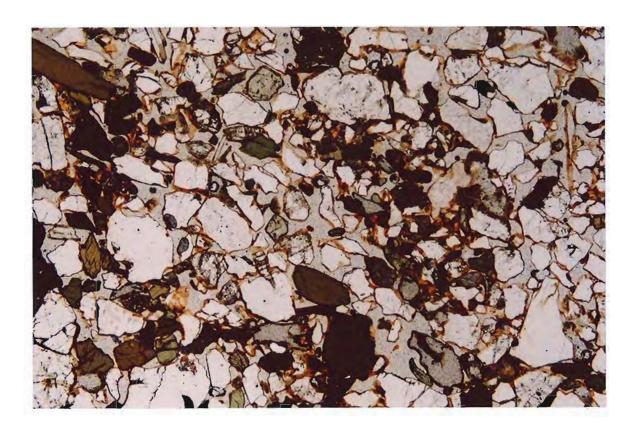


Fig 7 Sample 9054 0.45 mm TS. OL (x20). Lowest magnification, loosed packed and unsorted aggregate of clear angular mostly quartz > feldspar grains, other darker and coloured grains of various heavy-mineral grains as listed.

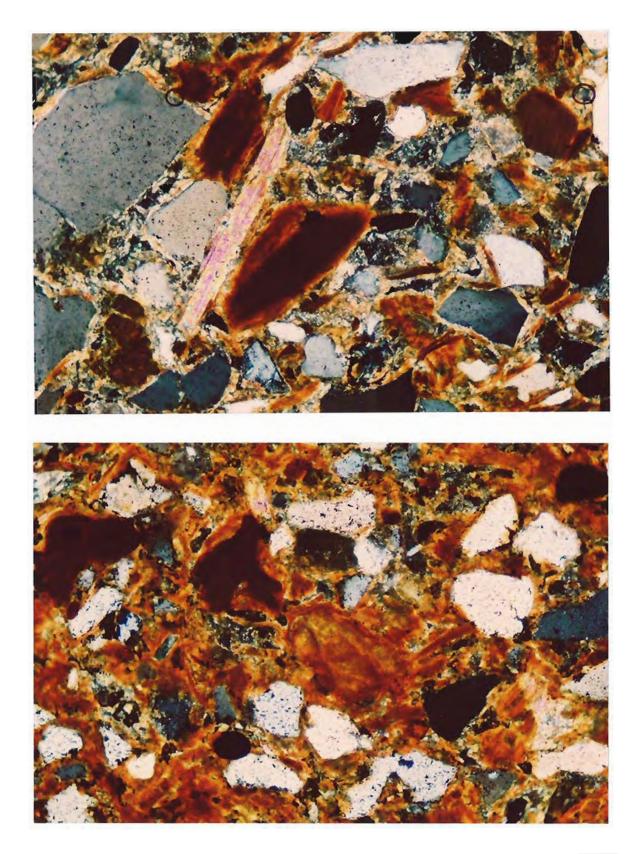
Figs 8 & 9 Sample 9054 0.18 mm TS. Xnic. (x50). Higher magnification, Xnic, shows detail of Fig 7, and particularly in Fig 9 shows rimming of grains by weak cement of ferruginous clay material (illitic).

Sample 9057	Loosely consolidated, medium to coarse sand/sandstone,
HR BH01	including minor detrital feldspar, muscovite, accessory
48.0 - 48.35m	opaque oxide grains. Extensive matrix/weak cement of
	patchy limonite stained illite > kaolinite. Sparse fine
	intergranular porosity.

XRD :Quartz - co-dominant, Plagioclase - trace, K-spar - accessory, Muscovite/illite- co-dominant, Kaolinite trace, Anatase - trace

Macroscopic

This handspecimen is a homogeneous mass of random fine white mica flakes, intricately mixed with equally fine sand grains of apparent quartz, all permeated by limonite staining in mottled patches. Relatively friable and water sensitive.


Microscopic

The petrography confirms a homogeneous massive to broadly layered/bedded aggregate of the following components:

		Approx. vol. % f whole sample
*	Quartz grains, mostly angular grains, somewhat poorly sorted but withi	n
	a relatively limited size range of 0.1mm to 0.5mmk, evenly distributed t	0
	form a loose-packed weakly layered aggregate	30%
*	Feldspar grains predominantly plagioclase, similar morphology, size an	d
	distribution as the quartz	7-10%
*	Detrital micas (up to 0.5mm long, crudely bedded + random betwee	n
	quartz grains, includes unaltered (and thus clearly defined) muscovite	·,
	also abundant clay-limonite-clouded apparent muscovite (according t	0
	XRD)	30%
*	Finer micas interstitial as an ultimate matrix/weak cement, opticall	у
	unidentifiable but XRD indicates illite and kaolinite	20%
¥	Accessory detrital opaque oxide grains, including original magnetite o	PT
	ilmenite altered to goethite and/or leucoxene.	??%

Fig 10 Sample 9057 0.18 mm TS. Xnic (x50). Relatively low magnification showing loose packed mostly angular grains of quartz and detrital ferruginised-brownish micas, random to weakly layered. Very fine interstitial matrix/weak cement.

Figs 11 & 12

Sample 9057

TS. Xnic. (x100). Higher magnification shows detail of Fig 10, notably coloured mica flake in Fig 11. Fig 12 has less discrete micas, with more matrix of limonitic matrix which in fact also incorporates poorly defined, very fine muscovite/illite and kaolinite, indicated largely by the XRD.

Sample 9063	Massive unconsolidated medium-grained sand within
FR BH01	extensive kaolinitic bulk host rock. Irregular areas of
9.8 to 10.2m	intense reddish-brown goethite impregnation, in sharp contact with equally irregular areas of the same pale- cream, non-ferruginised sandy clay rock.

XRD: Quartz - dominant. Kaolinite - subdominant, Goethite - accessory, Anatase - trace

Macroscopic

Most of this core piece is very pale (unoxidised), but there are local domains of brick-redbrownish intense limonite (\pm goethite staining). Contact between these colour domains is sharp/distinct. Composition and texture of the rock is otherwise homogeneous throughout, macroscopically seen to consist of coarse quartz sandgrains within a relatively weak and water-sensitive clay cement (which XRD indicates is kaolinite).

Microscopic

The petrography confirms all of the above, with the gross mineralogy seen in thin section as follows:

		pprox. vol. % whole sample
*	Quartz sand grains, variably subrounded to rounded, and some angular,	
	size range 0.1mm to (rarely) 0.7mm, average about 0.3mm	40%
*	Other detrital grains, relatively minor, mostly opaque secondary Fe and	
	Ti-oxide including anatase leucoxene and goethite, rare tourmaline	~5%
*	Kaolinitic cement, locally (and typically) with fine colloform texture,	
	partly wrapping around quartz grains. In the intensely ferruginised	
	domains these clays are intensely permeated by opaque goethite.	50%

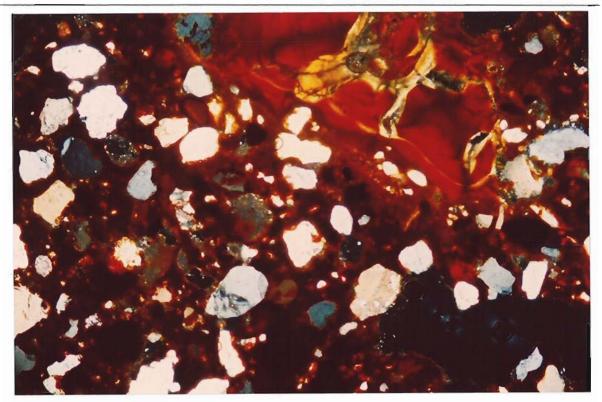


Fig 13 Sample 9063 0.18 mm TS. OL (x50). Photo in an area of reddish-ferruginised kaolinitic matrix with scattered quartz sand grains, variably angular to rounded.

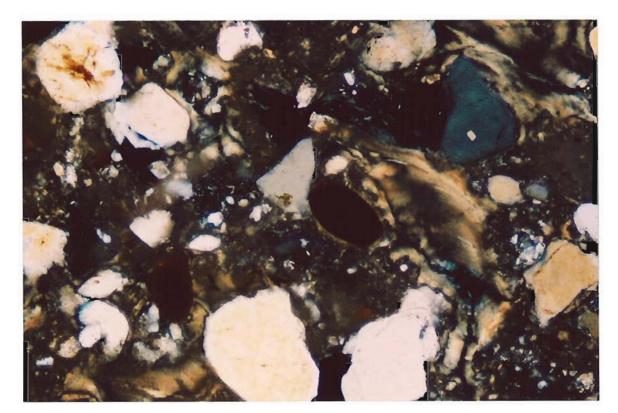


Fig 14 Sample 9063 0.09 mm TS. OL (x100). This photo in an area of non-ferruginised matrix showing typical clouding and swirl-feathery textures inherent to the kaolinitic matrix. Also numerous scattered quartz grains.

Sample 9066	Mottled massive kaolin-rich. Accretionary/nodular
FR, BH02	domains of kaolinite, and clay networks between, minor
1.0 to 1.3m	disseminated quartz silt and sand. Essentially saprolite,
	with some nodules intensely ferruginised/lateritic.

XRD: Quartz - trace/accessory, Kaolinite - dominant, Anatase - trace, Woodhouseite
 - trace as a complex sulphate mineral [CaAl₃(OH)₆PO₄SO₄]

Macroscopic

"Clay-rock", extensive brownish-limonite mottled staining including numerous scattered laterite-like 'pisolites'.

Microscopic

The thin section confirms the XRD and macro characteristics listed as follows:

		pprox. vol. % whole sample
*	Quartz silt and sand grains, relatively sparse and randomly disseminated,	
	rarely locally clustered in some vague nodules	10-15%
*	Kaolinitic clay commonly accretionary into vague nodular domains up to	
	12mm across, with chaotic networks between of microlayered kaolin	
	largely wrapping around nodules, and in local colloform sequences	55%
*	Approximately 1/3 of the above "clay nodules" are intensely ferruginised	
	(opaque to transmitted light) and distinctly "lateritic". The clay is	
	accordingly replaced by the secondary iron, with an additional	
	component therefore approximately	25%
*	Accessory discrete grains of Fe and/or Ti oxide would include the	
	anatase reported by XRD, but camouflaged by the iron-staining.	~5%

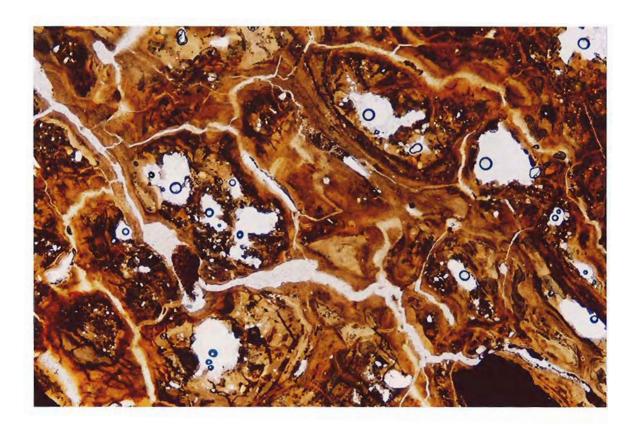
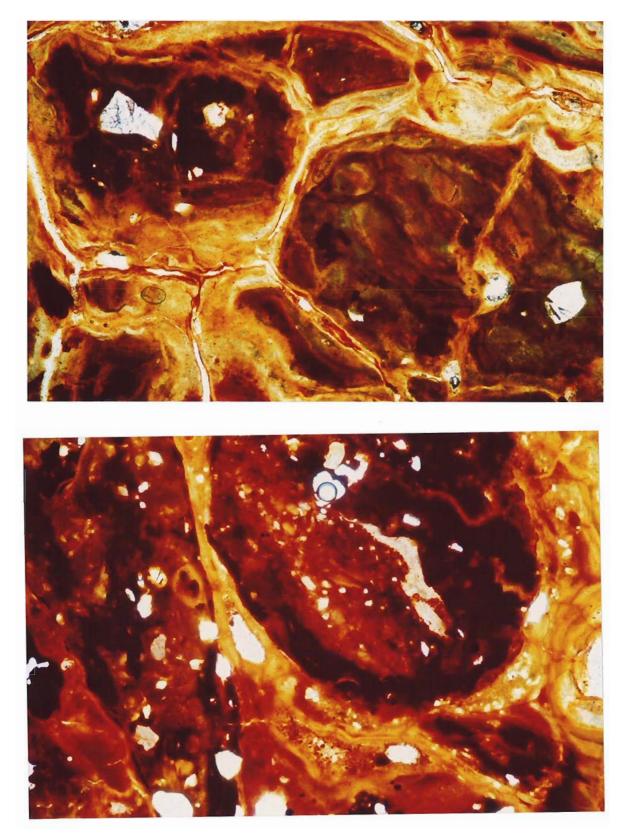



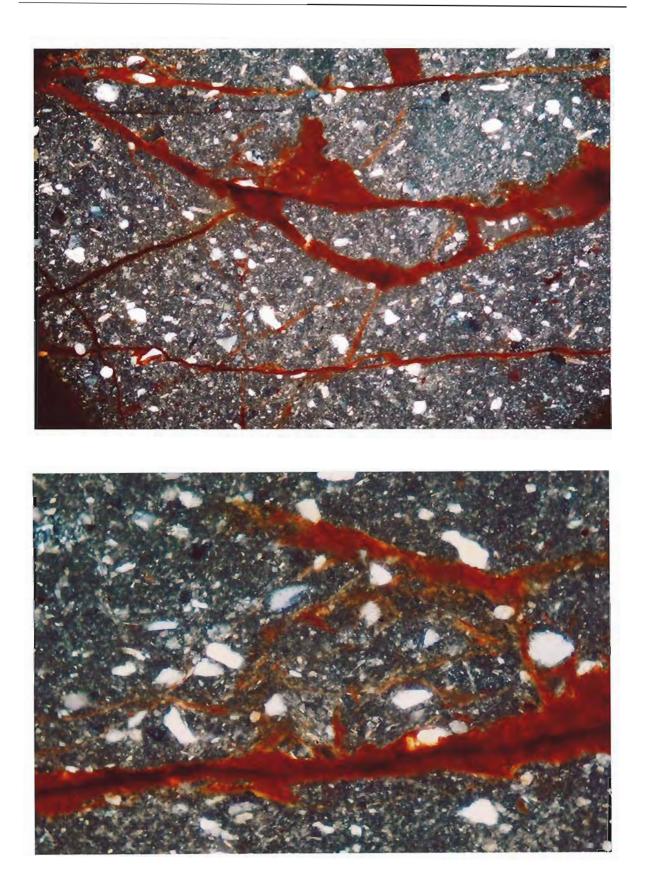
Fig 15 Sample 9066 0.18 mm TS. OL (x20). Massive kaolin-rich rock showing accretionary and incipient nodular domains (not uncommon in saprolite). Minor secondary networks of similarly micro-colloform kaolin stringers between sparse scattered quartz grains.

Figs 16 & 17 Sample 9066 0.18 mm TS. OL. (x50). Higher magnification of Fig 15, showing detail, and particularly in Fig 17, accretionary hematite-goethite as incipient lateritic nodules.

Sample 9068	Homogeneous, massive compact to vaguely layered/bedded		
FR BH052	kaolinite rock. Minor extremely fine muscovite/illite and		
11.2 to 11.6m	angular quartz-silt grains evenly scattered throughout.		
	Minor network threads of limonite.		

XRD: Quartz - subdominant, Kaolinite - dominant, Muscovite - trace/accessory, Woodhouseite - trace

Macroscopic


Homogeneous massive extremely fine pale clay rock, with minor random threads and stringers of reddish limonite. XRD indicates the (dominant) clay as kaolinite.

Microscopic

The petrography confirms that at least 65% of this sample consists of homogeneous, massive to weakly bedded, quite compact ultrafine clay, which XRD identifies as kaolinite. This clay component includes dispersed extremely fine individual (20 micron) flakes of (optically recognisable) muscovite and equally fine but more diffuse and less discrete apparent silica.

Angular quartz grains, 20 micron to (rarely) 150 micron size, i.e. basically silt size, are evenly disseminated to vaguely layered/bedded throughout, forming up to 20% of the thin section area.

Numerous threads, braided stringers and networks of limonite have a sporadic distribution but mostly subparallel to the vague bedding/layering.

Figs 18 & 19 Sample 9068 0.18 mm & 0.09 mm TS. Xnic (x50 and x100). Typical field of view. Scattered generally angular silt size grains scattered/weakly-layered through a bulk matrix of heterogeneous compact extremely fine kaolinite (identified by XRD). Minor threads and stringers of limonite.

Sample 9070	Homogeneous, massive compact and vaguely bedded pale			
FR BH02	kaolinite-rich rock. Minor fine muscovite/illite, angular			
23.7 to 24.0	quartz silt, and more mostly rounded quartz sand grains,			
	sporadically along bedding and in lenses. Minor limonite			
	staining.			

XRD : Quartz - co-dominant, Kaolinite - co-dominant, Muscovite/illite - trace, Anatase - trace.

Macroscopic

This handspecimen is dominated by homogeneous compact and massive pale clay, which XRD identifies as kaolinite. Minor rounded quartz sand grains are seen under binocular microscope, distributed along poorly defined/discontinuous bedding planes.

Microscopic

The petrography confirms that up to 60% of this sample consists of compact clays (kaolinite) with minor intricately mixed extremely fine muscovite (+ illite). These minor pelitic components and sparse apparent titaniferous dust define a weak lenticular layering/bedding, all basically the same as in the sample above at 11.2m.

Detrital angular grains of quartz silt are scattered along vague bedding planes, (the same as at 11.2m). This sample however also contains quartz sandgrains 0.2mm to (rarely) 0.8mm, mostly subrounded to rounded, mostly discontinuous along bedding, some locally clustered within small lenses.

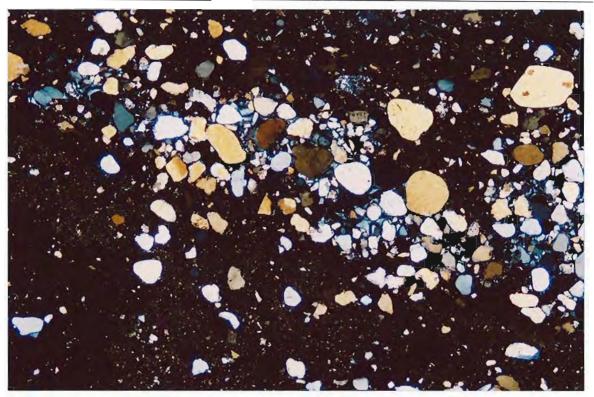


Fig 20 Sample 9070 0.45 nm TS. Xnic (x20). Bulk kaolin-rich host rock (basically black), incorporating rounded quartz sand grains in this case clustered within an irregular lens.

Fig 21 Sample 9070 0.18 mm TS. Xnic (x50). Higher magnification of fine (silt) and coarser rounded quartz grains more widely scattered through massive kaolin-rich host rock.

APPENDIX #1: AMDEL XRD OF THREE SAMPLES ARRANGED SEPARATELY BY PONTIFEX

MINERALOGY OF SAMPLES

1. INTRODUCTION

Samples were received from Ian Pontifex of Pontifex & Associates Pty Ltd with a request for determination of their mineralogy. They were from Coffey Geoscience.

2. PROCEDURE

The samples were pulverized then analysed by X-ray diffraction to identify the minerals present.

3. RESULTS

The semi-quantitative mineralogy of the sample follows.

Mineral	9049	9063	9068
Quartz	D	D	SĎ
Kaolinite	A	SD	D
Muscovite	А	Tr-A	
K-feldspar	Tr-À		
Woodhouseite	Tr		
Goethite	Tr-A		
Hematite	Tr		
Anatase	٦r		

Semiquantitative Abbreviations

Dominant. Used for the component apparently most abundant, regardless of its probable percentage level. D =

CD = Co-dominant. Used for two (or more) predominating components, both or all of which are judged to be present, in roughly equal amounts.

- SD Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20. =
- A Tr = Accessory. Components judged to be present between the levels of roughly 5 and 20%.
- = Trace. Components judged to be below about 5%.

APPENDIX #2: AMDEL XRD OF EIGHT SAMPLES UNDERTAKEN INDEPENDENTLY FOR COFFEY - RESULTS COPIED TO PONTIFEX

MINERALOGY OF SAMPLES

1. INTRODUCTION

Samples were received from Ross Dingle of Coffey Geoscience, Adelaide with a request for determination of their mineralogy. They were from Job No. 06057/AA

2. PROCEDURE

The samples were air-dried, pulverized then analysed by X-ray diffraction to identify the minerals present.

3. RESULTS

The semi-quantitative mineralogy of the samples follows.

Mineral	9044	9046	9047	9052
Quartz	A-SD	SD		D
Plagioclase	Tr	Ĩr-A		Tr-A
K-feldspar	Tr-A	Tr-A		A
Amphibole				Tr
Muscovite/illite	D D	D	D	SD
Kaolinite	A	A		Ťr
Calcite	Tr		A-SD	
Magnesite				ז"ו
Anatase				
Woodhouseite				

Mineral	9054	9057	9066	9070
Quartz	D	CD	Tr-A	CD
Plagioclase	A	Tr		
K-feldspar	SD	A		
Amphibole	Tr			
Muscovite/illite	Ir –	CD		Tr
Kaolinite		A	D	CD
Calcite				
Magnesite				
Anatase		Tr	٦r	Tr
Woodhouseite			٦r	

Semiguantitative Abbreviations

D = Dominant. Used for the component apparently most abundant, regardless of its probable percentage level.

CD = Co-dominant. Used for two (or more) predominating components, both or all of which are judged to be present, in roughly equal amounts.

SD = Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20.

A = Accessory. Components judged to be present between the levels of roughly 5 and 20%.

Tr = Trace. Components judged to be below about 5%.

MINERALOGICAL REPORT No. 9338 by Ian R. Pontifex MSc.

June 12th, 2008

TO :	Mr Ross Dingle Coffey Geotechnics Pty Ltd 14B Henley Beach Road MILE END SA 5031
YOUR REFERENCE :	Work Order No. 1014
MATERIAL :	Drill core segments (5), Muckaty Station
IDENTIFICATION :	165902, 904, 908, 912, 915
WORK REQUESTED :	Thin section preparation, description and report with photomicrographs.
SAMPLES & SECTIONS :	Returned to you with this report.
DIGITAL COPY :	CD enclosed with hard copy of this report.

PONTIFEX & ASSOCIATES PTY. LTD.

INTRODUCTION

This report provides petrological descriptions of thin sections examined by optical microscopy of five drill core segments, cut from larger pieces. Sample representation is:

Drill Hole	Depth (m)	Sample number (this report)	
MSBH01	10.65 - 10.95	165902	
MSBH01	28.1 - 28.25	165904	
GBH02	46.9 - 47.15	165908	
MSBH03	20.3 - 20.65	165912	
MSBH05	17.65 – 18.15	165915	

These are reported to be from Muckaty Station, SA. Photomicrographs are integrated with the descriptions, as requested.

Fillets from the immediate thin section offcuts were submitted to AMDEL for XRD mineralogical analysis. These results are to be reported (and billed) separately to Coffey Geotechnics, and are also included in this report (next page) with reference to these in the individual descriptions. This XRD was essential to identify clay species, since this is not always possible by optical microscopy.

There are some similarities between these samples with 165902 and 915, which are both clay-rich, 165908 and 912, which are both quartz-rich (but different whole rock proportions). Sample 165904 is quite different as a fresh basalt. Beyond these brief comments, no comparative analysis is offered, but identifications and sample-specific comments are included in the individual descriptions.

MINERALOGY OF SAMPLES (by AMDEL LTD)

1. INTRODUCTION

Samples were received from Ian Pontifex, originally from Ross Dingle of Coffey Geotechnics with a request for determination of their mineralogy. The samples were from Job No: LABT MEND 508AA and were reported to be from Muckaty Station.

2. PROCEDURE

The samples were pulverized then analysed by X-ray diffraction to identify the minerals present.

3. RESULTS

The semi-quantitative mineralogy of the samples follows.

Mineral	165902	165904	165908	165912	165915
Quartz		Tr	D	D	D
Kaolinite	D		Tr	А	D
Muscovite	Tr-A	Tr			Tr-A
Ca-Plagioclase		D			
Clinopyroxene		SD			
Chlorite		Tr			
? Pyrite		Tr			

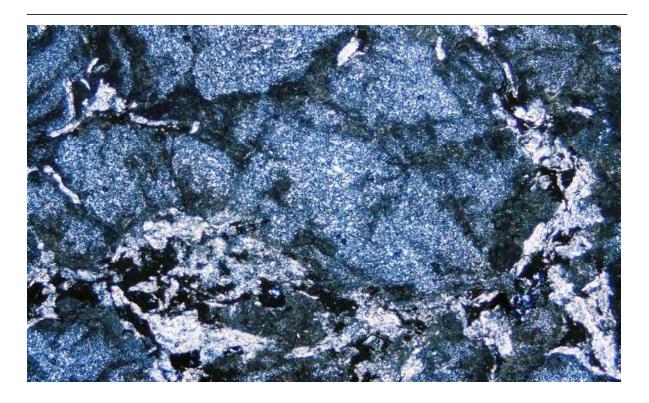
Semiquantitative Abbreviations

- D = Dominant. Used for the component apparently most abundant, regardless of its probable percentage level.
- SD = Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20.
- A = Accessory. Components judged to be present between the levels of roughly 5 and 20%.
- Tr = Trace. Components judged to be below about 5%.

Pontifex Note:

XRD mineral proportions above for 165915 are petrologically seen to be different, with clay dominant and quartz relatively minor, but as noted in the description, the clay (kaolinite) is probably largely non-crystalline and would therefore not respond to XRD analysis.

INDIVIDUAL PETROGRAPHIC DESCRIPTIONS


165902 MSBH01, 10.65m Homogeneous mass of diffuse patches of cryptocrystalline kaolinite (60%), with an irregular interstitial network of apparent intricately mixed fine muscovite (sericite) and kaolinite. [Kaolinite and minor muscovite, only minerals reported by XRD].

Macroscopically, this core piece consists of a bright white, homogeneous, compact mass of extremely fine clay, without any clearly defined texture or fabric.

Petrographically, the thin section shows a consistent domainal pattern throughout, mainly (about 60%) of somewhat diffuse but subequant patches about 3mm across, of compact cryptocrystalline to microcrystalline kaolinite. The other 40% of the section area consists of a more irregular network largely interstitial to and defining these patches, of an equally fine but quite densely clouded "clay-sericite", with these partitions locally coalescing to also form patches.

The exact composition of these "clouded clays" cannot be resolved optically but they are interpreted to represent the minor muscovite reported by XRD, apparently intricately mixed with kaolinite.

There is no quartz or any other (residual) minerals or textures which provide an interpretation of genesis (precursor) of this rock.

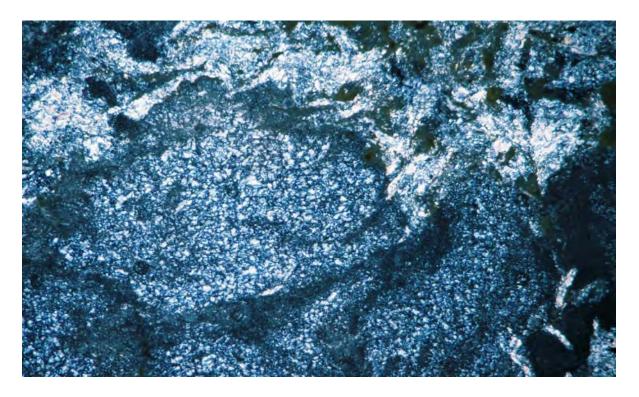


Fig 1

165902

0.45 mm

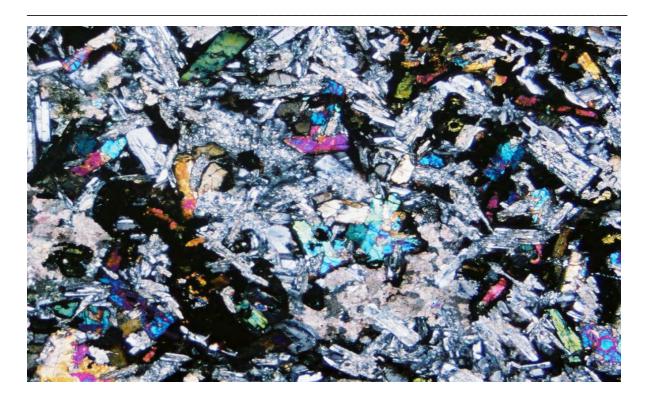
Transmitted light. Thin section (TS), Crossed nicols (Xnic). Relatively low magnification (x20). Example of patchy domains of cryptocrystalline kaolinite, enveloped by a rim of coarser clay and altered muscovite indicated by XRD. (No quartz in this thin section).

Fig 2 165902 0.09 mm TS. Higher magnification, Xnic. (x100) showing detail of central cryptocrystalline kaolinite, a surround of also yellowish clouded ?leucoxene enclosing small voids. 0.09 mm

165904HomogeneoMSBH01, 28.1plagioclasewith oxidize

Homogeneous massive, microcrystalline basalt. Dominant plagioclase (weakly sericitised) and pyroxene > olivine with oxidised rims. Sparse interstitial carbonate > chlorite > trace chalcedony.

This handspecimen is a greenish-grey homogeneous, massive and tough coherent rock, it is microcrystalline and identified at this scale as a basalt (or other microcrystalline mafic). It does not show any particular macro fabric or structure and appears to essentially unaltered but with minor secondary fine-spotty iron staining throughout.


The gross mineralogical composition, visually estimated from petrographic study of the thin section is listed below. These minerals and their relative abundances correlate with the AMDEL XRD data, but include minor minerals not detected by the XRD.

	Mineralogy Estimated from Thin Section	AMDEL XRD
*	Calcic-plagioclase, sericite-altered	45%
*	Clinopyroxene, weakly rimmed by limonitic oxidation	35%
*	Olivine, more strongly rimmed by limonitic oxidation	5-7%
*	Black-opaque titaniferous magnetite crystals	3-5%
*	Carbonate, interstitial very small patches	5%
*	Chalcedonic silica, finer interstitial	<1%
*	Cryptocrystalline chlorite interstitial	5%

As indicated above, the plagioclase is the dominant mineral as laths, average size about 0.3mm, randomly intricately interlocking to produce a tough coherent fine aggregate. Up to 1/3 of each of the plagioclase laths is altered to sericite, but this seems unlikely to have any deleterious effect on the strength or stability of this rock.

Scattered grains of pyroxene > olivine are relatively equant, mostly about 0.5mm in size, tightly incorporated within the plagioclase fabric. Limonitic/hematitic alteration rims around these crystals appears to be primary, again without especially decreasing the stability of these locked in crystals.

Minor extremely fine interstitial carbonate > chlorite > chalcedony may be considered as potentially deleterious (in rock used in construction/concrete materials) but their fine size and locked-in independent occurrence would tend to minimise any adverse reactivity, for example, due to weathering or chemical attack.

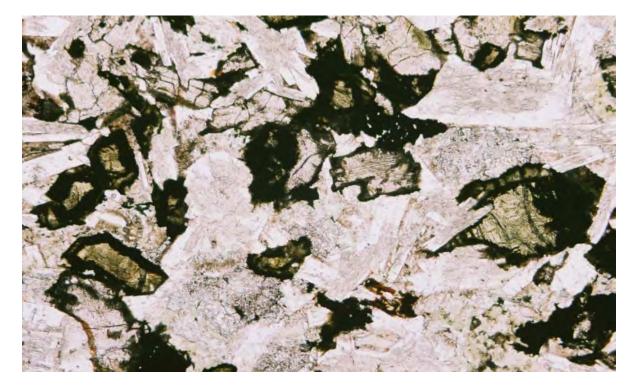
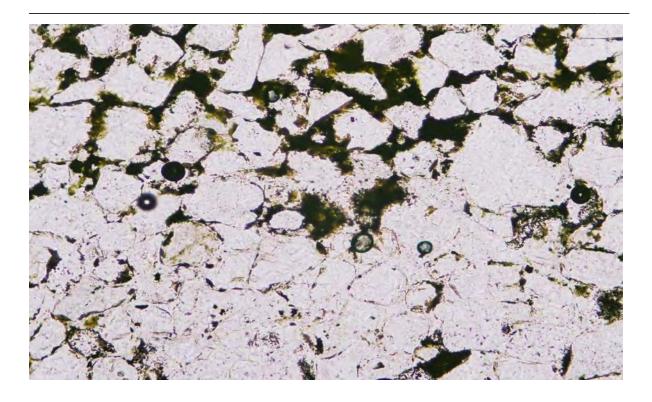


Fig 3

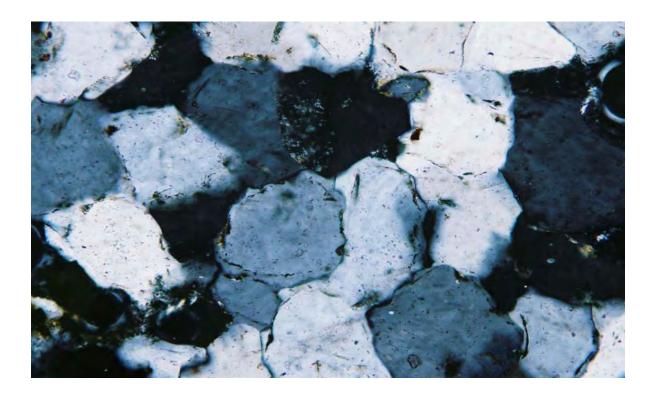
165904

0.45 mm

TS. Xnic. (x20). Broad view of this basalt groundmass of interlocking random calcic-plagioclase laths incorporating scattered coloured crystals of clinopyroxene >> olivine, with dark primary oxidation rims. Very fine sericite alteration in many of the plagioclase laths.


165904 Fig 4 0.18 mm TS. Ordinary light (OL). Magnification (x50). Shows detail of scattered pale to almost colourless crystals of pyroxene >> olivine with dark primary oxidation rims.

165908 GBH02, 46.9 (3257) Weakly bedded medium grained quartz sandstone with fairly extensive intergranular fine authigenic quartz matrix. Up to 15% evenly scattered interstitial claysericite grains of same size, selectively partly (supergene) altered to limonitic clays. [The XRD confirms the dominance of quartz and indicates that the so-called claysericite is kaolinite.]


Binocular microscope indicates this core as a fine to medium grained quartz sandstone with minor yellowish-pale-brown intergranular limonite staining, more concentrated along some bedding plane laminations than others.

Petrographically, it is confirmed as a quartz sandstone, composed of bedded quite compact tightly packed subangular to subrounded single crystals quartz grains. These grains are relatively well sorted, ranging in size from 0.15mm to (rarely) 0.3mm, but with the greater proportion average size of 0.2mm (ie. medium sand size). Most grains have extremely thin authigenic quartz overgrowths, with effectively forming a reasonably continuous intergranular cement, rendering this rock coherent, fairly tough and lithologically gradational to quartzite.

Up to 15% of the whole rock aggregate however consists of evenly scattered grains of (optically) indefinite clay-sericite which are selectively oxidised/stained by pale yellowish brown limonite, slightly more abundant in some layers/thin beds than in others. These appear to represent selectively altered/weathered original detrital grains of feldspar and/or of lithic grains originally deposited with the quartz grains. [XRD reports this clay-sericite as kaolinite.] This may constitute a minor whole rock weakness (very incipient friable character) to this otherwise very coherent rock.

Fig 5 165908 0.09 mm TS. OL (x100). Medium grained sandstone as described, somewhat loose-packed aggregate of subangular quartz grains, dark (opaque) intergranular limonite more extensive in some area than in others. 0.09 mm

Fig 6

165908

0.04 mm

TS. Xnic. Higher magnification (x200). Shows detail of quartz grain mosaic, in this field relatively compact largely due to authigenic siliceous overgrowths on grains, fusing to for siliceous in-fill (i.e. quartzitic).

165912Essentially massive and friable fine to (mostly) mediumMSBH03, 20.3mgrained quartz sandstone with widespread intergranularfine kaolinite matrix, weakly iron stained. No quartzovergrowths or other binding cement. Whole rock ismoderately friable, incompetent. [XRD confirms the claymineral as kaolinite.]

This handspecimen is a massive to vaguely bedded quartz sandstone, but substantially supergene-altered (weathered) to render it considerably friable to touch, readily releasing clays, particularly from yellowish and brownish limonite stained (oxidised) layers and lenses.

This sample was impregnated with epoxy to make a coherent thin section and this petrographically reveals a gross mineralogical composition of approximately 70% single crystal quartz grains and ~30% 'clays' which optically seems to be predominantly kaolinite, albeit weakly limonite-stained.

The quartz grains are mostly subrounded, ranging in size from 0.05mm to (rarely 0.7mm), overall average size about 0.25mm (medium sand size). These grains are overall poorly sorted with poorly defined thin bands and lenses of finer grains, discontinuous between generally thicker and more continuous layers dominated by coarser grains. Very fine kaolin is widespread, intergranular, invariable concentration mostly in shreds, streaky lenses and networks.

All of these characteristics render this rock (as noted macroscopically) particularly weak, friable and generally unstable/incompetent.

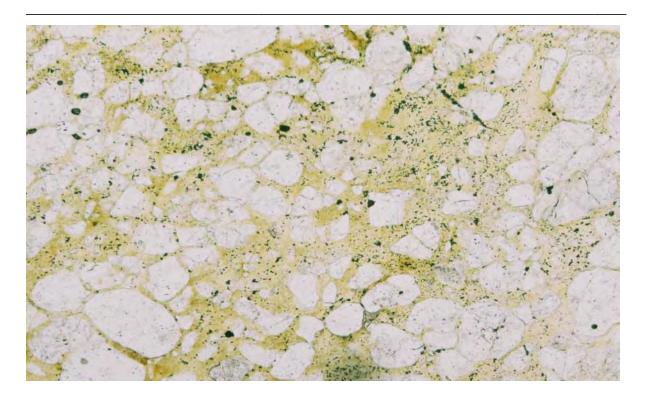
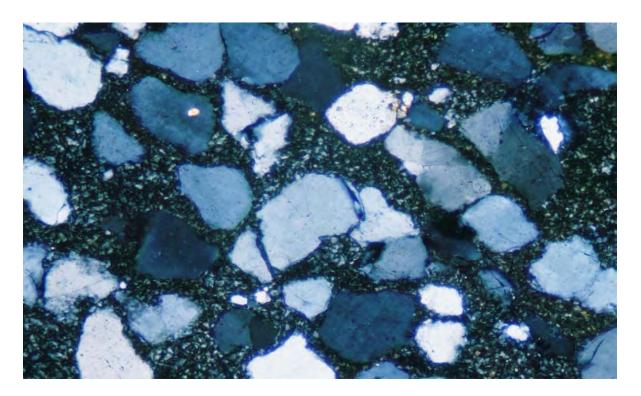
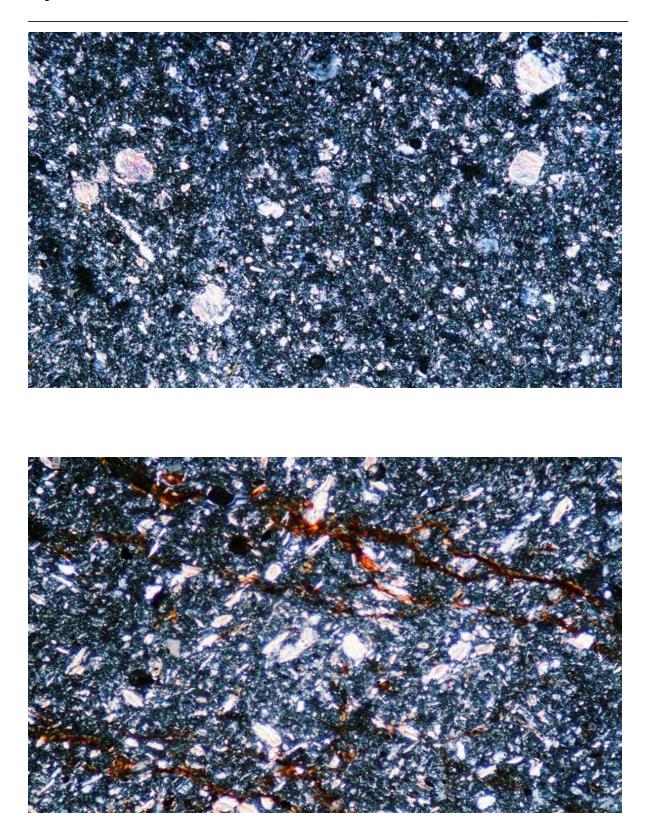


 Fig 7
 165912
 0.18 mm

 TS. OL (x50). Emphasises the loose packed/unconsolidated nature of quartz grain forming this massive and friable sandstone. Extensive very pale green intergranular clays identified by XRD as kaolinite.
 0.18 mm




Fig 8 165912 0.09 mm TS. Xnic. (x100). Shows detail of cryptocrystalline kaolinite throughout extensive intergranular spaces in this sandstone. Massive to weakly bedded "mudstone", dominated by matrix of non-crystalline or poorly crystalline ultrafine kaolinite (± silica). Up to 20% dispersed very small random flakes of fine muscovite (sericite). Local limonite-stained micro-fissures.
[The XRD reported dominance of quartz suggests that some ultrafine silica is intricately mixed with the kaolinite, but this is optically indeterminate.] Also the clay in this rock seems to be partly non-crystalline, therefore not responsive to XRD.

This core sample is basically massive extremely fine and fairly compact, albeit breaking along very weak, poorly defined "foliae" at right angles to the core axis. It is mostly pale-yellowish cream-coloured but with minor reddish-brown limonite staining in small irregular patches (on vague foliae) also along microfissures, and forming crenulated thread-like stylolites (also coinciding with weak foliae).

Optical microscopy and XRD indicates a gross composition with estimated abundances being:

*	Kaolinite ultrafine, poorly crystalline to probably non-crystalline,	
	basically as a whole rock matrix. [XRD suggests ultrafine silica mixed	
	with this kaolinite and/or the total clay is not being measured by XRD.]	70%
*	Fine muscovite (sericite) discrete single flakes, some more or less quartz	
	grains, all <0.03mm, mostly randomly dispersed throughout, but some	
	vaguely concentrated into poorly defined bands (?relict bands)	15-20%
*	Trace fine quartz silt grains disseminated	10%

The above indicates that this rock is basically a "mudstone" with apparent weak bedding and sparse dispersed silt. It is cut by random thread-like microfissures/networks which are selectively limonite-stained.

Figs 9 & 10

165915

TS. Xnic (x50) and (x100). Relatively lower and higher magnification photos of this massive, weakly bedded mudstone. Basically an ubiquitous kaolinite base with numerous randomly scattered small flakes of muscovite, local crosscutting threads of limonite (in Fig 10).

MINERALOGICAL REPORT No. 9338 by Ian R. Pontifex MSc.

June 12th, 2008

TO :	Mr Ross Dingle Coffey Geotechnics Pty Ltd 14B Henley Beach Road MILE END SA 5031
YOUR REFERENCE :	Work Order No. 1014
MATERIAL :	Drill core segments (5), Muckaty Station
IDENTIFICATION :	165902, 904, 908, 912, 915
WORK REQUESTED :	Thin section preparation, description and report with photomicrographs.
SAMPLES & SECTIONS :	Returned to you with this report.
DIGITAL COPY :	CD enclosed with hard copy of this report.

PONTIFEX & ASSOCIATES PTY. LTD.

INTRODUCTION

This report provides petrological descriptions of thin sections examined by optical microscopy of five drill core segments, cut from larger pieces. Sample representation is:

Drill Hole	Depth (m)	Sample number (this report)
MSBH01	10.65 - 10.95	165902
MSBH01	28.1 - 28.25	165904
GBH02	46.9 - 47.15	165908
MSBH03	20.3 - 20.65	165912
MSBH05	17.65 – 18.15	165915

These are reported to be from Muckaty Station, SA. Photomicrographs are integrated with the descriptions, as requested.

Fillets from the immediate thin section offcuts were submitted to AMDEL for XRD mineralogical analysis. These results are to be reported (and billed) separately to Coffey Geotechnics, and are also included in this report (next page) with reference to these in the individual descriptions. This XRD was essential to identify clay species, since this is not always possible by optical microscopy.

There are some similarities between these samples with 165902 and 915, which are both clay-rich, 165908 and 912, which are both quartz-rich (but different whole rock proportions). Sample 165904 is quite different as a fresh basalt. Beyond these brief comments, no comparative analysis is offered, but identifications and sample-specific comments are included in the individual descriptions.

MINERALOGY OF SAMPLES (by AMDEL LTD)

1. INTRODUCTION

Samples were received from Ian Pontifex, originally from Ross Dingle of Coffey Geotechnics with a request for determination of their mineralogy. The samples were from Job No: LABT MEND 508AA and were reported to be from Muckaty Station.

2. PROCEDURE

The samples were pulverized then analysed by X-ray diffraction to identify the minerals present.

3. RESULTS

The semi-quantitative mineralogy of the samples follows.

Mineral	165902	165904	165908	165912	165915
Quartz		Tr	D	D	D
Kaolinite	D		Tr	А	D
Muscovite	Tr-A	Tr			Tr-A
Ca-Plagioclase		D			
Clinopyroxene		SD			
Chlorite		Tr			
? Pyrite		Tr			

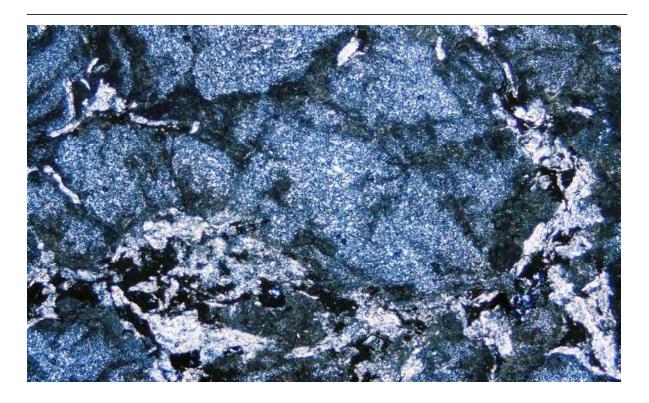
Semiquantitative Abbreviations

- D = Dominant. Used for the component apparently most abundant, regardless of its probable percentage level.
- SD = Sub-dominant. The next most abundant component(s) providing its percentage level is judged above about 20.
- A = Accessory. Components judged to be present between the levels of roughly 5 and 20%.
- Tr = Trace. Components judged to be below about 5%.

Pontifex Note:

XRD mineral proportions above for 165915 are petrologically seen to be different, with clay dominant and quartz relatively minor, but as noted in the description, the clay (kaolinite) is probably largely non-crystalline and would therefore not respond to XRD analysis.

INDIVIDUAL PETROGRAPHIC DESCRIPTIONS


165902 MSBH01, 10.65m Homogeneous mass of diffuse patches of cryptocrystalline kaolinite (60%), with an irregular interstitial network of apparent intricately mixed fine muscovite (sericite) and kaolinite. [Kaolinite and minor muscovite, only minerals reported by XRD].

Macroscopically, this core piece consists of a bright white, homogeneous, compact mass of extremely fine clay, without any clearly defined texture or fabric.

Petrographically, the thin section shows a consistent domainal pattern throughout, mainly (about 60%) of somewhat diffuse but subequant patches about 3mm across, of compact cryptocrystalline to microcrystalline kaolinite. The other 40% of the section area consists of a more irregular network largely interstitial to and defining these patches, of an equally fine but quite densely clouded "clay-sericite", with these partitions locally coalescing to also form patches.

The exact composition of these "clouded clays" cannot be resolved optically but they are interpreted to represent the minor muscovite reported by XRD, apparently intricately mixed with kaolinite.

There is no quartz or any other (residual) minerals or textures which provide an interpretation of genesis (precursor) of this rock.

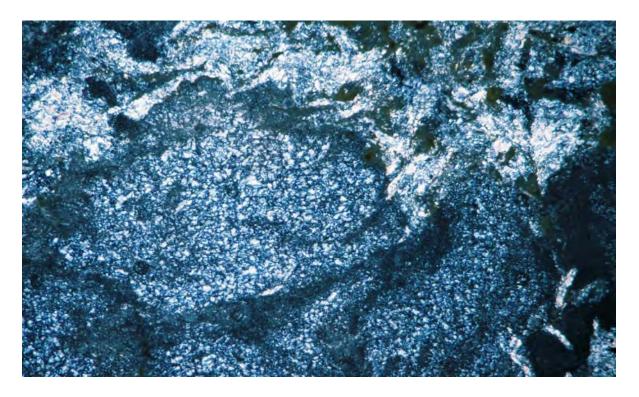


Fig 1

165902

0.45 mm

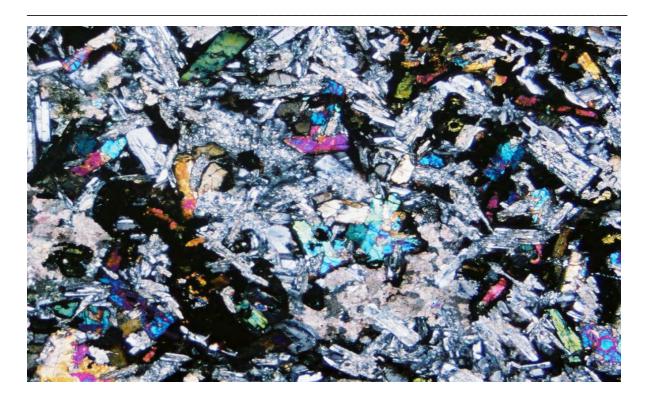
Transmitted light. Thin section (TS), Crossed nicols (Xnic). Relatively low magnification (x20). Example of patchy domains of cryptocrystalline kaolinite, enveloped by a rim of coarser clay and altered muscovite indicated by XRD. (No quartz in this thin section).

Fig 2 165902 0.09 mm TS. Higher magnification, Xnic. (x100) showing detail of central cryptocrystalline kaolinite, a surround of also yellowish clouded ?leucoxene enclosing small voids. 0.09 mm

165904HomogeneoMSBH01, 28.1plagioclasewith oxidize

Homogeneous massive, microcrystalline basalt. Dominant plagioclase (weakly sericitised) and pyroxene > olivine with oxidised rims. Sparse interstitial carbonate > chlorite > trace chalcedony.

This handspecimen is a greenish-grey homogeneous, massive and tough coherent rock, it is microcrystalline and identified at this scale as a basalt (or other microcrystalline mafic). It does not show any particular macro fabric or structure and appears to essentially unaltered but with minor secondary fine-spotty iron staining throughout.


The gross mineralogical composition, visually estimated from petrographic study of the thin section is listed below. These minerals and their relative abundances correlate with the AMDEL XRD data, but include minor minerals not detected by the XRD.

	Mineralogy Estimated from Thin Section	AMDEL XRD
*	Calcic-plagioclase, sericite-altered	45%
*	Clinopyroxene, weakly rimmed by limonitic oxidation	35%
*	Olivine, more strongly rimmed by limonitic oxidation	5-7%
*	Black-opaque titaniferous magnetite crystals	3-5%
*	Carbonate, interstitial very small patches	5%
*	Chalcedonic silica, finer interstitial	<1%
*	Cryptocrystalline chlorite interstitial	5%

As indicated above, the plagioclase is the dominant mineral as laths, average size about 0.3mm, randomly intricately interlocking to produce a tough coherent fine aggregate. Up to 1/3 of each of the plagioclase laths is altered to sericite, but this seems unlikely to have any deleterious effect on the strength or stability of this rock.

Scattered grains of pyroxene > olivine are relatively equant, mostly about 0.5mm in size, tightly incorporated within the plagioclase fabric. Limonitic/hematitic alteration rims around these crystals appears to be primary, again without especially decreasing the stability of these locked in crystals.

Minor extremely fine interstitial carbonate > chlorite > chalcedony may be considered as potentially deleterious (in rock used in construction/concrete materials) but their fine size and locked-in independent occurrence would tend to minimise any adverse reactivity, for example, due to weathering or chemical attack.

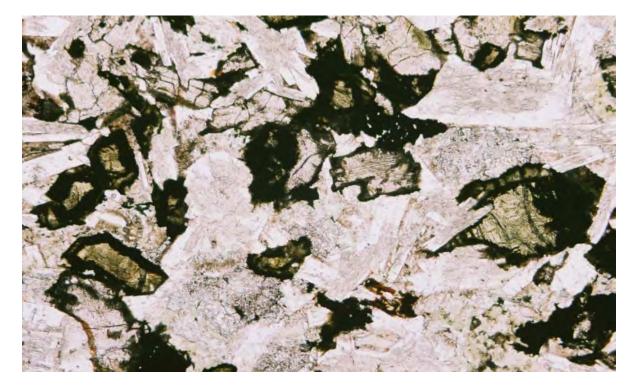
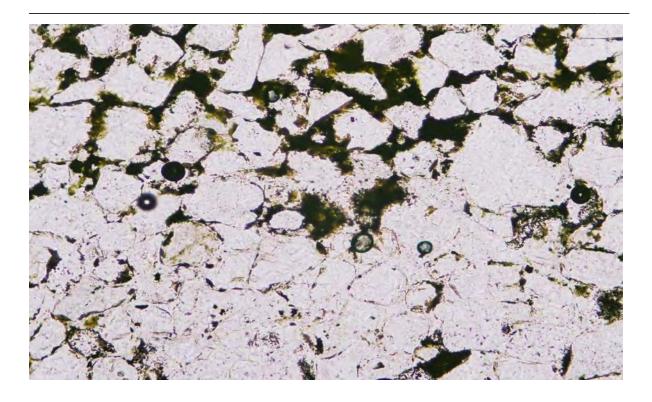


Fig 3

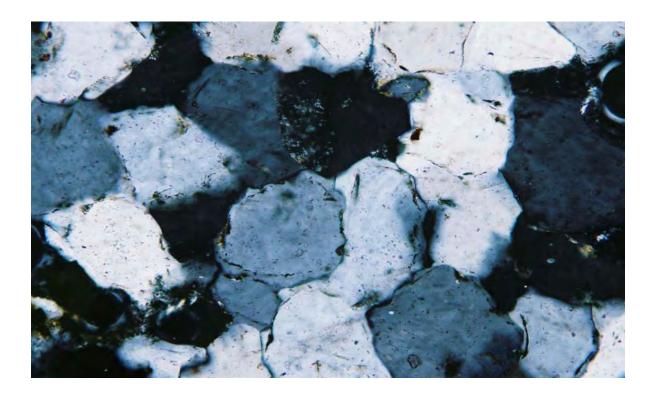
165904

0.45 mm

TS. Xnic. (x20). Broad view of this basalt groundmass of interlocking random calcic-plagioclase laths incorporating scattered coloured crystals of clinopyroxene >> olivine, with dark primary oxidation rims. Very fine sericite alteration in many of the plagioclase laths.


165904 Fig 4 0.18 mm TS. Ordinary light (OL). Magnification (x50). Shows detail of scattered pale to almost colourless crystals of pyroxene >> olivine with dark primary oxidation rims.

165908 GBH02, 46.9 (3257) Weakly bedded medium grained quartz sandstone with fairly extensive intergranular fine authigenic quartz matrix. Up to 15% evenly scattered interstitial claysericite grains of same size, selectively partly (supergene) altered to limonitic clays. [The XRD confirms the dominance of quartz and indicates that the so-called claysericite is kaolinite.]


Binocular microscope indicates this core as a fine to medium grained quartz sandstone with minor yellowish-pale-brown intergranular limonite staining, more concentrated along some bedding plane laminations than others.

Petrographically, it is confirmed as a quartz sandstone, composed of bedded quite compact tightly packed subangular to subrounded single crystals quartz grains. These grains are relatively well sorted, ranging in size from 0.15mm to (rarely) 0.3mm, but with the greater proportion average size of 0.2mm (ie. medium sand size). Most grains have extremely thin authigenic quartz overgrowths, with effectively forming a reasonably continuous intergranular cement, rendering this rock coherent, fairly tough and lithologically gradational to quartzite.

Up to 15% of the whole rock aggregate however consists of evenly scattered grains of (optically) indefinite clay-sericite which are selectively oxidised/stained by pale yellowish brown limonite, slightly more abundant in some layers/thin beds than in others. These appear to represent selectively altered/weathered original detrital grains of feldspar and/or of lithic grains originally deposited with the quartz grains. [XRD reports this clay-sericite as kaolinite.] This may constitute a minor whole rock weakness (very incipient friable character) to this otherwise very coherent rock.

Fig 5 165908 0.09 mm TS. OL (x100). Medium grained sandstone as described, somewhat loose-packed aggregate of subangular quartz grains, dark (opaque) intergranular limonite more extensive in some area than in others. 0.09 mm

Fig 6

165908

0.04 mm

TS. Xnic. Higher magnification (x200). Shows detail of quartz grain mosaic, in this field relatively compact largely due to authigenic siliceous overgrowths on grains, fusing to for siliceous in-fill (i.e. quartzitic).

165912Essentially massive and friable fine to (mostly) mediumMSBH03, 20.3mgrained quartz sandstone with widespread intergranularfine kaolinite matrix, weakly iron stained. No quartzovergrowths or other binding cement. Whole rock ismoderately friable, incompetent. [XRD confirms the claymineral as kaolinite.]

This handspecimen is a massive to vaguely bedded quartz sandstone, but substantially supergene-altered (weathered) to render it considerably friable to touch, readily releasing clays, particularly from yellowish and brownish limonite stained (oxidised) layers and lenses.

This sample was impregnated with epoxy to make a coherent thin section and this petrographically reveals a gross mineralogical composition of approximately 70% single crystal quartz grains and ~30% 'clays' which optically seems to be predominantly kaolinite, albeit weakly limonite-stained.

The quartz grains are mostly subrounded, ranging in size from 0.05mm to (rarely 0.7mm), overall average size about 0.25mm (medium sand size). These grains are overall poorly sorted with poorly defined thin bands and lenses of finer grains, discontinuous between generally thicker and more continuous layers dominated by coarser grains. Very fine kaolin is widespread, intergranular, invariable concentration mostly in shreds, streaky lenses and networks.

All of these characteristics render this rock (as noted macroscopically) particularly weak, friable and generally unstable/incompetent.

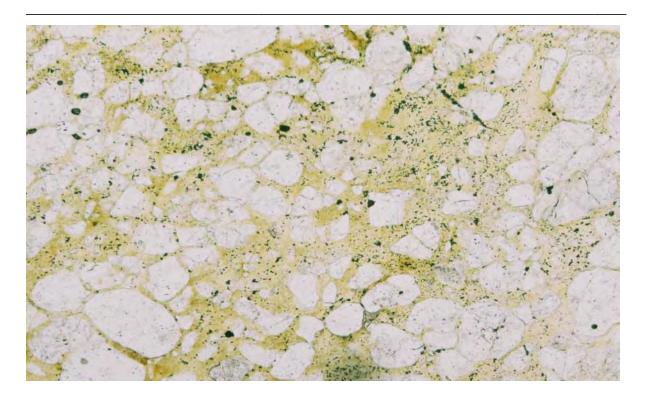
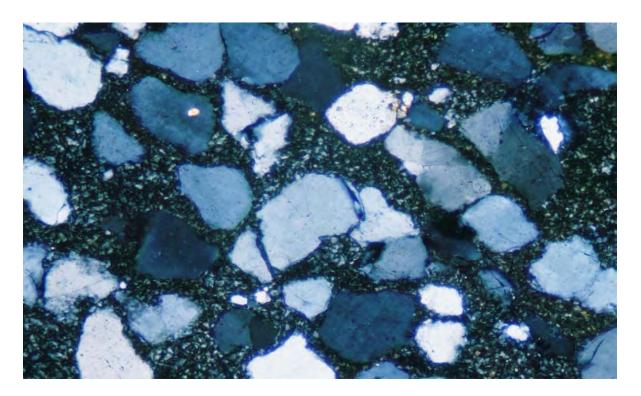
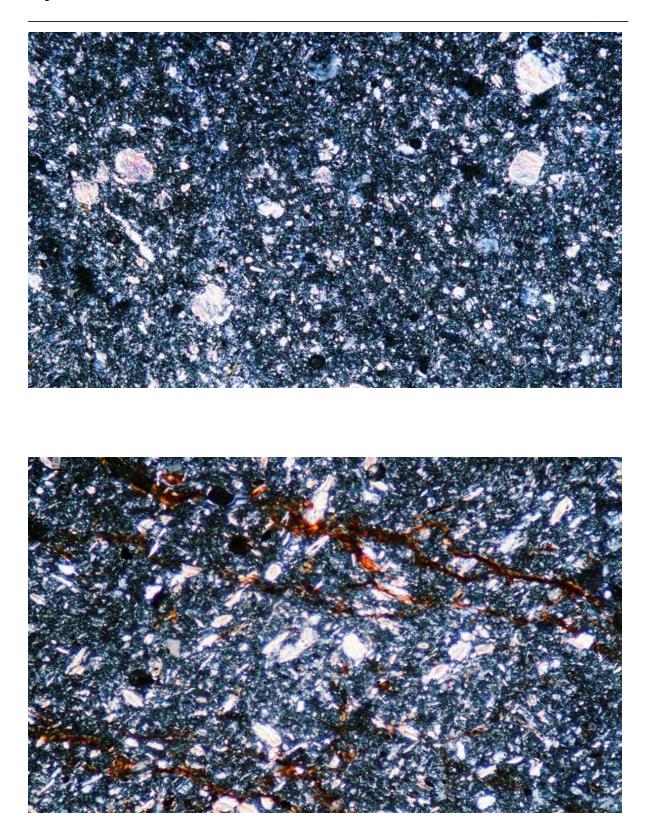


 Fig 7
 165912
 0.18 mm

 TS. OL (x50). Emphasises the loose packed/unconsolidated nature of quartz grain forming this massive and friable sandstone. Extensive very pale green intergranular clays identified by XRD as kaolinite.
 0.18 mm




Fig 8 165912 0.09 mm TS. Xnic. (x100). Shows detail of cryptocrystalline kaolinite throughout extensive intergranular spaces in this sandstone. Massive to weakly bedded "mudstone", dominated by matrix of non-crystalline or poorly crystalline ultrafine kaolinite (± silica). Up to 20% dispersed very small random flakes of fine muscovite (sericite). Local limonite-stained micro-fissures.
[The XRD reported dominance of quartz suggests that some ultrafine silica is intricately mixed with the kaolinite, but this is optically indeterminate.] Also the clay in this rock seems to be partly non-crystalline, therefore not responsive to XRD.

This core sample is basically massive extremely fine and fairly compact, albeit breaking along very weak, poorly defined "foliae" at right angles to the core axis. It is mostly pale-yellowish cream-coloured but with minor reddish-brown limonite staining in small irregular patches (on vague foliae) also along microfissures, and forming crenulated thread-like stylolites (also coinciding with weak foliae).

Optical microscopy and XRD indicates a gross composition with estimated abundances being:

*	Kaolinite ultrafine, poorly crystalline to probably non-crystalline,	
	basically as a whole rock matrix. [XRD suggests ultrafine silica mixed	
	with this kaolinite and/or the total clay is not being measured by XRD.]	70%
*	Fine muscovite (sericite) discrete single flakes, some more or less quartz	
	grains, all <0.03mm, mostly randomly dispersed throughout, but some	
	vaguely concentrated into poorly defined bands (?relict bands)	15-20%
*	Trace fine quartz silt grains disseminated	10%

The above indicates that this rock is basically a "mudstone" with apparent weak bedding and sparse dispersed silt. It is cut by random thread-like microfissures/networks which are selectively limonite-stained.

Figs 9 & 10

165915

TS. Xnic (x50) and (x100). Relatively lower and higher magnification photos of this massive, weakly bedded mudstone. Basically an ubiquitous kaolinite base with numerous randomly scattered small flakes of muscovite, local crosscutting threads of limonite (in Fig 10).

Department Of Civil & Environmental Engineering The University of Melbourne Victoria 3010 AUSTRALIA

REPORT ON

ROCK TESTING

for

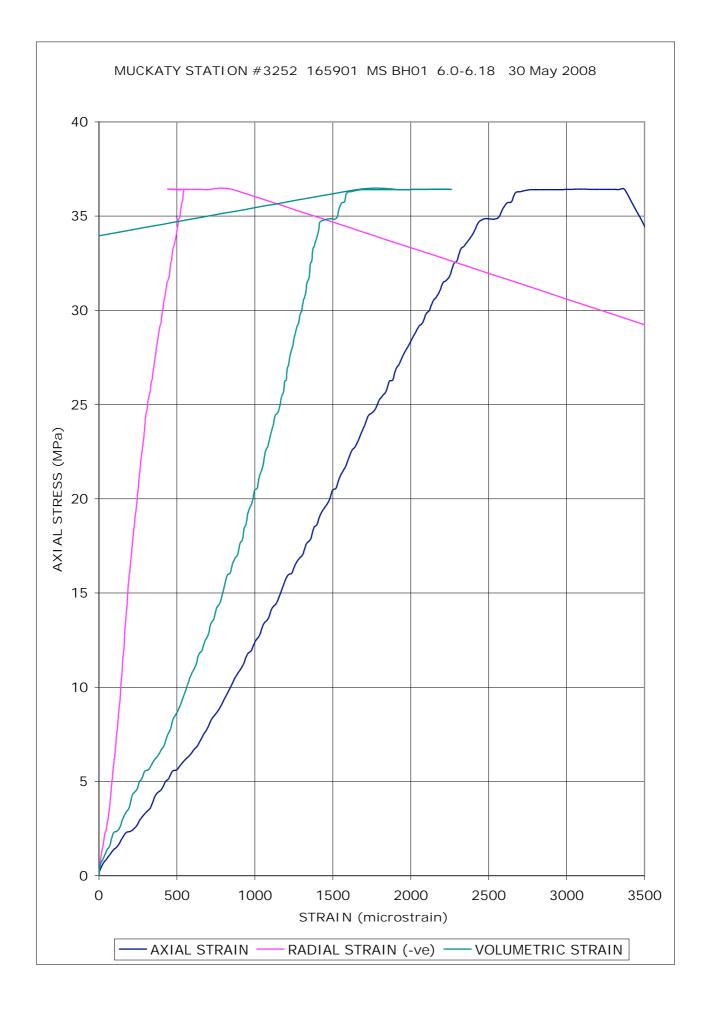
COFFEY GEOTECHNICS

2102701A RADWASTE 2 4TH SITE

MUCKATY STATION

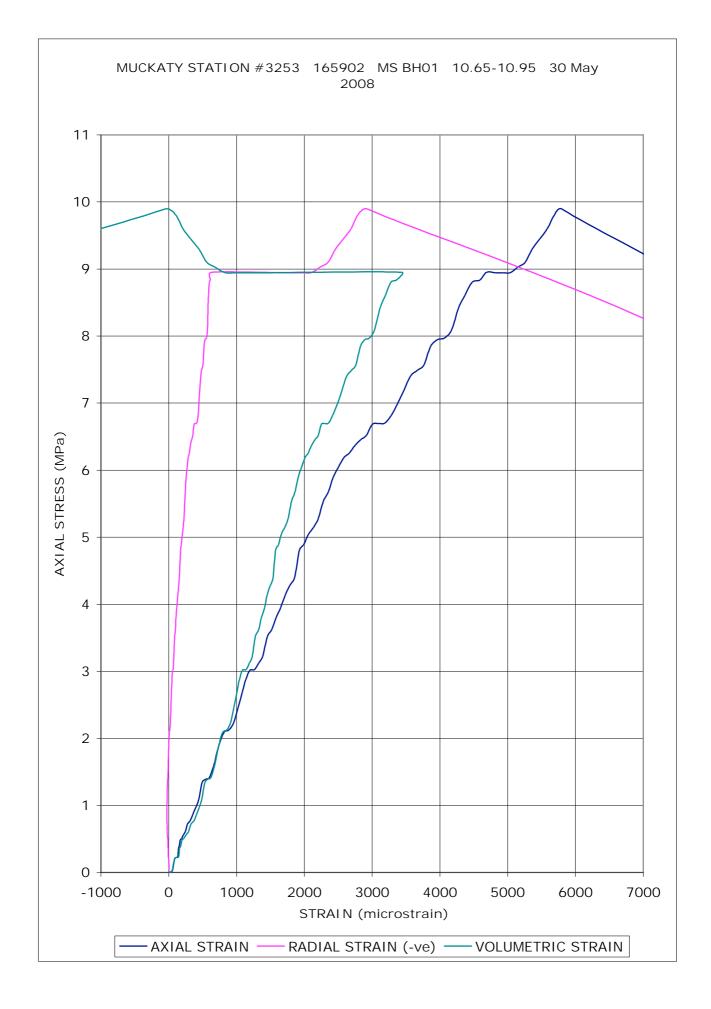
19 JUNE 2008

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING UNIVERSITY OF MELBOURNE PARKVILLE VICTORIA 3010 AUSTRALIA

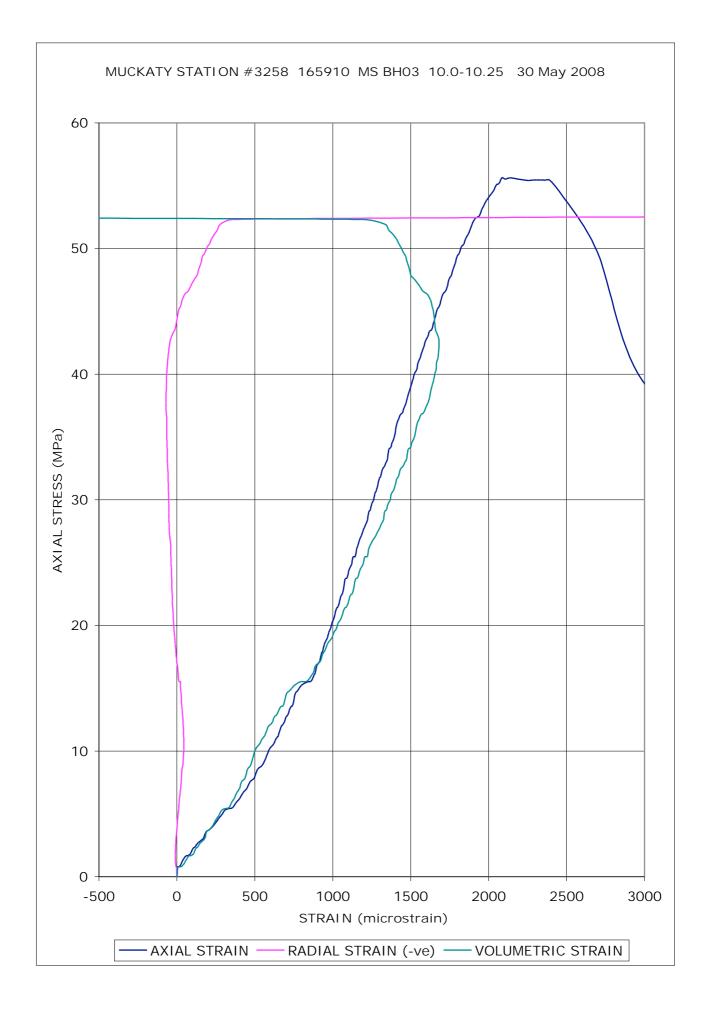

PROJECT : 2102701A MUCKATY STATION RADWASTE 2 - 4TH SITE

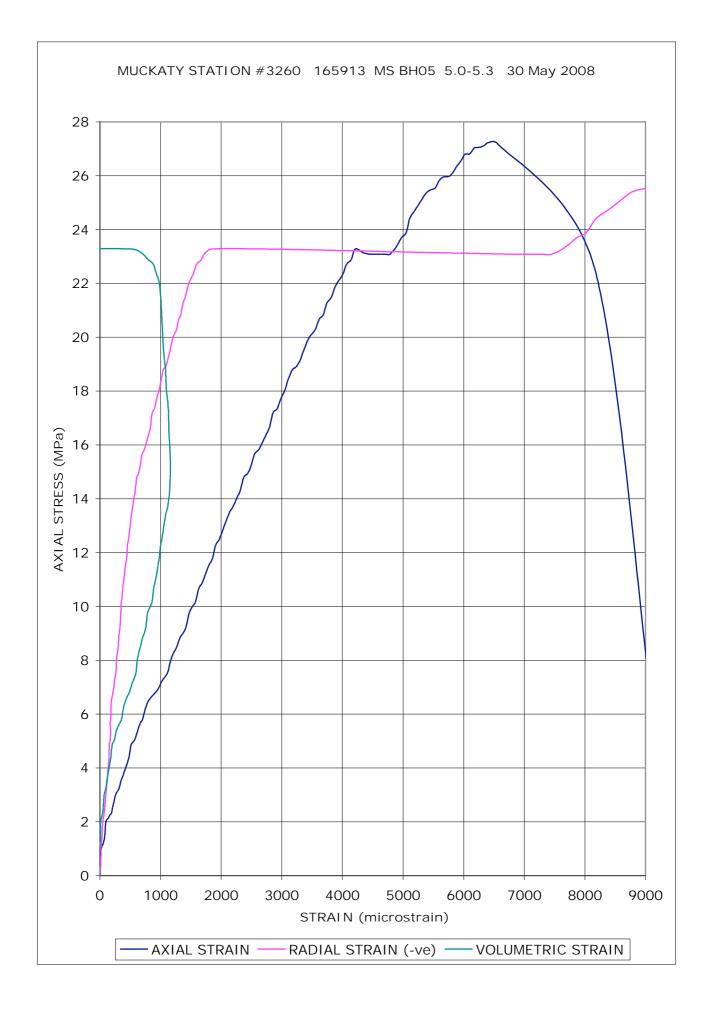
LOCATION	165901 MS BH01	165902 MS BH01	165910 MS BH03	165913 MS BH05	165914 MS BH05
Sample Depth	6.0-6.18	10.65-10.95	10.0-10.25	5.0-5.3	10.85-11.25
Sample Number	3252	3253	3258	3260	3261
Sklerograf Hardness	31	15	42	14	9
Shore Hardness	25	9	40	8	4
Brinell Hardness	174	61	253	58	28
Rockwell C Hardness	16	5	26	5	2
Rockwell B Hardness	87	49	107	48	33
Rockwell A Hardness	54	38	63	37	29
Density (kg/m ³) (Saturated)	2440	2394	2507	2322	2261
Density (kg/m ³) (Dry)	2351	1896	2435	2022	1935
P-Wave Velocity (m/sec)	3012	1328	5071	2292	1305
S-Wave Velocity (m/sec)	1430	1111	3462	2031	922
Dynamic E (GPa)	13.03	1.58	62.09	-5.56(?)	3.29
Dynamic Poisson's Ratio	0.35	-0.66(?)	0.06	-1.33(?)	0.00(?)
Transmitted Amplitude Ratio	0.18	0.42	0.94	0.34	0.32
Static Secant E (GPa)	13.04	2.42	21.68	5.76	1.87
Static Mid-Third E (GPa)	16.29	2.23	37.40	5.32	1.76
Static Poisson's Ratio (Secant)	0.05	0.08	-0.03	0.22	0.12
Static Poisson's Ratio (Mid-Third)	0.19	0.18	-0.11	0.38	0.13
Unconfined Shear Strength (MPa)	36.43	9.89	55.63	27.23	6.44
Uniaxial Compressive Strength (MPa)	36.43	9.89	55.63	27.23	6.44
Uniaxial Compressive Strength (MPa)	10.00	12.60	74.74	27.70	0.02
(standardised for 50mm diameter & 1:1 shape) Uniaxial Compressive Strength (MPa) (standardised	49.99	13.68	76.74	37.72	8.93
for 50mm diameter & 2.5:1 shape)	37.98	10.37	58.20	28.57	6.76
	Shear on cemented			Rough shear @ 20° to axis, + Shear on	
	joint @ 47° to axis,	Shear @ 22° to axis,	A	limonite coated	Conjugate shears
Mode of Failure	+ Axial cleavage.	+ Axial cleavage.	Axial cleavage.	joint @ 8° to axis.	20° @ 17° to axis.
Normal Stress σ on joint or weakness plane (Mpa)	19.48			0.53	
Shear Stress τ on joint or weakness plane (Mpa)	18.17	• • •]	3.75	1.00
Deduced cohesion (MPa)		2.00		4.96	1.08
Angle of Shearing Resistance (inferred)		46°	(70.0	50°	53°
E/Compressive Strength Ratio	447.3	225.9	672.3	195.2	272.9
Specific Energy (kJ/m ³)	73.7	34.3	85.7	155.1	39.7
Maximum Distortional Strain Energy (kJ/m ³)	32.3	17.2	24.5	64.3	8.9
Rock Toughness Index	2.02	3.46	1.54	5.69	6.16
Fracture Energy (Nm)	31.85	15.17	37.84	69.51	17.87
Specific Fracture Energy (Nm/MPa)	0.87	1.53	0.68	2.55	2.77
Fracture Energy (Nm) STANDARDIZED	7.23	3.36	8.42	15.22	3.90
Specific Fracture Energy (Nm/MPa) STANDARDIZED	0.20	0.34	0.15	0.56	0.60
Failure Load (kN)	106.2	28.8	164.4	81.0	19.0
Specimen Diameter (mm)	60.90	60.70	60.90	60.90	60.90
Specimen Length (mm)	148.40	153.00	151.50	153.90	154.60
Length:Diameter ratio	2.44	2.52	2.49	2.53	2.54
Porosity (%)	3.64	20.82	2.87	12.92	14.41

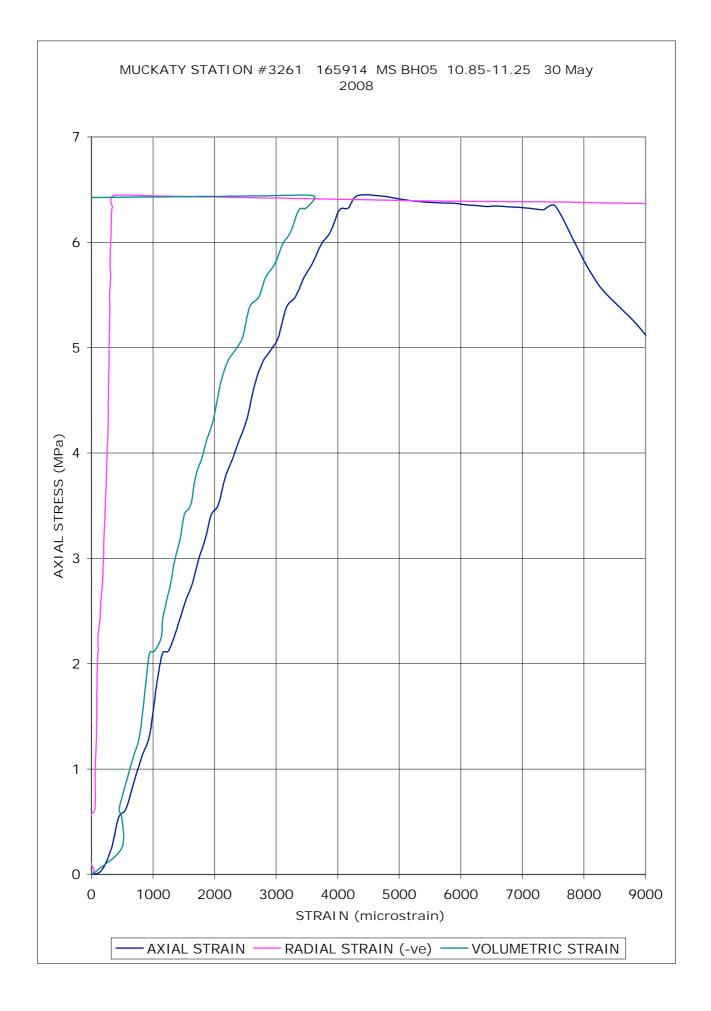
Mt Bambard



165901 MS BH01 6.0-6.18 #3252

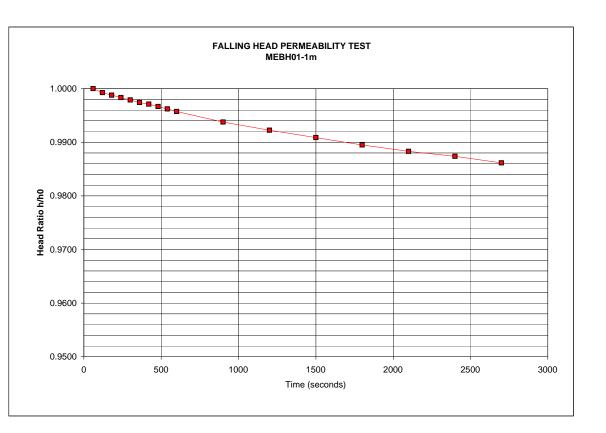

165902 MS BH01 10.65-10.95 #3253


165910 MS BH03 10.0-10.25 #3258


165913 MS BH05 5.0-5.3 #3260

165914 MS BH05 10.85-11.25 #3261

Appendix C


Falling head permeability test results

CLIENT PROJECT LOCATION	Department of Education, Scien Radwaste 2 Mount Everard						DATE PROJECT FILE	21-Jul-02 2102701A -
SUBJECT	FALLING HEAD PERMEABILITY	TEST						
Variable Head Test	Borehole Number	MEBH01-1m						
						Depth below top of casing/st	andpipe to:	
The method calculation	on is outlined in BS5930:1981 Hvors	slev Method.	Borehole/casing diameter (m)	=	0.0500	bottom of borehole	1.	5
						bottom of casing	1.5	
ŀ	c = A/F(T2-T1)x(loge(H1/H2))		Length of open hole or	=	0.0000	height of casing above surface	0.5	5
						initial ground water level	33.2	2 deeper than borehole
ŀ	c = permeability of the soil		Depth of soil in casing (m)	=	1.0000			
						Figure 7 BS 5930:1981		
A	A = cross-sectional area of borehole o	r casing (m2).	Cross-sectional area (m2)	=	0.0020	Values of intake factors, F, in b	orehole permea	bility tests
						Case (a) F =	0.100000	
F	= intake factor, see separate calcula	ition.	Groundwater level (m)	=	698.2740	Case (b) F =	0.137500	
						Case (c) F =	#DIV/0!	
Г	i = basic time factor or time in second	ls	Elevation of casing/hole (RL m)	=	731.4740	Case (d) F =	#DIV/0!	
						Case (e) F =	0.100000	
F	I = height above groundwater level					Case (f) F =	0.001936	

	Time				
(mins)	(seconds)	Depth (m)	Water Level	Head	H/H0
1	60	0.320	731.154	32.880	1.0000
2	120	0.345	731.129	32.855	0.999239659
3	180	0.360	731.114	32.840	0.998783455
4	240	0.375	731.099	32.825	0.998327251
5	300	0.390	731.084	32.810	0.997871046
6	360	0.405	731.069	32.795	0.997414842
7	420	0.415	731.059	32.785	0.997110706
8	480	0.430	731.044	32.770	0.996654501
9	540	0.445	731.029	32.755	0.996198297
10	600	0.460	731.014	32.740	0.995742092
15	900	0.525	730.949	32.675	0.993765207
20	1200	0.575	730.899	32.625	0.992244526
25	1500	0.620	730.854	32.580	0.990875912
30	1800	0.665	730.809	32.535	0.989507299
35	2100	0.705	730.769	32.495	0.988290754
40	2400	0.735	730.739	32.465	0.987378345
45	2700	0.775	730.699	32.425	0.9861618

Intake	Factor, F,						
	Case (a)	Soil flush with botto	m at impervious bound	dary	0.1000		
Х	Case (b)	Soil flush with botto	Soil flush with bottom in uniform soil				
	Case (c)	Well point or hole ex	Well point or hole extended at impervious boundary				
	Case (d)	Well point or hole ex	#DIV/0!				
	Case (e)						
	Case (f)	Soil in casing with b	ottom in uniform soil	-	0.0019		
		Intake Factor	F=	0.1375			
	Permeabil	ity Calculations					
Case		Time Intervals					
b		0- <mark>600</mark>	k =	1.1E-07	m/sec		
b		0- <mark>2700</mark>	k =	7.5E-08	m/sec		

CLIENT	Department of Resources, Energy and Tourism
PROJECT	Radwaste 2
LOCATION	Muckaty Station
SUBJECT	FALLING HEAD PERMEABILITY TEST

Variable Head Test **Borehole Number** MSBH03-5m

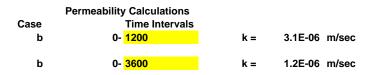
- k = A/F(T2-T1)x(loge(H1/H2))
- k = permeability of the soil
- A = cross-sectional area of borehole or casing (m2).
- F = intake factor, see separate calculation.
- T = basic time factor or time in seconds
- H = height above groundwater level

Т	īme				
(mins)	(seconds)	Depth (m)	Water Level	Head	H/H0
0.00	0	0.000	100.000	14.000	1.0000
0.17	10	0.050	99.950	13.950	0.996428571
0.33	20	0.110	99.890	13.890	0.992142857
0.50	30	0.200	99.800	13.800	0.985714286
0.67	40	0.230	99.770	13.770	0.983571429
0.83	50	0.270	99.730	13.730	0.980714286
1.00	60	0.320	99.680	13.680	0.977142857
1.25	75	0.390	99.610	13.610	0.972142857
1.50	90	0.450	99.550	13.550	0.967857143
1.75	105	0.530	99.470	13.470	0.962142857
2.00	120	0.590	99.410	13.410	0.957857143
3.00	180	0.800	99.200	13.200	0.942857143
4.00	240	1.020	98.980	12.980	0.927142857
5.00	300	1.180	98.820	12.820	0.915714286
10.00	600	1.790	98.210	12.210	0.872142857
15.00	900	2.760	97.240	11.240	0.802857143
20.00	1200	3.250	96.750	10.750	0.767857143
25.00	1500	3.450	96.550	10.550	0.753571429
30.00	1800	3.560	96.440	10.440	0.745714286
40.00	2400	3.650	96.350	10.350	0.739285714
50.00	3000	3.690	96.310	10.310	0.736428571
60.00	3600	3.710	96.290	10.290	0.735

Intake Factor, F,

	Case (a)
Х	Case (b)
	Case (c)
	Case (d)
	Case (e)
	Case (f)

Soil flush with bottom at impervious boundary Soil flush with bottom in uniform soil Well point or hole extended at impervious boundary #DIV/0! Well point or hole extended in uniform soil #DIV/0! Soil in casing with bottom at impervious boundary Soil in casing with bottom in uniform soil


> F= 0.1375

0.1000

0.1375

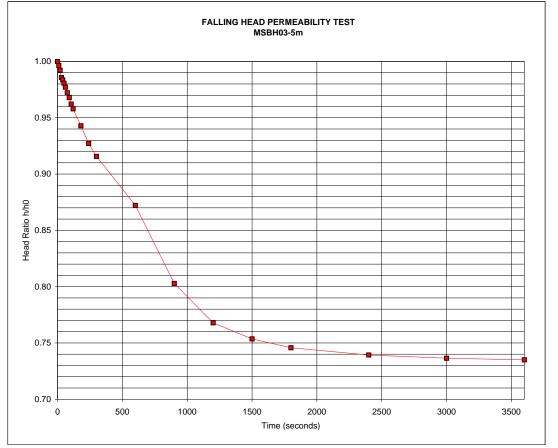
0.1000

0.0005

Borehole/casing diameter (m)	=	0.0500
Length of open hole or	=	0.0000
Depth of soil in casing (m)	=	3.9200
Cross-sectional area (m2)	=	0.0020
Groundwater level (m)	=	86.0000
Elevation of casing/hole (RL m)	=	100.0000

Depth below top of casing/sta	andpipe to:	
bottom of borehole	4.35	
bottom of casing	4.35	
height of casing above surface	0.43	
initial ground water level	14	deeper than borehole
Figure 7 BS 5930:1981 Values of intake factors, F, in br Case (a) F = Case (b) F = Case (c) F = Case (d) F = Case (e) F = Case (f) F =	0.100000 0.137500 #DIV/0! #DIV/0!	bility tests

DATE


FILE

PROJECT

18-Jun-08

2145479A

-

	RSONS NCKERHOFF						
CLIENT PROJECT LOCATION SUBJECT	Department of Resources Radwaste 2 Muckaty Station FALLING HEAD PERMEA					DATE PROJEC FILE	18-Jun-08 T 2145479A -
Variable Head Test	Borehole Number	MSBH03-1m					
						Depth below top of casing/standpipe	
The method calcula	tion is outlined in BS5930:19	81 Hvorslev Method.	Borehole/casing diameter (m)	=	0.0500	bottom of borehole bottom of casing	1.44 1.44
	k = A/F(T2-T1)x(loge(H1/H2))		Length of open hole or	=	0.0000	height of casing above surface	0.46
	()(0())		0			initial ground water level	14 deeper than borehole
	k = permeability of the soil		Depth of soil in casing (m)	=	0.9800		
						Figure 7 BS 5930:1981	
	A = cross-sectional area of bor	ehole or casing (m2).	Cross-sectional area (m2)	=	0.0020	Values of intake factors, F, in borehole p	
	F = intake factor, see separate	adaulation	Groundwater level (m)		300.0000		0000 7500
	F = Intake factor, see separate		Groundwater level (m)	=	300.0000	Case (b) $F = 0.13$ Case (c) $F = \#DIV/$	
	T = basic time factor or time in	seconds	Elevation of casing/hole (RL m)	=	314.0000	Case (d) $F = \#DIV/$	
			3 1 ()			()	0000
H	H = height above groundwater	level				Case (f) F = 0.00	1975
Time							

	TIME				
(mins)	(seconds)	Depth (m)	Water Level	Head	H/H0
0.00	0	0.000	314.000	14.000	1.0000
0.17	10	0.090	313.910	13.910	0.993571429
0.33	20	0.110	313.890	13.890	0.992142857
0.50	30	0.130	313.870	13.870	0.990714286
0.67	40	0.240	313.760	13.760	0.982857143
0.83	50	0.260	313.740	13.740	0.981428571
1.00	60	0.270	313.730	13.730	0.980714286
1.25	75	0.280	313.720	13.720	0.98
1.50	90	0.320	313.680	13.680	0.977142857
1.75	105	0.360	313.640	13.640	0.974285714
2.00	120	0.400	313.600	13.600	0.971428571
3.00	180	0.530	313.470	13.470	0.962142857
4.00	240	0.640	313.360	13.360	0.954285714
5.00	300	0.750	313.250	13.250	0.946428571
10.00	600	1.050	312.950	12.950	0.925
15.00	900	1.290	312.710	12.710	0.907857143
20.00	1200	1.430	312.570	12.570	0.897857143

Soil flush with bottom at impervious boundary

Well point or hole extended in uniform soil

Soil in casing with bottom in uniform soil

Well point or hole extended at impervious boundary

Soil in casing with bottom at impervious boundary

Soil flush with bottom in uniform soil

Intake Factor, F,

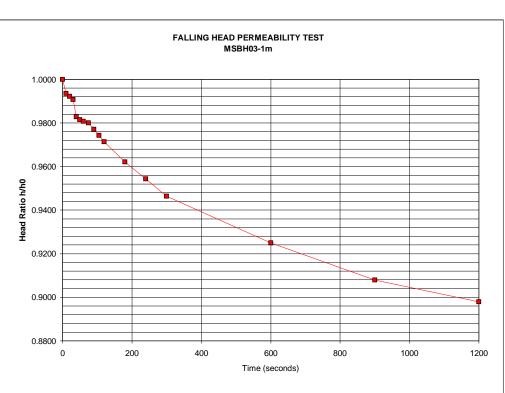
Case (a)
Case (b)
Case (c)
Case (d)
Case (e)
Case (f)

F= 0.1375

0.1000

0.1375

0.1000

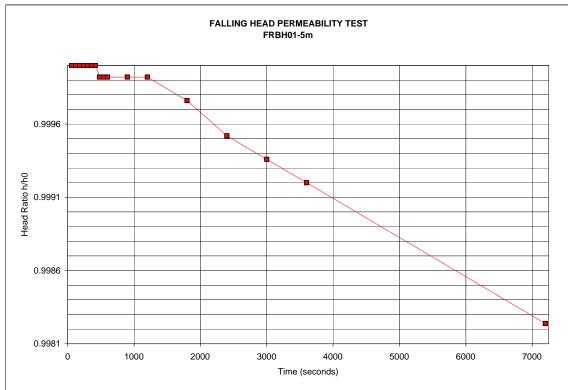

0.0020

#DIV/0!

#DIV/0!

	Permeabilit	y Calculations			
Case		Time Intervals			
b	0-	600	k =	1.9E-06	m/sec
b	0-	1200	k =	1.3E-06	m/sec

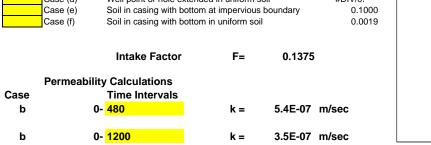
Intake Factor

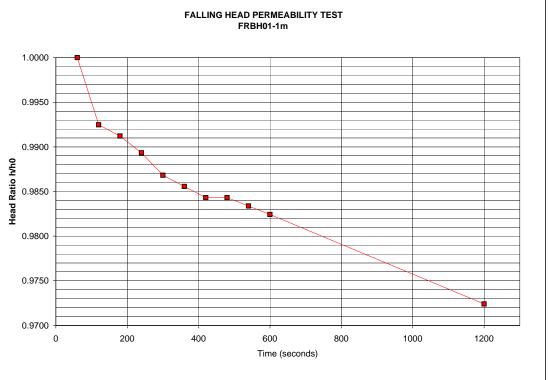

J:\A543-ENV\PROJ\2145479A_Radwaste_4th_S\05_WrkPapers\Geotech\Falling Head Permeability-Muckarty Station.xls Printed: 18/06/2008 6:25 PM

CLIEN CLIEN PARSONS artment of Education, Science & Training (DEST) DATE 21-Jul-02 PROJECT BRINCKERHOFF LOCATION Fishers Ridge PROJECT 2102701A **Fishers Ridge** FILE SUBJECT FALLING HEAD PERMEABILITY TEST Variable Head Test **Borehole Number** FRBH01-5m Depth below top of casing/standpipe to: The method calculation is outlined in BS5930:1981 Hvorslev Method. Borehole/casing diameter (m) = 0.0500 bottom of borehole 5 5 bottom of casing k = A/F(T2-T1)x(loge(H1/H2))Length of open hole or 0.0000 height of casing above surface 0 = initial ground water level 12.5 deeper than borehole k = permeability of the soil Depth of soil in casing (m) 5.0000 = Figure 7 BS 5930:1981 A = cross-sectional area of borehole or casing (m2).Cross-sectional area (m2) 0.0020 Values of intake factors, F, in borehole permeability tests = Case (a) F = 0.100000 F = intake factor, see separate calculation. Groundwater level (m) -12.5000 Case (b) F = 0.137500 = Case (c) F = #DIV/0! T = basic time factor or time in seconds Elevation of casing/hole (RL m) Case (d) F = #DIV/0! 0.0000 = Case (e) F = 0.100000 H = height above groundwater level Case (f) F = 0.000392 Time (mins) (seconds) Depth (m) Water Level Head H/H0 40.400 0.047 4 0000

1	60	0.017	-0.017	12.483	1.0000
2	120	0.017	-0.017	12.483	1
3	180	0.017	-0.017	12.483	1
4	240	0.017	-0.017	12.483	1
5	300	0.017	-0.017	12.483	1
6	360	0.017	-0.017	12.483	1
7	420	0.017	-0.017	12.483	1
8	480	0.018	-0.018	12.482	0.999919891
9	540	0.018	-0.018	12.482	0.999919891
10	600	0.018	-0.018	12.482	0.999919891
15	900	0.018	-0.018	12.482	0.999919891
20	1200	0.018	-0.018	12.482	0.999919891
30	1800	0.020	-0.020	12.480	0.999759673
40	2400	0.023	-0.023	12.477	0.999519346
50	3000	0.025	-0.025	12.475	0.999359128
60	3600	0.027	-0.027	12.473	0.999198911
120	7200	0.039	-0.039	12.461	0.998237603

Intake Factor, F,


x	Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)	Soil flush with botton Soil flush with botton Well point or hole ex Well point or hole ex Soil in casing with b Soil in casing with b	0.1000 0.1375 #DIV/0! #DIV/0! 0.1000 0.0004		
			F=	0.1375	
	Permeabi	lity Calculations			
Case		Time Intervals			
b		0- <mark>1200</mark>	k =	1.0E-09	m/sec
b		0- <mark>7200</mark>	k =	3.5E-09	m/sec



Page: 1 of 1

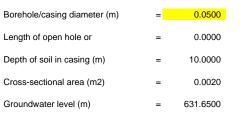
	ISO Department of Education, NCI Radwaste 2 Fishers Ridge							DATE PROJECT FILE	21-Jul-02 2102701A -
SUBJECT	FALLING HEAD PERMEAE	BILITY TEST							
Variable Head Test	Borehole Number	FRBH01-1m							
							Depth below top of casing/st	andpipe to:	
The method calcula	tion is outlined in BS5930:1981	Hvorslev Method.		Borehole/casing diameter (m)	=	0.0500	bottom of borehole		<mark>1</mark>
							bottom of casing		<mark>1</mark>
	k = A/F(T2-T1)x(loge(H1/H2))			Length of open hole or	=	0.0000	height of casing above surface		<u>0</u>
	he is a second a la 1916 de la Calda de la 19					4 0000	initial ground water level	16.	5 deeper than borehole
	k = permeability of the soil			Depth of soil in casing (m)	=	1.0000	Figure 7 BS 5930:1981		
	A = cross-sectional area of bore	hole or casing (m2)		Cross-sectional area (m2)	=	0.0020	Values of intake factors, F, in b	orehole nermes	bility tests
					-	0.0020	Case (a) F =	0.10000	
	F = intake factor, see separate of	alculation.		Groundwater level (m)	=	-16.5000	Case (b) $F =$	0.137500	
	•						Case (c) F =	#DIV/0!	
	T = basic time factor or time in s	econds		Elevation of casing/hole (RL m)	=	0.0000	Case (d) F =	#DIV/0!	
							Case (e) F =	0.100000	
	H = height above groundwater le	evel					Case (f) F =	0.001936	•
Time									
(mins) (second	s) Depth (m) Water	Level Head	H/H0						
1		-0.560 15.940	1.000						

1	60	0.560	-0.560	15.940	1.0000				
2	120	0.680	-0.680	15.820	0.992471769				
3	180	0.700	-0.700	15.800	0.991217064				
4	240	0.730	-0.730	15.770	0.989335006				
5	300	0.770	-0.770	15.730	0.986825596				
6	360	0.790	-0.790	15.710	0.985570891				
7	420	0.810	-0.810	15.690	0.984316186				
8	480	0.810	-0.810	15.690	0.984316186				
9	540	0.825	-0.825	15.675	0.983375157				
10	600	0.840	-0.840	15.660	0.982434128				
20	1200	1.000	-1.000	15.500	0.972396487				
Intake F	actor, F,								
	Case (a)	Soil flush with botto	m at impervious bou	undary	0.1000				
Х	Case (b)	Soil flush with botto	0.1375						
	Case (c)	Well point or hole e	Vell point or hole extended at impervious boundary						
	Case (d)	Well point or hole e	xtended in uniform s	soil	#DIV/0!				
	Case (e)	Soil in casing with b	ottom at impervious	boundary	0.1000				
Case (f) Soil in casing with bottom in uniform soil									

CLIENT	Department of Education, Science & Training (DEST)
PROJECT	Radwaste 2
LOCATION	Harts Range
SUBJECT	FALLING HEAD PERMEABILITY TEST

HRBH01-10m Variable Head Test **Borehole Number**

The method calculation is outlined in BS5930:1981 Hvorslev Method.	Borehole/casing diameter (m)
k = A/F(T2-T1)x(loge(H1/H2))	Length of open hole or
k = permeability of the soil	Depth of soil in casing (m)
A = cross-sectional area of borehole or casing (m2).	Cross-sectional area (m2)
F = intake factor, see separate calculation.	Groundwater level (m)

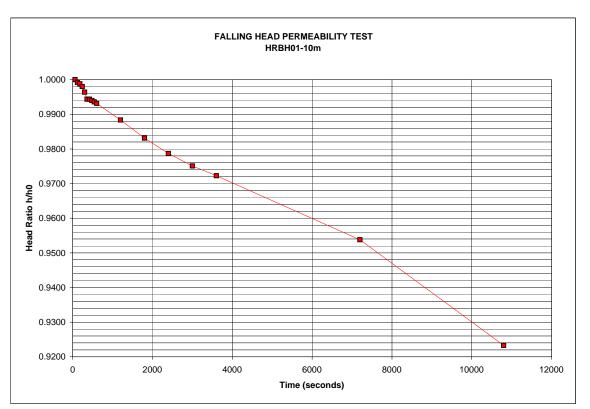

T = basic	time	factor	or	time	in	seconds
1 - 50310	unic	autor	UI.	unic		30001103

H = height above groundwater level

	Time				
(mins)	(seconds)	Depth (m)	Water Level	Head	H/H0
1	60	0.010	656.540	24.890	1.0000
2	120	0.030	656.520	24.870	0.999196464
3	180	0.040	656.510	24.860	0.998794697
4	240	0.060	656.490	24.840	0.997991161
5	300	0.100	656.450	24.800	0.99638409
6	360	0.150	656.400	24.750	0.994375251
7	420	0.150	656.400	24.750	0.994375251
8	480	0.160	656.390	24.740	0.993973483
9	540	0.170	656.380	24.730	0.993571716
10	600	0.180	656.370	24.720	0.993169948
20	1200	0.300	656.250	24.600	0.988348734
30	1800	0.430	656.120	24.470	0.983125753
40	2400	0.540	656.010	24.360	0.978706308
50	3000	0.630	655.920	24.270	0.975090398
60	3600	0.700	655.850	24.200	0.972278023
120	7200	1.160	655.390	23.740	0.953796706
180	10800	1.920	654.630	22.980	0.923262354

Intake Factor, F,

Intuke					
	Case (a)		m at impervious boun	dary	0.1000
Х	Case (b)	Soil flush with botto	m in uniform soil		0.1375
	Case (c)	Well point or hole e	xtended at impervious	boundary	#DIV/0!
	Case (d)	Well point or hole e	xtended in uniform soi	I .	#DIV/0!
	Case (e)	Soil in casing with b	ottom at impervious b	oundary	0.1000
	Case (f)	Soil in casing with b	ottom in uniform soil		0.0002
			F=	0.1375	
	Permeabi	lity Calculations			
Case		Time Intervals			
b		0- 600	k =	1.8E-07	m/sec
b		0- 10800	k =	1.1E-07	m/sec
			N -		



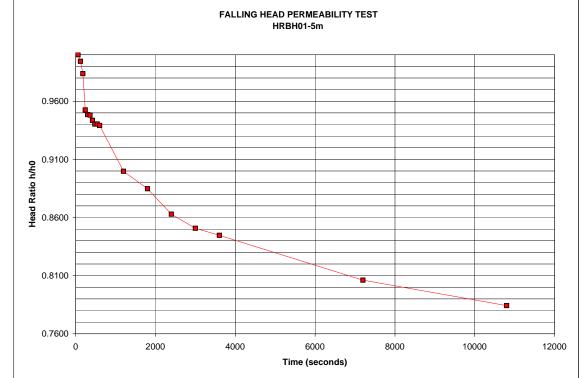
=

656.5500

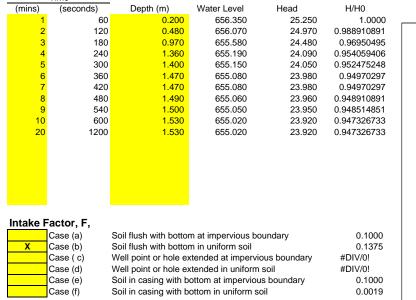
Elevation of casing/hole (RL m)

Depth below top of casing/sta	ndpipe to:	
bottom of borehole	11.4	
bottom of casing	11.4	
height of casing above surface	1.4	
initial ground water level	24.9	deeper than borehole
Figure 7 BS 5930:1981 Values of intake factors, F, in bo Case (a) F = Case (b) F = Case (c) F = Case (d) F = Case (e) F = Case (f) F =	0.100000 0.137500 #DIV/0!	ility tests

DATE 21-Jul-02 PROJECT 2102701A FILE


CLIENT PROJECT LOCATION SUBJECT	Department of Education, Radwaste 2 Harts Range FALLING HEAD PERMEAB						DATE PROJECT FILE	21-Jul-02 2102701A -
Variable Head Test	Borehole Number	HRBH01-5m						
						Depth below top of casing/sta	ndpipe to:	
The method calculat	ion is outlined in BS5930:1981	Hvorslev Method.	Borehole/casing diameter (m)	=	0.0500	bottom of borehole	6.35	5
						bottom of casing	6.35	5
	k = A/F(T2-T1)x(loge(H1/H2))		Length of open hole or	=	0.0000	height of casing above surface	1.35	5
						initial ground water level	24.85	deeper than borehole
	k = permeability of the soil		Depth of soil in casing (m)	=	5.0000			
						Figure 7 BS 5930:1981		
	A = cross-sectional area of boreh	hole or casing (m2).	Cross-sectional area (m2)	=	0.0020	Values of intake factors, F, in bo	orehole permeal	bility tests
						Case (a) F =	0.100000	
	F = intake factor, see separate c	alculation.	Groundwater level (m)	=	631.7000	Case (b) F =	0.137500	
						Case (c) F =	#DIV/0!	
	T = basic time factor or time in se	econds	Elevation of casing/hole (RL m)	=	656.5500	Case (d) F =	#DIV/0!	
						Case (e) F =	0.100000	
	H = height above groundwater le	evel				Case (f) F =	0.000392	
	- •							

lime						
	(mins)	(seconds)	Depth (m)	Water Level	Head	H/H0
	1	60	0.200	656.350	24.650	1.0000
	2	120	0.340	656.210	24.510	0.994320487
	3	180	0.600	655.950	24.250	0.983772819
	4	240	1.370	655.180	23.480	0.952535497
	5	300	1.470	655.080	23.380	0.948478702
	6	360	1.480	655.070	23.370	0.948073022
	7	420	1.590	654.960	23.260	0.943610548
	8	480	1.670	654.880	23.180	0.940365112
	9	540	1.670	654.880	23.180	0.940365112
	10	600	1.700	654.850	23.150	0.939148073
	20	1200	2.670	653.880	22.180	0.89979716
	30	1800	3.040	653.510	21.810	0.884787018
	40	2400	3.580	652.970	21.270	0.862880325
	50	3000	3.880	652.670	20.970	0.850709939
	60	3600	4.030	652.520	20.820	0.844624746
	120	7200	4.980	651.570	19.870	0.806085193
	180	10800	5.520	651.030	19.330	0.784178499



T.....

Intake Fa	actor, r,				
C	Case (a)	Soil flush with botton	n at impervious bound	lary	0.1000
X	Case (b)	Soil flush with bottor	n in uniform soil		0.1375
C	Case (c)	Well point or hole ex	tended at impervious	boundary	#DIV/0!
C	Case (d)	Well point or hole ex	tended in uniform soil		#DIV/0!
C	Case (e)	Soil in casing with be	ottom at impervious b	oundary	0.1000
C	Case (f)	Soil in casing with be	ottom in uniform soil	-	0.0004
F	Permeability	Calculations	F=	0.1375	
Case	ermeability	Time Intervals			
b	0	600	k =	1.7E-06	m/200
b	0-	800	κ =	1.7 E-00	III/Sec
b	0-	10800	k =	3.2E-07	m/sec

CLIENT PROJECT LOCATION	Radwaste 2 Harts Range	Science & Training (DEST)					DATE PROJECT FILE	21-Jul-02 2102701A -
SUBJECT	FALLING HEAD PERMEA	BILITY TEST						
Variable Head Test	Borehole Number	HRBH01-1m						
						Depth below top of casing/st	andpipe to:	
The method calcula	ation is outlined in BS5930:1981	Hvorslev Method.	Borehole/casing diameter (m)	=	0.0500	bottom of borehole	1.9	
						bottom of casing	1.9	
	k = A/F(T2-T1)x(loge(H1/H2))		Length of open hole or	=	0.0000	height of casing above surface		
	have a second a second s				1 0000	initial ground water level	25.4	5 deeper than borehole
	k = permeability of the soil		Depth of soil in casing (m)	=	1.0000	Figure 7 BS 5930:1981		
	A = cross-sectional area of bore	bala or casing (m2)	Cross-sectional area (m2)	=	0.0020	Figure 7 BS 5930:1981 Values of intake factors, F, in b	orobolo pormoo	hility tooto
	A = Closs-sectional area of bore	nole of casing (mz).	Closs-sectional area (III2)	-	0.0020	Case (a) $F =$	0.100000	
	F = intake factor, see separate	calculation	Groundwater level (m)	=	631.1000	Case (b) $F =$	0.137500	
						Case (c) F =	#DIV/0!	
	T = basic time factor or time in s	seconds	Elevation of casing/hole (RL m)	=	656.5500	Case (d) $F =$	#DIV/0!	
			о (<i>)</i>			Case (e) F =	0.100000	
	H = height above groundwater le	evel				Case (f) F =	0.001936	
Time								

F=

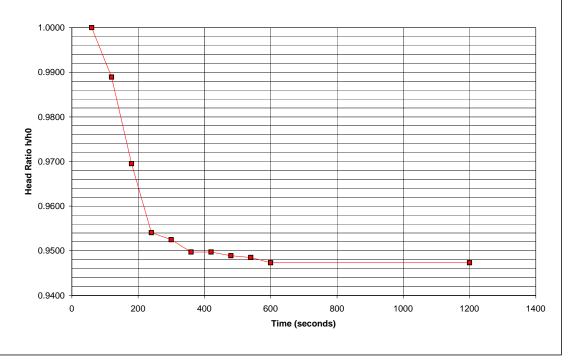
k =

k =

Intake Factor

Time Intervals

Permeability Calculations


0- <mark>240</mark>

0- <mark>1200</mark>

Case

b

b

FALLING HEAD PERMEABILITY TEST

HRBH01-1m

0.1375

3.7E-06 m/sec

6.8E-07 m/sec

CLIENT	Department of Education, Science & Training (DEST)
PROJECT	Radwaste 2
LOCATION	Mount Everard
SUBJECT	FALLING HEAD PERMEABILITY TEST

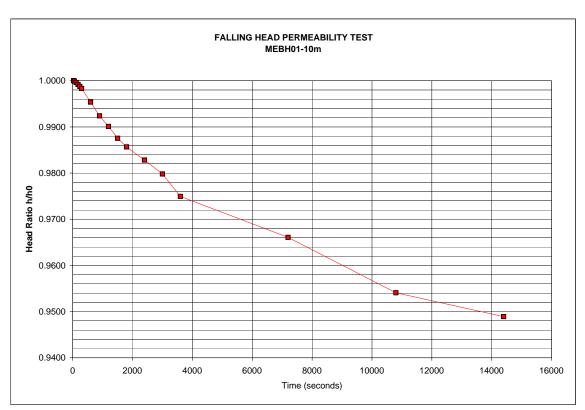
MEBH01-10m Variable Head Test **Borehole Number**

k = A/F(T2-T1)x(loge(H1/H2))	Length of open hole or
k = permeability of the soil	Depth of soil in casing (m)
A = cross-sectional area of borehole or casing (m2).	Cross-sectional area (m2)
F = intake factor, see separate calculation.	Groundwater level (m)
T = basic time factor or time in seconds	Elevation of casing/hole (RL m)

Borehole/casing diameter (m)

H = height above groundwater level

	Time				
(mins)	(seconds)	Depth (m)	Water Level	Head	H/H0
0.5	30	0.003	730.908	34.987	1.0000
1	60	0.007	730.904	34.983	0.999885672
2	120	0.017	730.894	34.973	0.999599851
3	180	0.032	730.879	34.958	0.999171121
4	240	0.047	730.864	34.943	0.99874239
5	300	0.062	730.849	34.928	0.998313659
10	600	0.165	730.746	34.825	0.995369709
15	900	0.270	730.641	34.720	0.992368594
20	1200	0.350	730.561	34.640	0.99008203
25	1500	0.440	730.471	34.550	0.987509646
30	1800	0.505	730.406	34.485	0.985651814
40	2400	0.605	730.306	34.385	0.982793609
50	3000	0.710	730.201	34.280	0.979792494
60	3600	0.880	730.031	34.110	0.974933547
120	7200	1.190	729.721	33.800	0.966073113
180	10800	1.610	729.301	33.380	0.954068654
240	14400	1.790	729.121	33.200	0.948923886

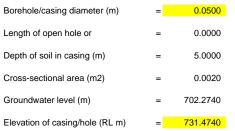


Intake	Factor, F,				
	Case (a)	Soil flush with bottor	m at impervious bour	ndary	0.1000
Х	Case (b)	Soil flush with bottor	m in uniform soil		0.1375
	Case (c)	Well point or hole ex	ktended at imperviou	s boundary	#DIV/0!
	Case (d)	Well point or hole ex	ktended in uniform so	bil	#DIV/0!
	Case (e)	Soil in casing with b	ottom at impervious	boundary	0.1000
	Case (f)	Soil in casing with b	ottom in uniform soil	-	0.0002
	Permeahi	lity Calculations	F=	0.1375	
•	Permeabl				
Case		Time Intervals			
b		0- <mark>3600</mark>	k =	1.0E-07	m/sec
b		0- <mark>14400</mark>	k =	5.2E-08	m/sec

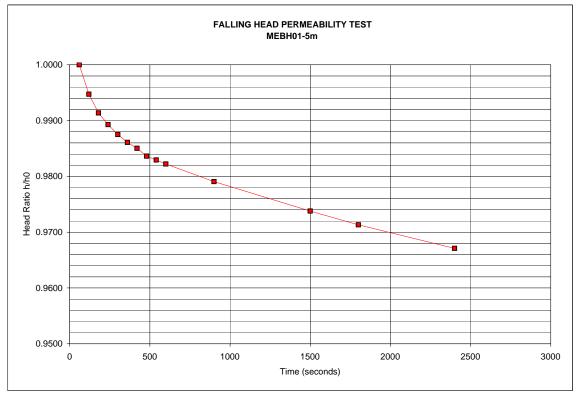
DATE	21-Jul-02
PROJECT	2102701A
FILE	-

		Depth below top of casing/sta	ndpipe to:
=	0.0500	bottom of borehole	<u>10.69</u>
		bottom of casing	10.69
=	0.0000	height of casing above surface	0.69
		initial ground water level	34.99 deeper than borehole
=	10.0000		
		Figure 7 BS 5930:1981	
=	0.0020	Values of intake factors, F, in bo	rehole permeability tests
		Case (a) F =	0.100000
=	695.9210	Case (b) F =	0.137500
		Case (c) F =	#DIV/0!
=	730.9110	Case (d) F =	#DIV/0!
		Case (e) F =	0.100000
		Case (f) F =	0.000196

CLIENT	Department of Education, Science & Training (DEST)
PROJECT	Radwaste 2
LOCATION	Mount Everard
SUBJECT	FALLING HEAD PERMEABILITY TEST


Variable Head Test Borehole Number MEBH01-5m

k = A/F(T2-T1)x(loge(H1/H2))	Length of open hole or
k = permeability of the soil	Depth of soil in casing (m)
A = cross-sectional area of borehole or casing (m2).	Cross-sectional area (m2)
F = intake factor, see separate calculation.	Groundwater level (m)
T = basic time factor or time in seconds	Elevation of casing/hole (RL m


H = height above groundwater level

	Time				
(mins)	(seconds)	Depth (m)	Water Level	Head	H/H0
1	60	0.795	730.679	28.405	1.0000
2	120	0.945	730.529	28.255	0.99471924
3	180	1.040	730.434	28.160	0.991374758
4	240	1.100	730.374	28.100	0.989262454
5	300	1.150	730.324	28.050	0.9875022
6	360	1.190	730.284	28.010	0.986093998
7	420	1.220	730.254	27.980	0.985037845
8	480	1.260	730.214	27.940	0.983629643
9	540	1.280	730.194	27.920	0.982925541
10	600	1.300	730.174	27.900	0.98222144
15	900	1.390	730.084	27.810	0.979052984
25	1500	1.540	729.934	27.660	0.973772223
30	1800	1.610	729.864	27.590	0.971307868
40	2400	1.730	729.744	27.470	0.96708326

intake	ractor, r,						
	Case (a)	Soil flush with bottor	m at impervious bound	lary	0.1000		
X	Case (b)	Soil flush with bottor	m in uniform soil		0.1375		
	Case (c)	Well point or hole ex	ktended at impervious	boundary	#DIV/0!		
	Case (d)	Well point or hole ex	ktended in uniform soil		#DIV/0!		
	Case (e)	Soil in casing with b	0.1000				
	Case (f)						
			F=	0.1375			
	Permeabil	ity Calculations					
Case		Time Intervals					
b		0- <mark>600</mark>	k =	4.7E-07	m/sec		
b		0- <mark>2400</mark>	k =	2.0E-07	m/sec		

Depth below top of casing/standpipe to:						
bottom of borehole	6.1					
bottom of casing	6.1					
height of casing above surface	1.1					
initial ground water level	29.2 c	leeper than borehole				
Figure 7 BS 5930:1981						
•						
Values of intake factors, F, in borehole permeability tests						
Case (a) F =	0.100000					
Case (b) F =	0.137500					
Case (c) F =	#DIV/0!					
Case (d) F =	#DIV/0!					
Case (e) F =	0.100000					
Case (f) F =	0.000392					

DATE	21-Jul-02
PROJECT	2102701A
FILE	-

CLIENT PROJECT LOCATION SUBJECT	ONS CKERHOFF Department of Resources, E Radwaste 2 Muckaty Station FALLING HEAD PERMEABIL						DATE PROJECT FILE	18-Jun-08 2145479A -	
Variable Head Test	Borehole Number	MSBH03-10m				Denth holes for af agains/a	4		
The method calculation	on is outlined in BS5930:1981 H	Ivorslev Method.	E	Borehole/casing diameter (m)	= 0.0500	Depth below top of casing/s bottom of borehole	10.7		
k	= A/F(T2-T1)x(loge(H1/H2))		L	ength of open hole or	= 0.0000	height of casing above surface	bottom of casing 10.78 height of casing above surface 0.78		
k	= permeability of the soil		C	Depth of soil in casing (m)	initial ground water level epth of soil in casing (m) = 10.0000			4 deeper than borehole	
A	A = cross-sectional area of borehole or casing (m2).			Cross-sectional area (m2)	= 0.0020	Figure 7 BS 5930:1981 Values of intake factors, F, in			
F	= intake factor, see separate cal	culation.	C	Groundwater level (m)	= 86.0000	Case (a) F = Case (b) F =))		
т	= basic time factor or time in sec	conds	E	Elevation of casing/hole (RL m)	= 100.0000	Case (c) F = Case (d) F =	#DIV/0! #DIV/0!		
н	= height above groundwater leve	el				Case (e) F = Case (f) F =	0.10000 0.000196		
Time (mins) (seconds) Depth (m) Water Level Head H/H0 FALLING HEAD PERMEABILITY TEST 0 0 0.000 100.000 14.000 1.0000 MSBH03-10m 60 3600 0.070 99.930 13.930 0.995									
Intake Factor, F, Case (a) X Case (b) Case (c) Case (c) Case (d) Case (e) Case (f)	Soil flush with bottom at imper Soil flush with bottom in unifor Well point or hole extended at Well point or hole extended in Soil in casing with bottom at in Soil in casing with bottom in un	m soil impervious boundary uniform soil npervious boundary	0.1000 0.1375 #DIV/0! #DIV/0! 0.1000 0.0002	1.000 9999 0.999 0.997 0.997					
	ity Calculations	F= 0.1375		0.996					
Case b (Time Intervals)- <mark>3600 </mark>	k = 2.0E-08 n	n/sec		500 1000	1500 2000 2500 Time (seconds)	3000	3500 4000	