Desalination in Australia

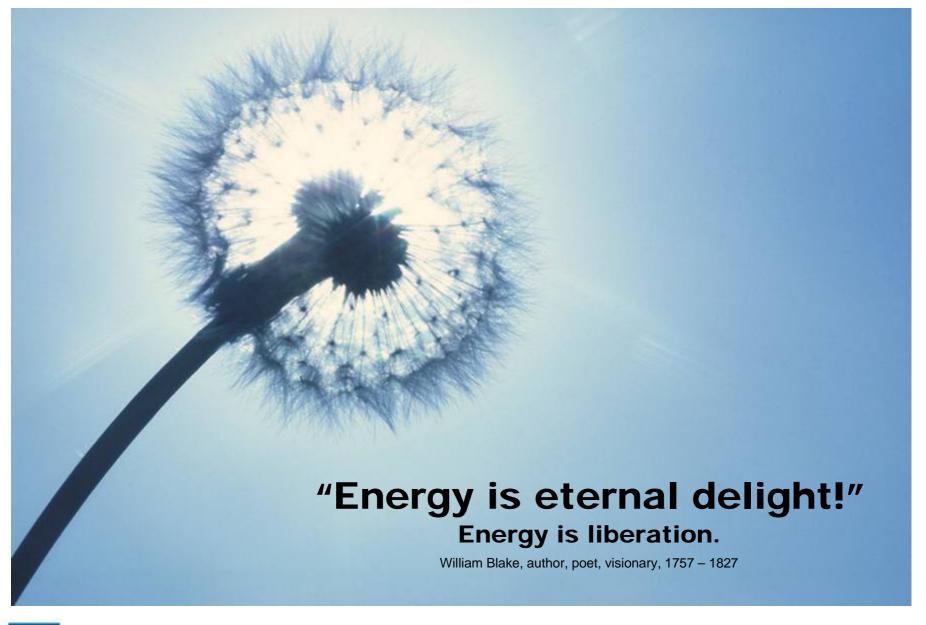
Coal Seam Gas Water

Session 3

Sheraton Hotel - Perth Tuesday June 8, 2010

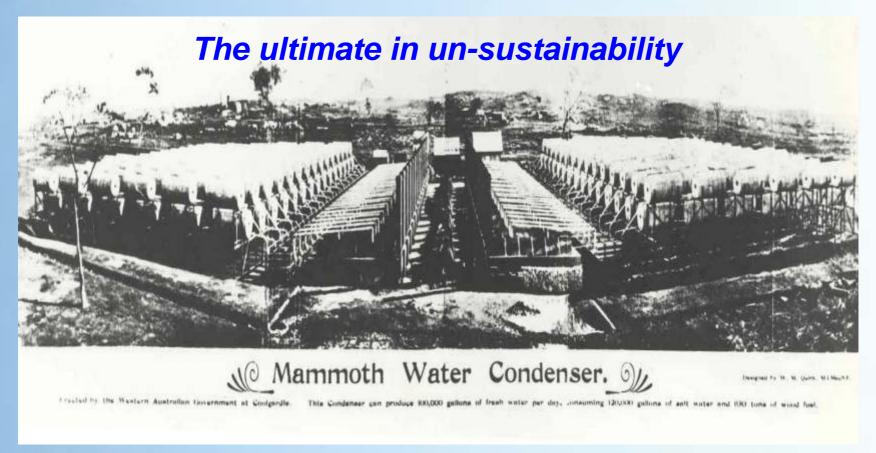
Gary J. Crisp

Global Business Leader – Desalination: GHD BSc. Civil Engineering, C Eng., MICE, CP Eng., FIE Aust., PMP



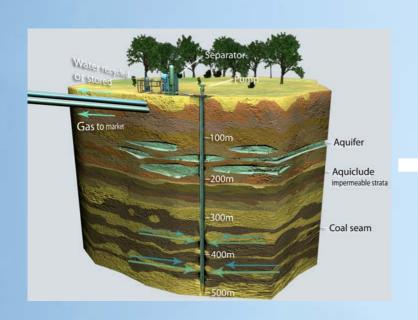
"The Water - Energy Nexus"

Becoming the big issue in Water and Energy Circles



The Sustainability of SWRO

Mammoth Water Condenser, Coolgardie Water Distillery, 132,000 gpd



In 1896 the worlds largest desalination plant was built in Western Australia at Coolgardie

Coal Seam Gas - Case Study

- Significant water production as part of gas recovery
- Peak flow rate -Surat projects 100 300 ML/ day

Coal Seam Gas Industry – Moving Forward

- Brackish Water TDS 2,500 10,000 mg/ L
- With desalination the potential beneficiaries include;
 - Replacement of surface water in mining/industry;
 - agriculture
 - municipal non-potable and potable uses

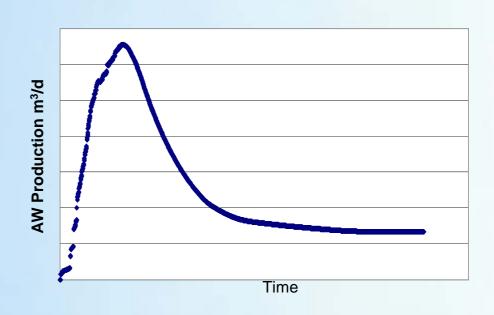
Two key deliverability issues

- 1. Footprint/ landholders
 - 10 million tons/ yr LNG = 6,150 km²

Two key deliverability issues

2. Water

- Est. peak > 200ML/ day
- I mill Equ. Person
- Highly distributed
- Concentrate
- Remote



Nature of CSG Associated Water

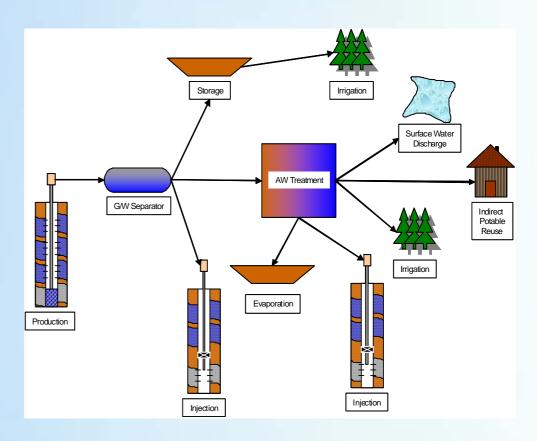
Varying production rates - location and age of well Queensland CSG Statistics (2006)

	Water/gas bbl/TJ
Dawson valley	66
Daandine	9148
Kogan North	5910
Moranbah	169
Tipton West	21203
Peat	34
Spring Gullly	559
Berwyndale South	1922
Fairview	612
Scotia	0
Total (Operating 2006)	667

Nature of CSG Associated Water

Quality impacted by two elements (Van Voast, 2003)

- Formation water specifically associated with CSM regardless of formation lithology or age similar characteristics;
 - low sulfate, calcium, magnesium
 - high in sodium, bicarbonate, and where influenced by marine association chloride
- 2. Whatever is in any connected aquifers

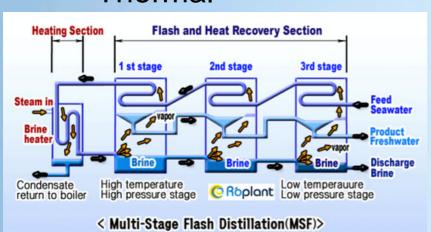

Treatment Approaches

Non desalination

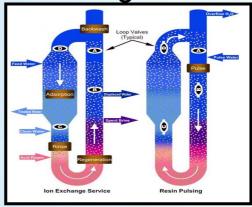
- e.g.. Re-injection or direct use
- Treatment stages: degassing, oxidation, filtration and chemical treatment

Desalination

- Where dissolved salts need to be reduced
- Various methods (reverse osmosis, ion exchange).

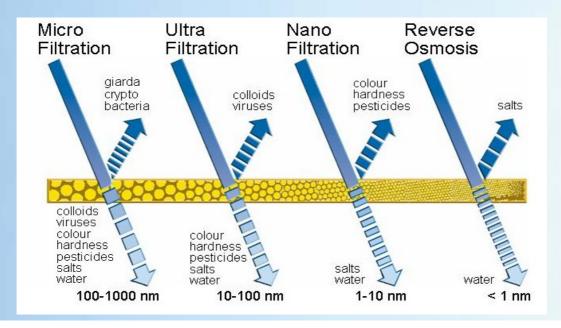


Desalination Technologies


Thermal

Membrane

Ion Exchange



Membrane Desalination

Desalination - Parameters

Permeate Flux and salt rejection are the key performance parameters of a reverse osmosis process.

- TDS
- Temperature conductivity
- Limits by behavior of concentrated stream
 - pH scaling characteristics
 - Specific elemental composition
 - Scaling design limiting parameter

Water Classifications (TDS)

Fresh water
 < 500 mg/L

Brackish (up to 10,000 – 15,000mg/L)

River water 500 – 3,000 mg/L

Brackish water 3,000 – 15,000 mg/L

Wastewater 250 – 3,000 mg/L

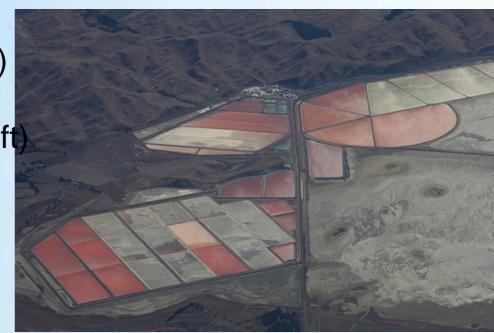
Seawater 30,000 – 45,000 mg/L

Plant Recovery

Water Source	Feed Water Salinity (mg/l)	Recovery Rate	Concentrate Salinity (mg/l)
Brackish Water	1700	80%	8,500
Brackish Water	3,500	80%	17,000
Saline Water	6,500	65%	18,500
Saline Water	10,000	50%	20,000
Seawater	35,000	40%	58,000
Seawater	35,000	45%	63,500
Seawater	35,000	50%	70,000

We would like 100 % for Inland Plants

CSM Water Management Historically

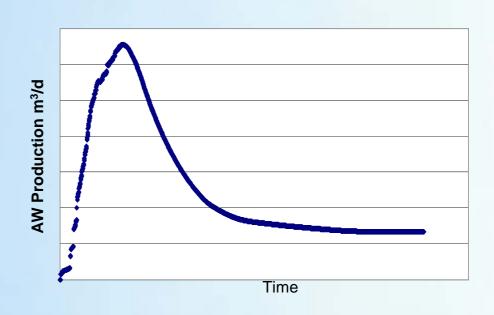

- Deep injection
- Evaporation
- Surface Discharge
- Limited opportunistic use for livestock/ irrigation
- We want to put good water back into the system and minimize concentrate/ waste (ZLD)

BWRO Brine Management Single Biggest Issue

- 1. Evaporation (Solar/ Thermal)
- 2. Marine discharge
- 3. Re-injection (Well/ Mine Shaft)
- 4. Salt Pans
- 5. Old Quarries
- Subject to env. Regulations
- 5. ZLD

Why Change?

- 1. Good Ethical Corporate Practice
- 2. Changes in regulatory requirements
- 3. Stakeholder expectations inc landholders
 - Water as a resource
 - Maintain environment



Nature of CSG Associated Water

Varying production rates - location and age of well Queensland CSG Statistics (2006)

	Water/gas bbl/TJ
Dawson valley	66
Daandine	9148
Kogan North	5910
Moranbah	169
Tipton West	21203
Peat	34
Spring Gullly	559
Berwyndale South	1922
Fairview	612
Scotia	0
Total (Operating 2006)	667

Nature of CSG Associated Water

Quality impacted by two elements (Van Voast, 2003)

- Formation water specifically associated with CSM regardless of formation lithology or age similar characteristics;
 - low sulfate, calcium, magnesium
 - high in sodium, bicarbonate, and where influenced by marine association chloride
- 2. Whatever is in any connected aquifers

Beneficial Use & Water Quality

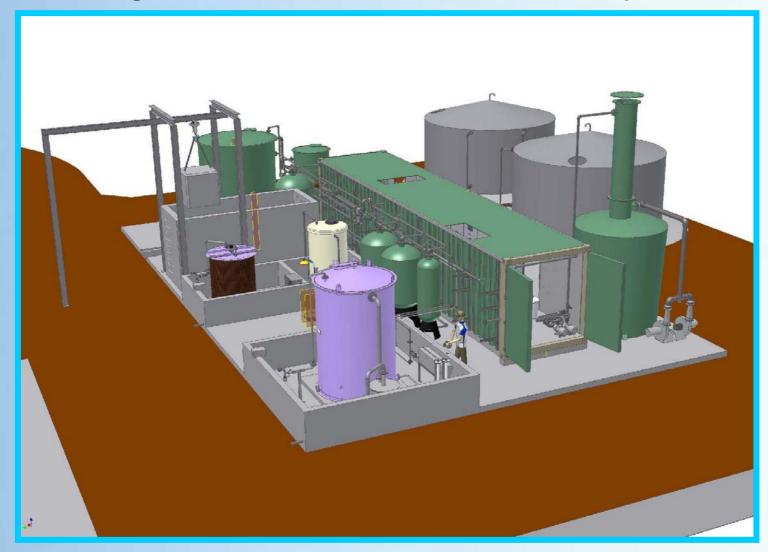
Application	Critical Parameters
Re-injection	Particle size
	Receiving groundwater quality
	Precipitation
Surface Discharge - environmental flows for surface or recharge shallow aquifers ephemeral streams	Receiving surface water quality Temperature
Agriculture - intensive horticulture	TDS ⇒ SAR (Na, Ca & Mg)
Municipal use potable or potable offset	Specific toxic elements – health
Industrial use - power stations/ mines	TDS ⇒ guideline values

Within the context of the regulatory guidelines

Drilling and Associated Water

- Early touch
- Early information extremely valuable
- Can sample at multiple depths
- Can sample prior to putting well on production
- Historical issues
 - Contamination from drilling fluids
 - Inaccurate water quality results

Sampling During Drilling


- Current Drilling Fluids
 - Drilling mud's (i.e. KCl)
 - Formation water
- Impacts on WQ from Drilling Fluids
 - Elevated analyte concentrations (i.e. K, Cl, others)
- Advice on Sampling During Drilling
 - Establish protocol
 - Flush samples
 - Filter samples
 - Allow for contaminants and follow indicators

Yalgoo 300 kld HERO™ Plant Layout

Yalgoo 300 kL/d HERO™

Evaporation Basins

The Future...

- CSG has a massive future in Australia (Queensland and NSW)
- Disposal of CSG water crucial to success
- Highest recovery of fresh water will ensure:
 - CSG image
 - Cost Minimisation
 - Waste Minimisation
 - Minimal environmental degradation

"I have said that a ought if a could ever competitively get show from saltwater...that it we in the long range interests of human which would really dwarf any other at accomplishment."

John F. Kennay, Sept. 1961

"If we could produce clean unlimited energy at a viable cost, that would indeed be a great service to humanity and would dwarf any other scientific accomplishment."

Gary J. Crisp, 2006

Questions? Thank you.

GHD | CLIENTS | PEOPLE | PERFORMANCE

Gary Crisp, Business Leader - Desalination BSc. Civil Engineering, CP Eng., FIEAust, PMP

T 61 7 3316 4107 | F 61 7 3316 3333 | gary.crisp@ghd.com.au 201 Charlotte Street Brisbane QLD 4000 Australia | http://www.ghd.com.au

GHD serves the global markets of: Infrastructure | Mining & Industry | Defence | Property & Buildings | Environment

