Bonaparte Basin (WA)

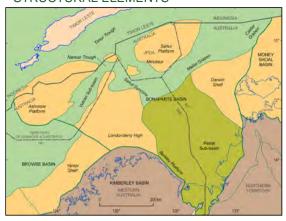
NW WESTERN AUSTRALIA, OFFSHORE

Reservoir:

Plover, Elang formations, and Sandpiper Sandstone

Seal:

Frigate Formation and Bathurst island Group

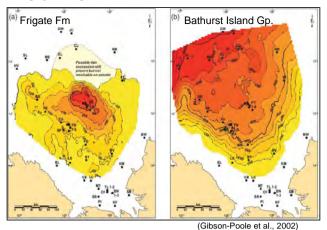

HYDROCARBON POTENTIAL

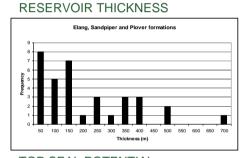
CATEGORY 1 and 2* (OGRA 2005)

MMBL 134.09 Crude oil Condensate MMBL 631.74 LPG MMBL 365.72 27.99 Sales gas Tcf

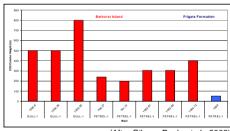
*data from entire basin

STRUCTURAL ELEMENTS

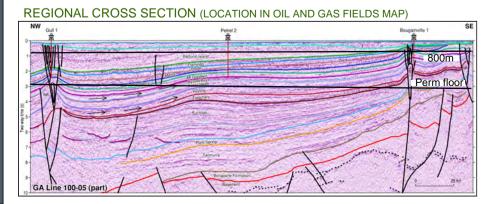

OIL AND GAS FIELDS

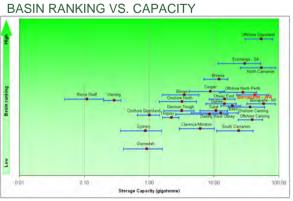


WELLS AND SEISMIC COVERAGE

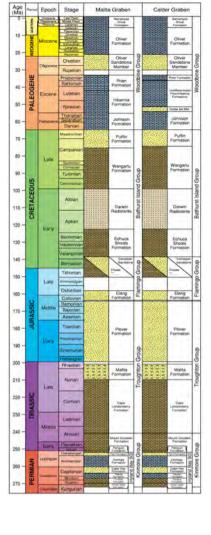


REGIONAL SEAL AREA

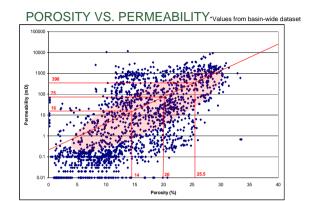


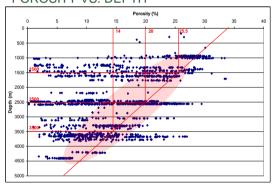


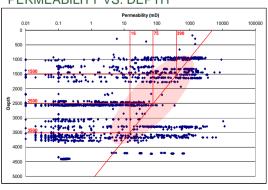
TOP SEAL POTENTIAL

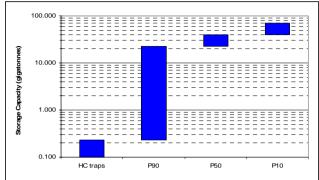


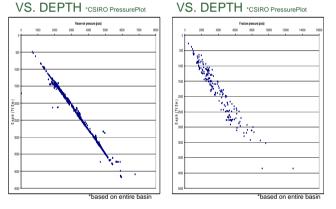
(After Gibson-Poole et al., 2002)

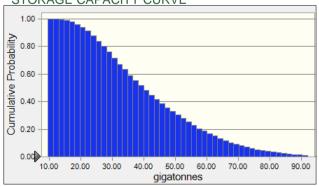



STRATIGRAPHY


Bonaparte Basin (WA)


POROSITY VS. DEPTH


PERMEABILITY VS. DEPTH


STORAGE CAPACITY

RESERVOIR PRESSURE FRACTURE PRESSURE

STORAGE CAPACITY CURVE

BASIN RANKING

Category	Description	Score	Weighting
Tectonics (Seismicity)	Low	5	0.00
Size	Very Large	4	0.06
Depth	Intermediate	3	0.10
Туре	Non-marine and Marine	2	0.04
Faulting intensity	Extensive	1	0.14
Hydrogeology	Good	3	0.04
Geothermal	Moderate	2	0.05
Hydrocarbon potential	Large	4	0.05
Maturity	Developing	3	0.05
Coal and CBM	Deep	3	0.00
Reservoir	Excellent	5	0.16
Seal	Good	4	0.18
Reservoir/Seal Pairs	Good	3	0.03
Onshore/Offshore	Deep Offshore	1	0.00
Climate	Tropical	3	0.00
Accessibility	Difficult	2	0.00
Infrastructure	None	1	0.00
CO ₂ sources	Few	2	0.00
Knowledge level	Good	3	0.05
Data availability	Good	3	0.05
Overall Ranking			9

STORAGE CAPACITY ESTIMATE

Parameter	Unit	Score (P90)	Score (P50)	Score (P10)	Distribution
Area of storage region	km ²	30000*	65000*	80500	Triangular
Gross thickness of saline formation	m	50	100	300	Triangular
Average porosity of saline formation over thickness interval	%	17	20	23	Triangular
Density of CO ₂ at average reservoir conditions	tonne/m ³	0.5	0.6	0.7	Triangular
E-storage efficiency factor (% of total pore volume)	%	4	4	4	
Calculated storage potential	gigatonnes	22.4	39.3	70.6	
* including WA					

POTENTIAL INJECTION PARAMETERS

Parameter	Unit	Shallow	Mid-Depth	Deep
Depth base seal	m	1150	2000	3200
Formation thickness	m	350	500	300
Injection depth	m	1500	2500	3500
Porosity	%	25.5	20	14
Absolute permeability	mD	390	75	16
Formation pressure	psia	2160	3600	5040
Fracture pressure	psia	3175	5290	7405

DISCLAIMER

The purpose of these montages is to aid a high level evaluation of the geological storage potential of Australia's sedimentary basins for future CO_2 emissions. The evaluations are based on core analysis and other data derived from Geoscience Australia and other sources. However due to time constraints, it has not been possible to carry out the detailed evaluation of the data, which will be required for the next phase of analysis.

In this exercise, we sought to recognise a range of characteristics within each basin by identifying three sets of parameters at different locations and depths in the basin. The intent is to generate an indication of a range of storage capacity and potential injection rates. These capacities and rates are being used in high level reservoir modelling work to generate injection tariffs* and capacity estimates. All of this work feeds into a process that provides indicative, conceptual transport and storage tariffs for CO₂ emissions captured in various parts of Australia.

This 'top down', simplistic approach seeks to describe the magnitude and range of potential costs for transport and storage in Australia, at a 'conceptual' level of accuracy. Clearly, any final investment decision would call on an increased understanding and level of accuracy through the usual project development process.

* Cost per tonne of CO₂ avoided, calculated using the net present value of cash flows over a 25 year asset life.

REFERENCES

Gibson-Poole, C., Lang, S., Streit, J., Kraishan, G. and Hillis, R., 2002. Assessing a basin's potential for geological sequestration of carbon dioxide: An example from the Mesozoic of the Petrel Sub-basin, NW Australia. In: Keep, M. and Moss, S.J. (eds), The Sedimentary Basins of Western Australia 3. Proceedings of the Petroleum Exploration Society of Australia Symposium 2002, Perth, 439-463.

Petroleum and Marine Division, Geoscience Australia, 2007. Oil and Gas Resources of Australia 2005. Geoscience Australia, Canberra.