

Integrated gasification combined cycle

Dr Louis Wibberley Principal Technologist

Gasification

- Gasification is the conversion of hydrocarbons to syngas (CO and H₂) at high temperature and partial oxidising conditions
 - coal is not the only feedstock
 - biomass, petroleum coke, tars etc
 - natural gas for gas to liquids/ammonia
- Syngas can be used for many applications
 - chemicals production
 - liquid fuels (coal to liquids)
 - power generation (most recent)
- Gasification reactions and conditions are significantly different to combustion systems
 - reduced O_2 , higher pressures
 - complex C-CO₂ and C-H₂O reactions affect process kinetics

Gasification is not new... but the use for electricity (IGCC) is

- First commercial coal gasification was in London in 1812 for town gas (lighting, heating, cooking)
- Modern gasification began in the 1930s with the development of large scale cryogenic air separation units for low cost oxygen
 - peak in the US in the 1930s with ~11,000 gasifiers
 - then declined with natural gas availability increased
- Large, high pressure gasification systems for production of liquid fuels and synthetic natural gas from coal in 1970's
 - Sasol ~90 Lurgi gasifiers for liquid fuels production in South Africa
- Rapid increase in gasification projects in China
 - most for chemicals and liquid fuels production
- Recent use for power generation
 - promise of higher efficiency, easier CO₂ capture, and underpinning the H-economy
 - challenges are cost and reliability

Modern gasifiers established in the 1980s ... with IGCC

- Use of gasification for power generation emerged as a new opportunity
 - cleaner (low SOx, NOx, particulates)
 - more efficient
 - ability to adapt to polygen and to fuel the H-economy
- Commercial demonstration of high efficiency IGCC in the US
- Commercial gasifiers now all highpressure, O₂-blown, entrained flow
- All major technologies have demonstration scale IGCC plants >250MW

Tampa Electric IGCC Power Plant (FL, USA)

Polk rated the "cleanest coal-fired power plant in North America"

IGCC process – 3 main steps

CSIRO

ChevronTexaco-2003

CSIRO R&D focus

Membrane reactor for syngas processing

To reduce capital cost and increase efficiency

- increase temperature of gas cleaning and processing
- development and application of membrane separation systems
- integrate gas processing and separation stages with membrane reactors

Catalytic membrane reactor

- Prototype planar
 - proof-of-concept device
 - greater-than-equilibrium conversion achieved
 - pure H₂ product
 - >70% H₂ recovery demonstrated

syngas feed rate (cm³/min) / membrane area (cm²)

Summary

- Gasification provides a high efficiency technology platform for development of low emissions power systems
 - development pathway for power, hydrogen & polygeneration systems
 - significant impacts of coal properties on gasification performance can be identified from laboratory scale measurements
- New research in niche areas where breakthroughs are needed to reduct cost and increase reliability
 - syngas cleaning, shift and gas separation (preferably as one step)
 - cost, scale and efficiency are key drivers
- Major national and international government/industry/research partnerships are being established to facilitate research development, demonstration and deployment

CSIRO Coal Technology

Dr Louis Wibberley Principal Technologist Louis.Wibberley@csiro.au

Thank you

Contact: CSIRO Coal Technology

Dr David Harris Theme Leader David.Harris@csiro.au

