Callide Oxyfuel Project

Callide Oxyfuel Project – Update

Dr Chris Spero Project Director

Australia-Japan Coal Technology Workshop Friday, 26 June 2009

Presentation Overview

- Project background
- Oxyfuel technology developments
- Process description
- Project details (site, plant arrangement, schedule)
- Project achievements
- Oxyfuel implementation pathway

Why Oxyfuel Technology

- Our idea is that several technology options should be developed in parallel; so we support oxyfuel, post combustion capture, gasification and coal-renewable hybrids
- Our focus at this time is Oxyfuel technology, which builds on existing processes such as oxygen combustion in blast furnaces, flue gas reburning for NOx control and furnace temperature control
- Oxyfuel technology can be applied as a retrofit without affecting the steam cycle of the power plant
- The purpose of the demonstration is to understand the real and practical issues of owning and operating a low emission coal facility

Callide Oxyfuel Project - CCS Process

Callide Oxyfuel Project - Locations

Stage 1 - Capture Callide A Power Station 4 x 30 MWe Steam 136 t/h at 4.1MPa, 460°C Commissioned: 1965 - 69 Refurbished 1997/98 Placed in storage in 2002

Stage 2 - Storage

CO2 storage areas:

6 Areas considered

- 1. Northern Denison Trough
- 2. Southern Denison Trough
- 3. Fairview Coal Seam Methane Field
- 4. Roma Shelf
- 5. Burunga/Wandoan Anticlines (Coal Seam Methane Field)
- 6. Wunger Ridge

Gas & Oil Pipelines

CO2 storage site options - Northern Denison Trough

Callide A Power Station

Oxygen and CO2 capture plant

CO2 compression & purification plant (CO2CPU): Flowchart

CO2 compression & purification plant (CPU): Inputs & outputs

75 t/day liquid product

Parameter	Units	CPU Inlet	CO2 Product	
Elow rato	kg/s	1.3	0.9	
	Am3/s	1.7		
Temperature	°C	145	-30	
Pressure	kPa (a)	101	1600	
Composition				
H2O	mole %	20.0	< 0.002	
02	mole %	4.2	< 0.003	
N2 (+ Ar)	mole %	18.6	< 0.1	
CO2	mole %	55.9	99.9	
S02	mole %	0.06	< 0.003	
NOx	mole %	0.03	< 0.003	
Particulate	mg/Nm3	< 100	< 1	
Trace elements (As, Be, Cd, Hg, V)	ppbv	< 1	< 0.1	

Callide Oxyfuel Project - Schedule

Task	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Stage 1 - Callide A boiler works										
A - Finalise JV and Contracts										
B - Refurbish Callide A Unit No. 4										
C - Operation under normal air-firing conditions										
D - Earthworks for oxygen and CO2 plant		÷	i							
E - Procurement & construction of oxygen and CO2		Su	ipply and	Erection	1&					
plant, and retrofit of oxy-combustion technology		(delivery	testing	g					
F - Operation of oxyfuel unit										
Stage 2 - Geological storage										
A - Pre-selection of possible CO2 storage sites										
B - Finalise site selection (2 options under study)										
C - Feasibility study on preferred site										
D - Project Engineering Design and Financial			i							
Investment Decision										
E - CO2 injection permit										
G - CO2 injection and monitoring										
Stage 3 - Project conclusion										
A - Rehabilitation of CO2 site										
B - Ongoing monitoring										
C - Implement commercialization plan										

Callide Oxyfuel Project - Achievements

Date	Project milestones achieved as at end-June 2009
Nov-03	Project idea conceived
Mar-04	Oxyfuel included in COAL21 National Plan of Action
Sep-04	Japan-Australia Feasibility Study MOU signed
Mar-06	1st Meeting with METI (Dr Tani-San, Yamagata-San)
Mar-06	Project MOU signed & funding application submitted
Oct-06	Commonwealth Government LETDF Program - Funding Announcement
Nov-06	Recognition by APP as flagship project (Project No. CFE-06-6)
Dec-06/Jan-07	Oxy-firing pilot tests completed at IHI facility in Aioi (3 x 10 t coal)
Nov-07	Feasibility study completed (published in April 2008)
Mar-08	Project agreements signed
Jul-08	Project Financial Close: Project plan & budget approved by Joint Venture
Aug-08	Plant supply contracts awarded to IHI Engineering Australia, Air Liquide (France), GLP Plant (Melbourne), CBH and Siemens
Jan-08	Plant refurbishment/overhaul completed
Mar-09	Plant Testing (under air-firing) and data gathering - completed
Jun-09	Tenders called for site earthworks

Oxyfuel CCS Implementation Pathway

Implementation should be progressed at several levels:

- 1. Retrofit to existing units generally as the 1st phase of implementation
- 2. Construction of new plants generally as the 2nd phase of implementation
- 3. 2nd generation oxyfuel plants will involve higher levels of integration and possibly incorporation of solar thermal feedwater heating systems
- 4. Parallel development of more efficient and lower cost oxygen plants will be a key factor in the success of oxyfuel technology
- 5. Development of CO₂ storage regulations, CO₂ transport infrastructure and proving up of large CO₂ storage reservoirs necessary to underpin large projects

Vattenfall's Jänschwalde 250MW Plant – Proposed location for Oxyfuel demonstration plant by 2015

Photos from Recent Plant Refurbishment Work

Callide Oxyfuel Project – Participants

Supporting Collaborators

Thank you

for more information: www.callideoxyfuel.com

