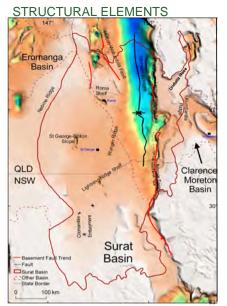
Surat Basin

CENTRAL EASTERN AUSTRALIA, ONSHORE

Reservoir:

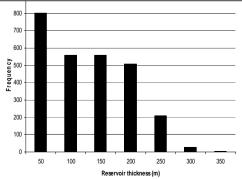
Precipice, Pilliga and Hutton sandstones


Seal:

Evergreen, Orallo, and Pulawaugh formations

HYDROCARBON POTENTIAL

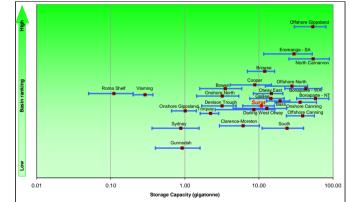
CATEGORY	1 and 2 (c	GRA 2005
Crude oil	MMBL	0.21
Condensate	MMBL	0.04
LPG	MMBL	0.10
Sales gas	Tcf	0.03

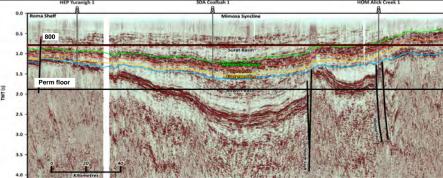


Modified OZ SEE-BASE™ (2005) image

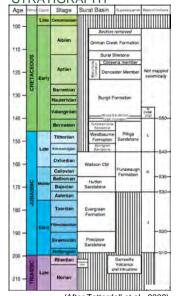
OIL AND GAS FIELDS

RESERVOIR THICKNESS

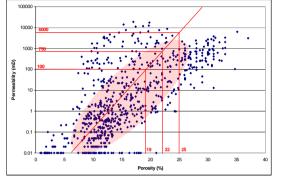


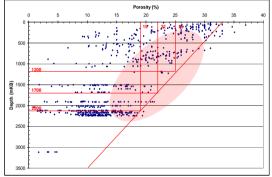

WELLS AND SEISMIC COVERAGE

BASIN RANKING VS. CAPACITY

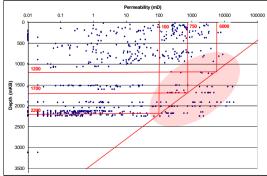


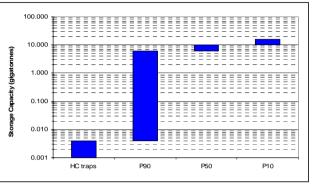
REGIONAL CROSS SECTION (LOCATION IN OIL AND GAS FIELDS MAP)

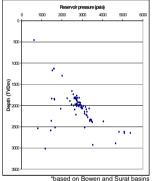

STRATIGRAPHY

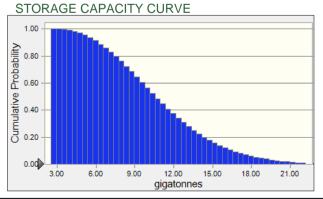

(After Totterdell et al., 2009)

Surat Basin


POROSITY VS. PERMEABILITY *Values from basin-wide dataset


POROSITY VS. DEPTH


PERMEABILITY VS. DEPTH



STORAGE CAPACITY

VS. DEPTH *CSIRO PressurePlot

BASIN RANKING

Category	Description	Score	Weighting
Tectonics (Seismicity)	Medium/Low	4	0.00
Size	Large	3	0.06
Depth	Intermediate	3	0.10
Туре	Non-marine and Marine	2	0.04
Faulting intensity	Extensive	1	0.14
Hydrogeology	Good	3	0.04
Geothermal	Moderate	2	0.05
Hydrocarbon potential	Small	2	0.05
Maturity	Mature	4	0.05
Coal and CBM	Deep	3	0.00
Reservoir	Good	4	0.16
Seal	Good	4	0.18
Reservoir/Seal Pairs	Excellent	4	0.03
Onshore/Offshore	Onshore	3	0.00
Climate	Subtropical	4	0.00
Accessibility	Acceptable	3	0.00
Infrastructure	Moderate	3	0.00
CO ₂ sources	Moderate	3	0.00
Knowledge level	Good	3	0.05
Data availability	Good	3	0.05
Overall Ranking			21

PACITY ESTIMATE

Parameter	Unit	Score (P90)	Score (P50)	Score (P10)	Distribution
Area of storage region	km ²	30000	40000	65000	Triangular
Gross thickness of saline formation	m	20	60	120	Triangular
Average porosity of saline formation over thickness interval	%	12	15	18	Triangular
Density of CO ₂ at average reservoir conditions	tonne/m ³	0.5	0.6	0.7	Triangular
E-storage efficiency factor (% of total pore volume)	%	4	4	4	
Calculated storage potential	gigatonnes	6.1	10.3	16.1	

POTENTIAL INJECTION PARAMETERS

Unit	Shallow	Mid-Depth	Deep
m	1170	1625	2070
m	30	75	130
m	1200	1700	2200
%	25	22	19
mD	6000	750	100
psia	1760	2500	3230
psia	2890	4100	5300
	m m m % mD psia	m 1170 m 30 m 1200 % 25 mD 6000 psia 1760	m 1170 1625 m 30 75 m 1200 1700 % 25 22 mD 6000 750 psia 1760 2500

Insufficient data for the following items:

•Top Seal Potential Graph

RESERVOIR PRESSURE

FRACTURE PRESSURE VS. DEPTH

.

.

*based on Bowen and Surat basins

1000 200

24

200

250

2000

*CSIRO PressurePlot	0020001000
	Knowledge level
acturepressure(psia) 300 400 500 600 700	Data availability
	Overall Ranking
	STORAGE CAP
	Parameter
	Area of storage region

m 100 (mDm)

DISCLAIMER

The purpose of these montages is to aid a high level evaluation of the geological storage potential of Australia's sedimentary basins for future CO_2 emissions. The evaluations are based on core analysis and other data derived from Geoscience Australia and other sources. However due to time constraints, it has not been possible to carry out the detailed evaluation of the data, which will be required for the next phase of analysis.

In this exercise, we sought to recognise a range of characteristics within each basin by identifying three sets of parameters at different locations and depths in the basin. The intent is to generate an indication of a range of storage capacity and potential injection rates. These capacities and rates are being used in high level reservoir modelling work to generate injection tariffs* and capacity estimates. All of this work feeds into a process that provides indicative, conceptual transport and storage tariffs for CO_2 emissions captured in various parts of Australia.

This 'top down', simplistic approach seeks to describe the magnitude and range of potential costs for transport and storage in Australia, at a 'conceptual' level of accuracy. Clearly, any final investment decision would call on an increased understanding and level of accuracy through the usual project development process.

 * Cost per tonne of CO₂ avoided, calculated using the net present value of cash flows over a 25 year asset life.

REFERENCES

Bradshaw, B.E., Spencer, L.K., Lahtinen, A.C., Khider, K., Ryan, D.J., Colwell, J.B., Chirinos, A. and Bradshaw, J., 2009. Queensland carbon dioxide geological storage atlas.

OZ SEEBASE[™] STUDY, 2005. OZ SEEBASE[™] structural GIS, version 2. FrOG Tech Pty Ltd, project code GA703.

Petroleum and Marine Division, Geoscience Australia, 2007. Oil and Gas Resources of Australia 2005. Geoscience Australia, Canberra.

Totterdell, J. M., Moloney, J., Korsch, R. J. and Krassay, A.A., 2009. Sequence stratigraphy of the Bowen-Gunnedah and Surat Basins in New South Wales. Australian Journal of Earth Sciences, 56 (3), 433-459.