Geological storage of carbon dioxide

Barry Hooper Chief Technologist

Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)

Presentation to the Japanese Delegation Melbourne 2011

© CO2CRC All rights reserved

What is CO2CRC?

CO2CRC is a leading collaborative international CCS R&D organisation, based in Australia, working globally.

- Integrates CCS R&D
- Addresses capture and storage and systems integration
- Brings industry sectors together (coal, gas, power, etc) to provide an exceptional stakeholder base
- Brings together Commonwealth, States, local government and the community in the Otway Project
- Includes major research institutions CSIRO, GA, Universities, major overseas institutions (LBNL, KIGAM)
- Scale and focus we bring together over 200 leading researchers in CCS
- Broad international perspective and experience
- Successful track record in running major CCS facilities
- Number of patents and other IP

CO2CRC Participants

for more information see www.co2crc.com.au

Established & supported under the Australian Government's Cooperative Research Centres Program

What is CCS?

CO2CRC/International Power H3 Capture Project Evaluation of three post-combustion capture technologies

Solvent absorption

Membrane separation

Vacuum swing adsorption

process group

International Power

CO2CRC/HRL Mulgrave Capture Project Evaluation of three pre-combustion capture technologies

Solvent absorption

Membrane separation

Pressure swing adsorption

C O

Bringing down CCS costs

- The cost of capture of CO2 is estimated at 80% of the total cost of CCS
- Costs will come down as we gain experience
- The costs of CCS are already lower than some of the options

We can store CO2 in ...

- Minerals
- Algae
- Soils
- Trees
- Rocks

Geological storage options for CO₂

Geological Storage of CO₂

CO₂ storage sites:

- Several kilometres below surface
- Similar locations to oil and natural gas

Geological storage of CO₂

Seal rock above

Porosity

Depth

Permeability

Trapping the carbon dioxide

Trapped by rock type/rock structure

> 800m

Trapped in solution

0 0 0 0 0 0 00 O 00 00000 00000000 0000

Trapped in rock pores

Trapped as a mineral

Cost of CO₂ transport and storage at various Australian locations

CO2CRC Otway Project

Australia's first demonstration CO₂ storage project

Australia's only operational storage project and a world class research facility, that has safely stored 65,000 t of CO_2 , and attracted wide community interest and support

Location of CO2CRC Otway Project

Otway geological model

Storing carbon dioxide at a depth of 2 kms

Monitoring carbon dioxide

Monitoring technologies used in the Otway Project

Sohematic of bottom hole	•	Rod 0.75" O.D. Co
celomic a coembly No Source.		2020 m
Packer		 Casing 2.9" I.D.
J.		2025 m
Perí	1	Specialty Rod ? O
	4	▲ Patch 2.37
	"	2030 m 2028-2035
P		
2040 m Depth		Gas
80°C ^{Per1}	ľ	Water
17 MPa (2500psi)		2045 m
p	1	Desenvoir
		2050 m
		2055 m
Total Depth: 2060 m	•	

Modeling migration of carbon dioxide within the reservoir

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

What has CO2CRC achieved so far?

- Demonstrated safe and effective storage of 65000 tonnes of CO₂ in a depleted gas field with <u>no</u> leaks
- Confident in ability to detect a small 'leak' into the overlying formation
- Confident in ability to detect a significant leak into the atmosphere and the soil.
- The reservoir models gave good predictions of "break through"
- Have been able to sample 'in situ' formation waters from 2 km depth
- The seismic results giving an image which is consistent with the reservoir model.
- The community has remained supportive and interested
- The regulators are happy

CO2CRC Otway Project - Stage 2

Implementing CCS at Otway

- Technology challenges
- Legal issues
- Financing and insurance
- Public and community acceptance

C

THANK YOU

For more information see www.co2crc.com.au

