Onshore North Perth Basin

SW WESTERN AUSTRALIA, ONSHORE

Reservoir:

Beekeeper Fm/Dongara, High Cliff and Lesueur sandstones

Seal:

Kockatea Shale, Cattamara Coal Measures Cadda Fm

HYDROCARBON POTENTIAL

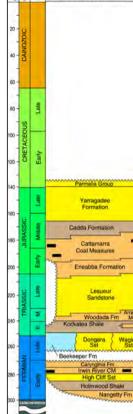
CATEGORY 1 and 2* (OGRA 2005)

Crude oil MMBL 39.97 Condensate MMBL 11.24 LPG MMBL 0.00 Sales gas Tcf 1.38

*data from entire basin

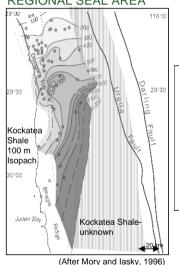
STRUCTURAL ELEMENTS

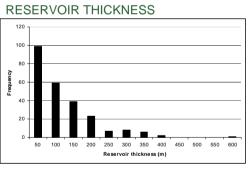
OIL AND GAS FIELDS



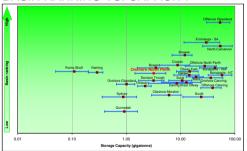
WELLS AND SEISMIC **COVERAGE**

STRATIGRAPHY

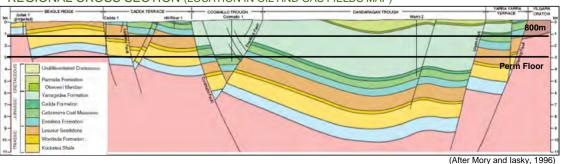

ONSHORE STRATIGRAPHIC UNITS

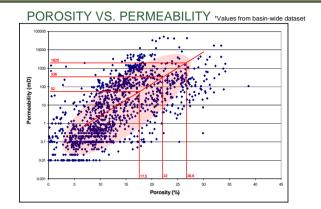


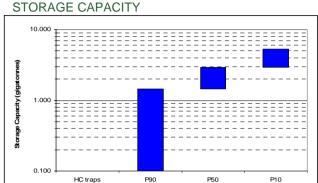
BASEMENT


Carbonate unit

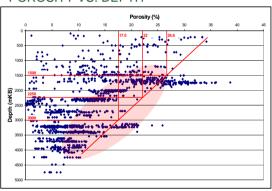
REGIONAL SEAL AREA

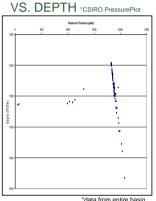


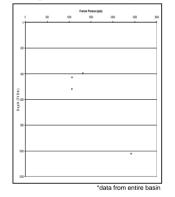

BASIN RANKING VS. CAPACITY

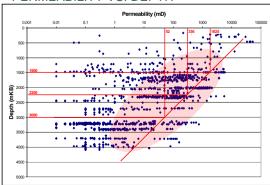


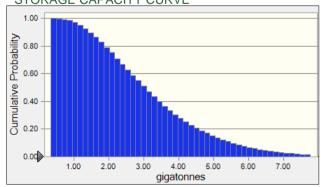
REGIONAL CROSS SECTION (LOCATION IN OIL AND GAS FIELDS MAP)


Onshore North Perth Basin








FRACTURE PRESSURE VS. DEPTH *CSIRO PressurePlot

PERMEABILITY VS. DEPTH

STORAGE CAPACITY ESTIMATE

Parameter	Unit	Score (P90)	Score (P50)	Score (P10)	Distribution
Area of storage region	km ²	1000	4400	11900	Triangular
Gross thickness of saline formation	m	50	100	200	Triangular
Average porosity of saline formation over thickness interval	%	17	20	23	Triangular
Density of CO ₂ at average reservoir conditions	tonne/m ³	0.5	0.6	0.7	Triangular
E-storage efficiency factor (% of total pore volume)	%	4	4	4	
Calculated storage potential	gigatonnes	1.4	2.9	5.3	

POTENTIAL INJECTION PARAMETERS

Parameter	Unit	Shallow	Mid-Depth	Deep
Depth base seal	m	1450	2125	2800
Formation thickness	m	50	125	200
Injection depth	m	1500	2250	3000
Porosity	%	26.6	22	17.5
Absolute permeability	mD	1825	336	52
Formation pressure	psia	2195	3290	4390
Fracture pressure	psia	3250	4870	6495

Insufficient data for the following items:

- Top Seal Potential
- •Fracture Pressure vs. Depth

DISCLAIMER

The purpose of these montages is to aid a high level evaluation of the geological storage potential of Australia's sedimentary basins for future CO_2 emissions. The evaluations are based on core analysis and other data derived from Geoscience Australia and other sources. However due to time constraints, it has not been possible to carry out the detailed evaluation of the data, which will be required for the next phase of analysis.

In this exercise, we sought to recognise a range of characteristics within each basin by identifying three sets of parameters at different locations and depths in the basin. The intent is to generate an indication of a range of storage capacity and potential injection rates. These capacities and rates are being used in high level reservoir modelling work to generate injection tariffs* and capacity estimates. All of this work feeds into a process that provides indicative, conceptual transport and storage tariffs for CO₂ emissions captured in various parts of Australia.

This 'top down', simplistic approach seeks to describe the magnitude and range of potential costs for transport and storage in Australia, at a 'conceptual' level of accuracy. Clearly, any final investment decision would call on an increased understanding and level of accuracy through the usual project development process.

* Cost per tonne of CO₂ avoided, calculated using the net present value of cash flows over a 25 year asset life.

REFERENCES

Mory, A. J., Haig, D. W., McLoughlin, S. and Hocking, R. M., 2005. Geology of the northern Perth Basin, Western Australia a field guide. Western Australia Geological Survey, Record 2005/9, 71pp.

Mory, A.J. and lasky, R.P., 1996. Stratigraphy and structure of the onshore northern Perth Basin. Geological Survey of Western Australia, Report 46, 781-789.

Petroleum and Marine Division, Geoscience Australia, 2007. Oil and Gas Resources of Australia 2005. Geoscience Australia, Canberra.