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CLOSED UNIVERSES: THEIR FUTURE EVOLUTION AND FINAL STATE

Summary
We summarize what is currently known about the fﬁture evolution
and final state of closed universes: in mathematical language,
those which have a compact Cauchy surface. We show that the
existeqce of a maximal hypersurface (a time of maximum expansion)
is a necessary and sufficient condition for the existence of
an all-encompassing final singularity in a universe with a compact
Cauchy surface. Not all closed universes can admit a maximal
hypersurface, but we state a theorem giving a complete classification
of those closed universes which do. The relevance of these

results to inflation is also discussed.
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1 Introduction

Zel'dovich and Grishchuk (1984) have recently argued that
the spontaneous formation of the universe from “nothing" requires
the universe to have compact spacelike sections, i.e., to be
closed. Moreover, Hawking (1984a,b) and Tipler (1984) have
argued that a consistent quantum gravity theory can be formulated
only for closed universes. However, current observations seem
to show that the density parameter $; is less than 0.3 in that
portion of the Universe visible to us. These observations could
nevertheless be consistent with compactness of the Universes's
spatial sections if the sections had a non-spherical topology
(for instance a three-torus T3), or a spherical (S3) topology
in which the under-density in our region was counterbalanced
by an over-density elsewhere. Zel'dovich and Grishchuk (1984)
investigate the future evolution of a spherically symmetric
but inhomogeneous cosmology with s3 spatial topology, and they
show that this model recollapses to an all;enCOIpassing final
singularity as does the more familiar Friedman universe with
three-sphere spatial topology. They conjecture that this recollapse
to a final singularity is a generic property of closed universes,
and that a proof of this conjecture along the lines of the Hawking-
Penrose singularity theorems can probably be found.

There have been a number of theorems proven in global general
relativity in recent years which have a bearing on this conjecture.

In this 1985 gravity award essay we summarize what is known. In brief,



the theorems indicate the following. First, a necessary and
sufficient condition for both a final and initial all-encompassing
singularity in a globally hyperbolic closed universe satisfying
the strong energy condition and a generic condition is the existence
of a maximal hypersurface, or a time of maximum expansion.
Second, globally hyperbolic closed universes with a complicated
spatial topology (for instance T3) cannot have a maximal hypersurface
and hence cannot recollapse. On the other hand, all known globally
hyperbolic closed universes with s3 spatial topélogy do in fact
have maximal hypersurfaces and hence recollapse to final all-
encompassing singularity. The Zel'dovich-Grishchuk model is
a very interesting additional examble of the recollapse of three-
sphere closed universes. On the basis of the known examples,
Marsden & Tipler (1980) conjectured that all globally hyperbolic
three-sphere universes satisfying the strong energy condition
and a generic condition have a maximal hypersurface and hence
recollapse to an all-encompassing final singularity.

Surprisingly, not much progress has been made in proving
a general theorem to this effect. The Zel'dovich-Grishchuk
result, that all spherically symmetric three-sphere universes
with positive matter density and‘zero cosmological constant
recollapse, is actually the most general result known. We shall
discuss the efforts to prove a more general theorem in detail
in section 2.

Zel'dovich and Grishchuk (1984) also suggest that the final

singularity, although all-encompassing, may not be simultaneous.



Global simultaneity, of course, is a concept which depends on
a choice of a global coordinate system. There is a growing
consensus among relativists that the most natural global coordinate
system is the one defined by the foliation (slicing of the space-
time by hypersurfacesl) of constant mean curvature hypersurfaces.
We shall show that under fairly general conditions such a foliation
will exist, and if the curvature grows sufficiently fast near
the final singularity, the final singularity will be simultaneous
in the time coordinate defined by this foliation.

We shall state thé theorems in the precise language of
global general relativity, but we shall also try to explain
the physical meaning of the terms employed so as to make these
results understandable to those not conversant with this rather
esoteric language; for further discussion see Barrow and Tipler
{1985). Our notation and conventions will be those of Hawking
& Ellis (1973) except that we do not set G= 1. In particular,
Rabcd is the Riemann curvature tensor, Rap is the Ricci tensor,
and the metric signature is (- + + +).
2 The Global Theorems

Our first theorem establishes the necessity of all-encompassing
initial and final singularities if a closed universe is globally
hyperbolic and has a maximal hypersurface. A space-like hypersurface

S is said to be a maximal hypersurface if za;a = 0 everywhere

1as an example, the surface of an ordinary cylinder is a two-
dimensional surface that can be foliated by a sequence of circles
perpendicular to its axis. The cylinder is generated by all

of these circles stacked on top of each other. The stack is

the 'foliation' of the cylinder by circles.



on S, nﬁere z2 is the unit normal vector to S.
THEOREN 1: The length of every timelike curve in a space-time
(M,g) is less than a universal constant L if the following conditions
hold:

(1) Rapk3kP > 0, for all timelike vectors k3;

(2) there exists a compact maximal hypersurface S;

(3) the space-time is globally hyperbolic;

(4) at least one of the tensors zCzdz[aRb]cd[ezf], Za:b»

or Rabzazb; is non-zero someﬁhere on the maximal hypersurface

S, where z8 is the normal vector to S.

This theorem was first explicitly stated and proved by
Marsden and Tipler (1980). Since the length of every timelike
curve in the space-time is less than L, this means that all
timelike curves must begin at an initial singularity, and terminate
at a final singularity. The entire space-time can be shown
to have a finite four-volume, so a cosmology satisfying the
conditions of Theorem 1 is closed in both space and time. The
length function d(p.q) between two events p and q is defined
by Hawking & Ellis (1973) to be the length of the longest timelike
curve connecting them. Theorem 1 shows that d(M,M) < L, where
M is the space-time manifold. Tipler (1977), and Marsden and
Tipler (1980) termed a space-time with a compact Cauchy surface
and d(M,M) < L a Wheeler Universe.

Hawking & Ellis (1973) call condition (1) of Theorem 1

the timelike convergence condition. If the Einstein equations



hold, it is implied by the strong energy condition, which says
that the stress-energy tensor T,p satisfies T,pz2zP - (1/2)13,2P2z)
> (1/8wG)/\, where /\ is the cosmological constant.

Condition (3) says that if initial data is given on a compact
spacelike hypersurface, then the entire future and past of this
hypersurface is determined by this initial data and the evolution
equations. Such a hypersurface is called a Cauchy Surface?.

Budic et al (1978) have shown that in a space-time with a compact
Cauchy surface, all compact spacelike hypersurfaces are in fact
Cauchy surfaces.

Condition (4) says that somewhere on the maximal hypersurface,
the gravitational forces are non-zero, or at least the méximal
hypersurface is not a surface of time symmetry. If the gravitational
forces due to matter are non-zero, the scalar Rabzazb will be
non-zero, and if the gravitational tidal forces are non-zero
along timelike curves normal to the hypersurface, the tensor
zczdz[aRb]Cd[er] will be non-zero. For vacuum space-times,
the condition z45.p = 0 with z2 the unit normal to a spacelike
Cauchy surface S will imply that the future and past of S are
identical. Thus, such a hypersurface is called a surface of
time symmetry. In any physically realistic space-time, one

which has some irregularity, we would expect condition (4) to

2The precise definition of a Cauchy surface is that it is a hyper-
surface which every timelike curve intersects exactly once,

but if the initial value problem is well-posed, this definition

is equivalent to the one above. Global hyperbolicity precisely
stated says that all sets of the form J*(p) N J (q) are compact,
but this definitiom is actually equivalent to the existence

of a Cauchy surface; see Hawking & Ellis (1973) for a discussion.



hold; we can think of condition (4) as a 'generic condition'
to eliminate pathological examples which are unphysical.
Condition (4) is necessary condition for Theorem 1 to hold.

For example, the Einstein static universe satisfies all the
conditions in the theorem except (4), and of course the Einstein
static universe is singularity free. But the Einstein universe
is ﬁnstable.

Theorem 1 shows that the existence of a compact maximal

hypersurface is a sufficient condition for a space-time to have

an initial and a final all-encompassing singularity. The next
theorem shows that it is a necessary condition.
THEOREN 2: If (M,g) is a Wheeler universe, then it has a unique
maximal spacelike c2 hypersurface, and it can be foliated uniquely
by constant mean curvature hypersurfaces, with the mean curvature
varying from +e at the initial singularity to -eat the final
singularity if the following conditions hold:
(1) Rapk@kP > 0 for all timelike vectors ka;
"(2) the region of (M,g) near the initial and final singularities
can be foliated by Cauchy surfaces S(t), S'(t) respectively
which satisfy

max z2.,(p)> +o°
PE€ S(t)

as S(t) approaches the initial singularity, and

max z3,,(p)=> -oo
PE S'(t)

as S'(t) approaches the final singularity.



Condition (2) of Theorem 2 is a restriction on the nature
of the initial and final singularities. and such a restriction
is essential if one is to obtain the existence of a maximal
hypersurface. The reason is that in global general relativity,
a singularity is indicated by the presence of an incomplete
causal curve, and incompleteness of causal curves can result
from both true infinite curvature singularities, and also "singu-
larities"” which arise from not extending the space-time as far
as one could. For example, we can construct a Wheeler universe
from the flat Friedman universe by identifying the spatial points

Xx = 0, x = 1; the points y = 0, vy = 1; and the points z = 0,

z 1 to transform the spacelike Cauchy surfaces with topology
R3 into Cauchy surfaces with topology T3, and then cutting away
the region to the future of the hypersurface t = 1 inclusive,
and to the past of the hypersurface t = 0 inclusive. The resulting
space-time will exist for only one time unit, beginning at the
"singularity" t = 0, and ending at the "singularity" t = 1.
Such a Wheeler universe has no maximal spacelike hypersurface.

However, we would expect that a real singularity would
act to decrease the size of the universe near the singularity,
and this intuitive idea of universal contraction is expressed
by condition (2). Locally, the trace of the temsor z,.p, which
is the second fundamental form, or extrinsic curvature, of the
hypersurface S, can be written as

za;a = (1/dv)d(dv)/dt (1)

where dV is the local infinitesimal volume element (Marsden
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& Tipler (1980)). Thus if the universe is contracting everywhere
to zero volume, the right-hand-side of (1) will go to plus infinity
at the initial singularity, and minus infinity at the final
singularity. Eardley and Smarr (1979) introduced condition
(2); they termed a singularity which satisfies condition (2)
a crushing siangularity. The existence of a foliation of the
space-time by Cauchy surfaces near the singularities, which
is required in the definition of a crushing singularity, actually
follows from global hyperbolicity, and is not an additional
assumption.

There are other ways of expressing the idea that the initial
and final singularities crush objects out of existence and are
not just artificial singularities. A discussion of these alter-
natives, which also yield an existence theorem for maximal hyper-
surfaces in Wheeler universes, can be found in Marsden & Tipler
(1980), and in Tipler, Clarke & Ellis (1980).

The proof of Theorem 2 is due to a number of people. Marsden
& Tipler (1980) obtained the existence of a Lipshitz compact
Cauchy surface of maximal volume under the hypotheses of Theorem
2, but they were unable to show that this hypersurface was everywhere
spacelike and C2; the possibility existed that the maximal volume
hypersurface possessed kinks and null portions. Marsden and
Tipler also showed that if the possibility of the leaves of
a constant mean curvature foliation turning null were eliminated,
then such a foliation existed. These possibilities were eliminated

by Gehardt (1983), who was able to prove the existence of a
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C2 maximal spacelike hypersurface and a foliation of constant
mean curvature hypersurfaces under the conditions of Theorem
2. Bartnik (1984) has recently obtained a simpler proof. Brill
and Flaherty (1976) had earlier proved that a constant mean
curvature foliation, if it existed, was unique.
Thus the existence of a maximal spacelike hypersurface
is a necessary and sufficient condition for the existence of
all-encompassing initial and final singularities. The next
theorem shows that a maximal hypersurface will never evolve
in some universes with compact Cauchy surfaces; the existence
of a maximal hypersurface is permitted only in closed universes
with rather special spatial topologies.
THEOREN 3: If S is a spacelike compact orientable maximal hyper-
surface, then it must have topology
(s3/Py) # (sS3/Py) # ... # (s3/Py) # k(s? X sl) (2)
where P; is a finite subgroup of S0(3), "#" denotes the connected
sum, and k(S2 X $l) means the connected sum of k copies of S2 X s1,
provided the following conditions hold:
(1) The Einstein equations without cosmological constant
hold on the spacetime (M,g);
(2) The weak energy condition holds;
(3) the induced metric on S is not flat;

(4) The differentiable structure on M = S X Rl is not exotic.

We remind the reader that, roughly speaking, a connected

sum of two three-dimensional manifolds is the manifold formed
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by cutting a small spherical volume out of each, and then gluing
the two manifolds together along the boundaries of the remaining
manifolds. A detailed discussion of the connected sum can be
found in any book on advanced topology; e.g., ﬁempel (1976) .

The quotient S3/Pi of a three-sphere $3 with a subgroup Pi{ means
identifying points of the three-sphere which are carried into
one another under the action of the subgroup. The weak energy
condition means that the stress-energy tensor satisfies Tabkakb
> 0. A non-exotic differentiable structure on M = S X R! means
that the coordinate systems covering M are generated by pulling
up the coordinate systems which cover §S. See Freedman (1982),
Donaldson (1983), and especially Freed & Uhlenbeck (1984) for
a discussion of exotic differentiable structures on four-manifolds.
Theorem 3 is a re-expression of a theorem of Schoen & Yau
(1978, 1979a&b). They showéd that the only non-flat 3-manifolds
to admit a metric with scalar curvature (3)R non-negative have
topology (2). (More precisely, they showed that the 3-manifolds
had to have the form (2) but with each $3/P; replaced with $3/P;,
where §§ is a homotopy sphere. S.-T. Yau has pointed out to
us, however, that if we assume the differentiable structure
of M = S X Rl to be non-exotic, then homotopy spheres must be
spheres. It is possible that condition (4) is not necessary.)
The initial value Einstein equations without cosmological constant
constrain (3)R in s (Misner, Thorne & Wheeler (1973)) as follows:
(B)R + (22,,)2 = 16mGTap22zP + z,. 225D (3)

where 22 is the unit normal to the spacelike hypersurface S.
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On a maximal hypersurface, za;a = 0, and on any hypersurface
za;bz"“b > 0, since the second fundamental form has only spacelike
components in Gaussian normal coordinates. Thus if conditions
{1) and (2) of Theorem 3 hold, (3)R > 0 on a léxilal hypersurface,
so fhe only possible topologies for maximal hypersurfaces are
given by (2).

In particular, closed universes with spatial topology T3
cannot have maximal hypersurfaces and thus cannot re-collapse
to a final singularity. The three-torus universe we constructed
above by identifying the flat Friedmann universe is an example:
its maximal extension in time will begin at an initial curvature
singularity, but it will expand forever. Brill (1977) was the
first to conjecture that T3 universes must expand forever.

On the other hand, universes with $3 Cauchy surfaces can
in principle admit maximal hypersurfaces and may re-collapse.
In fact, as was discussed by Marsden & Tipler (1980), all known
examples of cosmologies with three-sphere Cauchy surfaces, which
satisfy a generic condition and the timelike convergence condition,
begin and end in all-encompassing singularities. This led Marsden
& Tipler (1980) to conjecture that all such cosmologies begin
and end in singularities. The Zel'dovich & Grishchuk spherically
symmetric but inhomogeneous model provides more evidence for
this conjecture.

It is not known if the general homogeneous three-sphere
cosmologies, the Bianchi type IX universes, all recollapse.

Both Matzner, Shepley & Warren (1970) and S.P. Novikov (1972)
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have published proofs which purport to show that all Bianchi
type IX universes recollapse, but unfortunately their proofs
are incomplete3. |

Schoen & Yau have shown (1979b) that all ofiented 3-manifolds
with topology (2), but where the finite subgroup P; acts linearly,
actually admit spacelike metrics with (3)rR > 0. Thus except
for the restriction that Pj; act linearly, they have shown in
‘effect that‘for every topology of the form (2), there exist
globally hyperbolic solutions to the Einstein equations in which
the Cauchy surfaces have the given topology, and the maximal
developments begin and end in singularities. Yau conjectures
that the hypotheses of Theorem 3 are sufficient to insure that
Pj; must act linearly, but he has no proof. As with the s3 case,
it is not known if all solutions with the given Cauchy surface
topology must begin and end in singularities.
3 Astrophysical Applications

The motivation for Zel'dovich and Grishchuk's original discussion

of closed universes was a prediction of inflationary universe
models: the Cosmological Principle should hold locally yet

globally there should exist considerable inhomogeneity, perhaps

3The Matzner et al proof introduces a § > 0, and $§ must be bounded
away from zero in order for the proof to go through, but the
possibility that & could approach zero is not eliminated. The
Novikov proof identifies the reaching of the maximal hypersurface
with the vanishing of an "energy" U. Novikov shows that dU/dt
< 0, but does not eliminate the possibility that the dU/dt could
vanish so rapidly that U = 0 is never reached. The proof is
non-trivial because the three-curvature of the Bianchi type

IX universe can be either positive or negative at different
stages of its evolution; in fact it is only positive when the
model is close to isotropy.
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on a scale exceeding our present particle horizon. If the Cosmo-
logical Principle is guarenteed out to a scale Ho‘l (where
Hg is the present Hubble parameter) then the present density
will be within one part in 106 of the critical density required
for closure (Guth (1981)). However, inflationary universes
may give rise to a minimum amplitude of density inhomogeneity
that exceeds 106 (Gibbons et al, 1983). Thus, small density
inhonogenéities over large scales may have less than the critical
densityveven though the global mean density exceeds the critical
value. Can these low density regions escape the future singularity?
This is the question answered by Zel'dovich & Grishchuk for
a particular model and analyzed by ourselves above. We note,
in passing, that there exists tentative observational evidence
for large regions of under-density in the Universe (Kirshner
et al (1981); Gregory & Thompson (1978); see however Geller,
(1985)). Such regions should also leave fluctuations in the
microwave background temperature profile over small angular
scales.

The problem of interpreting the evidence for and against
the existence of extensive void regions is compounded by the
fact that the bulk of gravitating matter in the Universe is
in non-luminous form. The universal mass distribution could,
in principle, be dominated by objects varying in mass from 10-38
gm (axions) to 1039 gm (supermassive black holes). Nevertheless,
it is possible to resolve virial mass discrepancies in clusters

and explain the form of rotation curves in spirals with a density
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parameter Sl < 0.2. Furthermore, the random motion of galaxies
place a limit ofllo < 0.24 on all non-uniformly clustered material
(Bean et al, 1983). Thus taken at face value the evidence provides
support neither for the inflationary prediction of [f2g - 1|
< 1076, nor for a closed universe withdgy > 1. In order to
reconcile observation with either of these possibilities there
must be either a non-zero cosmological constant (Peebles 1984),
or a smooth distribution of unfound cosmic material not clustered
with the luminous matter (for example, new weakly interacting
elementary particles or photons arising from elementary particle
decays at a recent redshift). If inflation occurs and drives
the geometry of space very close to Euclidean and the effective
cosmological constant dominating the expansion during the infla-
tionary phase is not completely cancelled then in a Friedman
universe we would now observe

Lg =1 - /\ (3)
3Hq 2

Thus, if /\ > 0, we can reconcile inflation with observations

of g < 1. However, this is an extremely unattractive remedy

since the motivation for inflation was to remove assumptions

about extraordinary fine-tuning of initial conditions, whereas

(3) requires the residual /\ term to be very specially chosen,
i.e., /\G < 107120 jp dimensionless units. If a residual
positive cosmological constant exists, then the Universe will
expand forever, whatever its spatial topology. If a residual
negative cosmological constant exists, then all globally hyperbolic

universes recollapse if the stress-energy tensor obeys the strong



16

energy condition (Tipler, 1976).

The first two theorems given in section 2 rely on the strong
energy condition, which can be violated even with normal matter
if the cosmological constant is positive. If /\'= 0, then it
is still possible that this condition will be violated near
the final singularity in a closed universe when the temperature
and hence the particle energy becomes very high. The complicated
self-interaction potentials expected in the Higgs sector of
grand unified gauge theories typically lead to stress tensors
that violate the strong energy condition (although not the weak
energy condition) at high energy (Tipler, 1978). For example,
a simple scalar field with self-interaction potential V(#) =R¢4,
0 <A << 1, employed in the chaotic inflation models of Linde
(1984) leads to a breakdown of the strong energy condition.
If such a breakdown occurs, an S3 closed universe would recollapse,
but it would not recollapse to a final singularity.

In conclusion, we see that the question of the global structure
of the Universe rests upon two aspects which are not predicted
by inflationary theories: the spatial topology and the sign

of the cosmological constant.
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