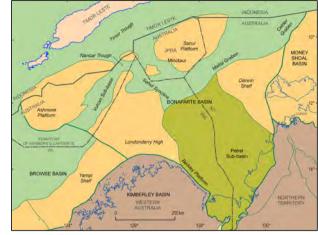
Bonaparte Basin (NT)

NORTHERN TERRITORY, OFFSHORE

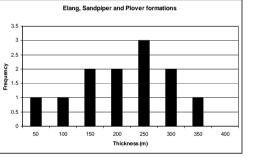
Reservoir:

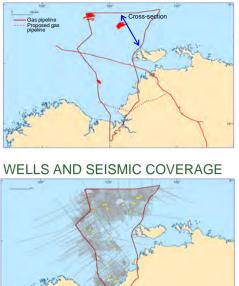
Plover, Elang formations, and Sandpiper Sandstone

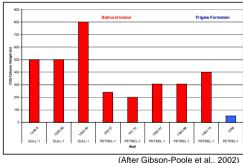
Seal:

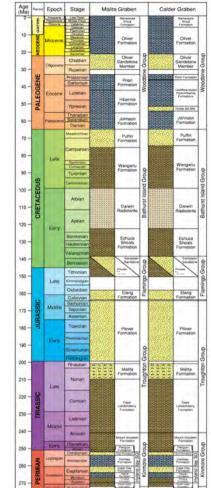

Frigate Formation and Bathurst Island Group

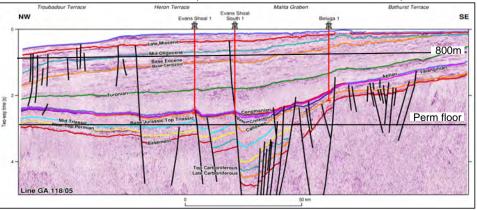
HYDROCARBON POTENTIAL

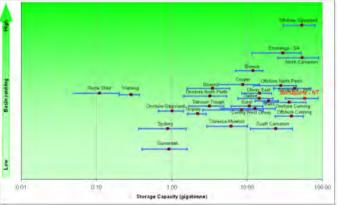

CATEGORY	1 and 2*	(OGRA 2005)
Crude oil	MMBL	134.09
Condensate	MMBL	631.74
LPG	MMBL	365.72
Sales gas *data from entire ba	Tcf	27.99


STRUCTURAL ELEMENTS

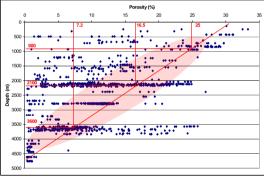

RESERVOIR THICKNESS

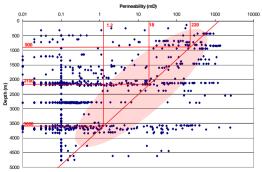

OIL AND GAS FIELDS

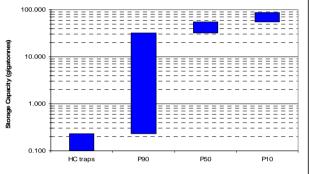

TOP SEAL POTENTIAL

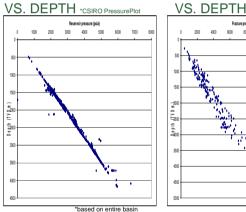

STRATIGRAPHY


REGIONAL CROSS SECTION (LOCATION IN OIL AND GAS FIELDS MAP)


BASIN RANKING VS. CAPACITY

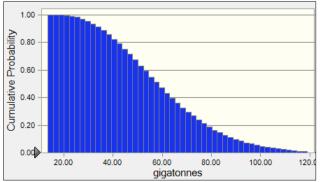

Bonaparte Basin (NT)


POROSITY VS. DEPTH


PERMEABILITY VS. DEPTH

STORAGE CAPACITY

RESERVOIR PRESSURE FRACTURE PRESSURE



STORAGE CAPACITY CURVE

500

300

3500

BASIN RANKING

Category	Description	Score	Weighting
Tectonics (Seismicity)	Low	5	0.00
Size	Very Large	4	0.06
Depth	Intermediate	3	0.10
Туре	Non-marine and Marine	2	0.04
Faulting intensity	Extensive	1	0.14
Hydrogeology	Good	3	0.04
Geothermal	Moderate	2	0.05
Hydrocarbon potential	Large	4	0.05
Maturity	Developing	3	0.05
Coal and CBM	Deep	3	0.00
Reservoir	Good	4	0.16
Seal	Good	4	0.18
Reservoir/Seal Pairs	Excellent	4	0.03
Onshore/Offshore	Deep Offshore	1	0.00
Climate	Tropical	3	0.00
Accessibility	Difficult	2	0.00
Infrastructure	None	1	0.00
CO ₂ sources	Few	2	0.00
Knowledge level	Good	3	0.05
Data availability	Good	3	0.05
Overall Ranking			15

STORAGE CAPACITY ESTIMATE

Parameter	Unit	Score (P90)	Score (P50)	Score (P10)	Distribution
Area of storage region	km ²	30000*	65000*	103000	Triangular
Gross thickness of saline formation	m	100	250	400	Triangular
Average porosity of saline formation over thickness interval	%	12	15	18	Triangular
Density of CO ₂ at average reservoir conditions	tonne/m ³	0.5	0.6	0.7	Triangular
E-storage efficiency factor (% of total pore volume)	%	4	4	4	
Calculated storage potential	gigatonnes	32.2	55.3	88.0	
* including WA					

POTENTIAL INJECTION PARAMETERS

Parameter	Unit	Shallow	Mid-Depth	Deep
Depth base seal	m	800	1700	3350
Formation thickness	m	100	400	250
Injection depth	m	900	2100	3600
Porosity	%	25	16.5	7.2
Absolute permeability	mD	220	18	1.2
Formation pressure	psia	1295	3025	5185
Fracture pressure	psia	1905	4445	7620

Insufficient data for the following items: •Regional Seal Area

VS. DEPTH *CSIRO PressurePlot

6000 8000 10000 12000 14000

.

*based on entire basin

DISCLAIMER

The purpose of these montages is to aid a high level evaluation of the geological storage potential of Australia's sedimentary basins for future CO_2 emissions. The evaluations are based on core analysis and other data derived from Geoscience Australia and other sources. However due to time constraints, it has not been possible to carry out the detailed evaluation of the data, which will be required for the next phase of analysis.

In this exercise, we sought to recognise a range of characteristics within each basin by identifying three sets of parameters at different locations and depths in the basin. The intent is to generate an indication of a range of storage capacity and potential injection rates. These capacities and rates are being used in high level reservoir modelling work to generate injection tariffs* and capacity estimates. All of this work feeds into a process that provides indicative, conceptual transport and storage tariffs for CO_2 emissions captured in various parts of Australia.

This 'top down', simplistic approach seeks to describe the magnitude and range of potential costs for transport and storage in Australia, at a 'conceptual' level of accuracy. Clearly, any final investment decision would call on an increased understanding and level of accuracy through the usual project development process.

* Cost per tonne of CO_2 avoided, calculated using the net present value of cash flows over a 25 year asset life.

REFERENCES

Gibson-Poole, C., Lang, S., Streit, J., Kraishan, G. and Hillis, R., 2002. Assessing a basin's potential for geological sequestration of carbon dioxide: An example from the Mesozoic of the Petrel Sub-basin, NW Australia. In: Keep, M. and Moss, S.J. (eds), The Sedimentary Basins of Western Australia 3. Proceedings of the Petroleum Exploration Society of Australia Symposium 2002, Perth, 439-463.

Petroleum and Marine Division, Geoscience Australia, 2007. Oil and Gas Resources of Australia 2005. Geoscience Australia, Canberra.