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Abstract

We consider 1927 borrowers from 54 countries who had a credit

rating by both Moody’s and S&P as of the end of 1998, and

their subsequent default history up to the end of 2002. Viewing

bond ratings as predicted probabilities of default, we show that

it is unlikely that both agencies are well calibrated, and that the

ranking of the agencies depends crucially on the way in which

probability predictions are compared.
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1 Introduction

The evaluation of the quality, in whichever way defined, of default predictions

in the credit industry has received considerable attention recently (Carey 2002,

Tabakis and Vinci 2002, Engelmann et al. 2003 and many others). In particular,

there is a growing interest in comparing the accuracy of competing rating

agencies, or to rate the raters, so to speak. Also, in the wake of Basel II, there

will be a rapidly increasing number of rating producers, in addition to the

established rating agencies, and an increasing number of borrowers who are

rated by at least two of them, so it is natural to ask: which rater rates best?

This question can be answered in a variety of ways. The most popular method

is based on the accuracy ratio, i.e. on how successful a rating system is in

concentrating the defaults in the ”bad” grades, or its equivalent, the area under

the ROC-curve (see section 4 or Sobehard and Keenan 2001 for a convenient

introduction). Below, we also follow a different approach by viewing borrower

ratings as predicted probabilities of default, and by comparing the accuracy of

these predictions across rating agencies. In doing so, we borrow heavily from

mathematical statistics, where the evaluation of probability forecasts has a

long and distinguished history (see e.g. Dawid 1982, DeGroot and Fienberg

1983, Vardeman and Meeden 1983, DeGroot and Eriksson 1985). So far, this

methodology has mostly been applied to weather forecasts (i.e. forecasts of the

probability of rain) but it can easily be extended to default predictions in the

rating industry.

Our analysis is based on 1927 borrowers, mostly industrial firms and financial

institution from the US (68 % of all borrowers), who had a credit rating by

both Moody’s and S&P as of Dec. 31, 1998. We followed these firms up to the

end of 2002 and recorded all defaults. The data were obtained from Bloomberg

and are available from the authors on request.
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Below we apply various orderings of probability forecasts to this data set. As

these orderings are scattered in the statistics literature, we start by collecting

and briefly reviewing them in section 2. Section 3 is concerned with mapping

rating grades to probabilities of default, and section 4 compares the accuracy

of the ratings, both in terms of partial orderings and in terms of various scalar

measures of performance which have been suggested in the literature. Section

5 checks for statistical significance of the observed differences in performance,

and a brief discussion of the shortcomings of our analysis in section 6 concludes.

2 Partial orderings of probability forecasts

Let 0 = a1 < a2 < . . . < ak = 1 be k predicted probabilities of default. In

practice, k varies from 6 to about 20. The US-based Loan Pricing Corporation

has k = 10. The rating agencies which concern us in the present paper, Moody’s

and S&P , both have scales with k = 21. For ease of comparability with these

established agencies, most commercial banks also employ scales with k = 20

in their post Basel II internal rating systems.

Below we take the mechanism employed for the predictions as given. Produc-

ing the predictions is a separate problem which has engendered an enormous

literature, but will not concern us here. Modern methods, as surveyed in e.g.

Crouhy et al. (2001) or Arminger et al. (1997), include logit and probit anal-

ysis, neural networks, or classification trees. Rather, our point of departure is

the discrete bivariate probability function r(θ, aj); θ = 1, 2; j = 1, ..., k, re-

sulting from some such method, whichever it may be, with θ = 1 indicating

default and θ = 0 indicating non-default.

The following additional notation will be used:

p(1) :=
∑

j r(1, aj) = overall relative frequency of default.
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p(0) :=
∑

j r(0, aj) = overall relative frequency of no default.

q(aj) := relative frequency with which default probability forecast

aj is made.

p(1|aj) := r(1,aj)

q(aj)
= conditional relative frequency of default given

probability forecast aj.

p(0|aj) := r(0,aj)

q(aj)
= conditional relative frequency of no default

given probability forecast aj.

q(aj|1) := r(1,aj)

p(1)
= conditional relative frequency of predicted de-

fault probability aj given default.

q(aj|0) := r(0,aj)

p(0)
= conditional relative frequency of predicted de-

fault probability aj given no default.

The problem is: given two forecasters A and B, characterized by their re-

spective bivariate probability functions rA(θ, aj) and rB(θ, aj), which one is

”better”?

One sensible requirement is that among borrowers with predicted default prob-

ability aj, the relative percentage of defaults will be roughly equal to aj. For-

mally:

aj
!
= p(1|aj) =

r(1, aj)

q(aj)

whenever q(aj) > 0. Such forecasters are called ”well calibrated” (Dawid 1982).

However, calibration, though desirable, is not sufficient for a useful forecast.

For instance, a probability forecaster attaching default probability p(1) to all

borrowers is well calibrated but otherwise quite useless.

Let rA(θ, aj) and rB(θ, aj) be the joint probability functions of forecasters

A and B, respectively, with a nondegenerate marginal distribution p(θ). We
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assume that this marginal distribution is the same for both forecasters, i.e.

that both agencies rate the same set of borrowers. First, we confine ourselves

to forecasters which are both well calibrated. Following DeGroot and Fienberg

(1983), we say that A is more refined than B, in symbols: A ≥R B, if there

exists a k × k Markov matrix M (i.e. a matrix with nonnegative entries whose

columns sum to unity) such that

qB(ai) =
k∑

j=1

Mijq
A(aj), and (1)

aiq
B(ai) =

k∑
j=1

Mijajq
A(aj), i = 1, . . . , k. (2)

Equation (1) means that, given A’s forecast aj, an additional independent

randomisation is applied according to the conditional distribution Mij (j =

1, ..., k) which produces forecasts with the same probability function as that of

B. Condition (2) ensures that the resulting forecast is again well calibrated.

Table 1, from Krämer (2003a), provides an example. Forecaster A attaches a

default probability of 2 % to all borrowers. If the overall default probability

is indeed 2 %, he is obviously well calibrated. Forecaster B is more refined; he

attaches default probabilities 1 % and 3 %, respectively, to 50 % of all bor-

rowers. We assume that he, too, is well calibrated. Likewise forecasters C and

D with distributions across predicted default probabilities as given in the table.

— table 1 about here —

Obviously, B, C and D are more refined than A. Also, C and D are more refined

than B: If all borrowers who receive a 0,5 % rating from C, and a randomly

selected 50 % of those who receive a rating 1,5 %, are given a rating of 1 %,

the rest a rating of 3 %, we obtain a new, well calibrated forecast with the

same probabilistic properties as B’s.
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The same can be done with D: All borrowers with ratings 0,5 % and 1 %, and a

randomly selected one-eleventh of borrowers rated 3 %, are given a new rating

of 1 %, the rest a new rating or 3 %. Again, this yields a new, well calibrated

forecast with the same probabilistic properties as B’s.

On the other hand, C and D cannot be compared according to the refine-

ment ordering. DeGroot and Fienberg (1983, Theorem 1) show that, for well

calibrated forecasters A and B,

A ≥R B ⇐⇒
j−1∑
i=1

(aj − ai)[q
A(ai) − qB(ai)] ≥ 0, j=1,...,k-1. (3)

and this condition is violated for C and D in our example. It is equivalent to

the fact that the distribution qA(ai) second-order stochastically dominates the

distribution qB(ai) (DeGroot and Eriksson 1985).

Vardeman and Meeden (1983) suggest to alternatively order probability fore-

casters according to the concentration of defaults in the ”bad” grades. This

will here be called the VM-default order. Formally:

A ≥V M(d) B : ⇐⇒
j∑

i=1

qA(ai|1) ≤
j∑

i=1

qB(ai|1), j=1,...,k. (4)

Or to put this differently: A dominates B in the Vardeman-Meeden default

ordering if its conditional distribution, given default, first-order stochastically

dominates that of B.

The same can be done for the non-defaults. A is better than B in the VM-non-

default sense if non-defaults are more frequent in the ”good” grades. Formally:

A≥V M(nd)B ⇐⇒
j∑

i=1

qA(ai|0) ≥
j∑

i=1

qB(ai|0), j=1,...,k. (5)

Finally, A dominates B in the Vardeman-Meeden sense (in symbols A≥V MB)

if both A≥V M(d)B and A≥V M(nd)B.
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A final criterion which is favoured in the banking industry (see e.g. Falkenstein

et al. 2000) is based on joining the points

(0, 0),




j−1∑
i=0

q(ak−i),
j−1∑
i=0

q(ak−i|1)


 , j = 1, ..., k (6)

by straight lines. The resulting plot is variously called the power curve, the

Lorenz curve, the Gini curve, or the cumulative accuracy profile, and a fore-

caster A is considered better than a forecaster B in this - the Gini-default-sense

(formally: A ≥G(d) B) - if A’s Gini curve is nowhere below that of B.

Alternatively, one might consider the receiver-operating-characteristic curve

(ROC-curve) defined by the points

(0, 0),




j−1∑
i=0

q(ak−i|0),
j−1∑
i=0

q(ak−i|1)


 , j = 1, ..., k. (7)

It is however easily seen (see e.g. Krämer 2002, Theorem 3) that two Gini

curves intersect if and only if the respective ROC-curves intersect, so these

orderings are equivalent. Moreover, the area under the ROC-curve, which is

often used as a scalar criterion of goodness, is numerically identical to the well

known accuracy ratio derived from the Gini-curve, so the ROC-curve does not

produce any independent information.

Both the power and the ROC curve are invariant to monotone transformations

of the predicted probabilities of default. They only require that rating grades

are ordered in terms of probability of default and can therefore be applied in

a wider context than the one discussed above.
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3 Mapping rating grades to default probabili-

ties

Next, we apply the orderings described above to real world default predictions.

This is done in two stages. First, we take empirical relative frequencies as sub-

stitutes for unknown true probability functions and check the partial orderings

from section 2. Next, we explicitly recognize the randomness in the empirical

relative frequencies and test for the statistical significance of the differences

observed.

Table 2 summarizes our data base. For each rating grade, it shows the number

of debtors carrying this rating as of Dec. 31, 1998, and the number of defaults

up to the end of 2002. There are 17 grades, with all debtors rated worse than

B- lumped together into grade C.

— table 2 about here —

Both the refinement and the VM-orderings require that rating grades are con-

verted into default probabilities. We first proceed under the assumptions that

(i) the true probabilities of default, given the rating grade, are the same for

both agencies (where the correspondence between grades is as in table 2), and

(ii) that the observed differences in empirical relative frequencies are due to

random noise. This assumption will be later on relaxed. In addition, to obtain

larger samples, we disregard the + and - subdivisions and estimate the grade

specific default probabilities by averaging the empirical relative frequencies

from Moody’s and S&P .

Column 3 in table 3 gives the results. Columns 4 and 5 give the historical

4-year default frequencies as reported by the agencies themselves.
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— table 3 about here —

The table shows that the 4-year default rates in our sample are somewhat

higher than the historical ones reported by the agencies themselves. The main

reason is that our horizon covers the years 2001 and 2002, which saw an excep-

tionally large number of defaults: 70 of the 209 defaults in our sample occurred

in 2001 and 58 occured in 2002. On the other hand the default rates reported

by the agencies are averages of 18 (S&P) or 30 (Moody’s) four-year default

horizons, covering various phases of the business cycle.

In addition to averaging over default horizons, some additional smoothing is

sometimes applied across rating grades to eliminate any remaining random

noise (see e.g. Tabakis and Vinci 2002, pp. 13 – 15 or Blum et al., 2003, pp. 21

– 26). One can for instance fit a logit or a probit curve to the observed default

frequencies in order to obtain a smooth and increasing sequence of default

probabilities. Such issues will not be touched upon in this paper, as we are

mainly concerned with systematic differences in forecasting ability, not with

short-run effects induced by random deviations from a long run performance

standard.

4 Comparing the accuracy of default

predictions

We start by checking the partial orderings from Section 2. Figure 1 shows

the Moody’s and S&P power curves, as derived from table 2, with + and -

subdivisions lumped together. It is seen that the power curves intersect, so

the rating agencies cannot be compared according to this criterion.

— figure 1 here —
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To obtain a similar result for the VM-criteria, table 4 lists the respective

distributions of class frequencies, given default and given no default. It shows

that Moody’s dominates S&P with respect to VM(d) and that S&P dominates

Moody’s with respect to VM(nd). This comes as no surprise in view of

theorem 1 in Krämer (2002), which states that the VM-ordering implies the

Gini-ordering. As Moody’s and S&P cannot be compared according to the

Gini-ordering, they cannot be compared to the VM-ordering a forteriori.

The most one could hope for is comparability according to either VM(d) or

VM(nd), but not according to both (in the sense that one dominates the

other according to both criteria). This is exactly what we find.

— table 4 about here —

As to the refinement ordering, we have to check calibration first. Here we have

the problem that the data are not consistent with the fact that both agencies

are well calibrated, at least if the distribution q(aj) of borrowers across rating

grades aj from table 2 can be viewed as typical for the agencies. A necessary

condition for calibration is that the overall predicted relative frequency of

default p(1) be the same for both agencies. Plugging the default probabilities

aj from table 3 into the general formula

p(1) =
∑
j

r(1, aj) =
∑
j

p(1|aj)q(aj) =
∑
j

ajq(aj) (8)

shows that we obtain different results for Moody’s and for S&P. This is so no

matter which column of table 3 is used for the predicted default probabilities aj.

For instance, taking our own estimates from column 3 gives P S&P (1) = 9, 89%

and PM(1) = 11, 80%. For other columns, discrepancies are even larger.

One way out of this dilemma is to acknowledge that the equivalence of

the rating grades established in table 3 is not quite correct, i.e. that a

rating of BBB by S&P implies a (slightly) different predicted probability
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of default than a rating of Baa2 by Moody’s. This in turn implies that

we have k = 14 rather than k = 7 predicted probabilities of default

(taking table 3 as our point of departure), with the probabilities them-

selves given for instance by columns 4 and 5. Plugging these probabilities

into formula (8) gives p(1) = 8, 45% for Moody’s and p(1) = 8, 02% for

S&P, so we still have the result that calibration for both agencies is incon-

sistent with the data.

However, if we identify realized default frequencies with predicted ones,

both agencies are well calibrated by definition. It then makes sense to check

whether one is more refined than the other. We call this the empirical

refinement ordering. Table 5 gives the results. It shows that the integrals of

the distribution functions intersect, so none of the agencies is in this sense

more refined than the other.

— table 5 about here —

The non-comparability of the default predictions in terms of the empirical

refinement ordering implies that different scalar measures of performance will

rank the predictions differently. Most popular among these is the Brier score

(Brier 1950), defined as

B =
1

n

n∑
i=1

(pi − θi)
2, (9)

where pi is the predicted probability of default, and θi = 1 in case of default

and θi = 0 in case of no default. It takes its optimum value of B = 0 when the

only predicted probabilities of default are 0 and 1, and when predictions are

always correct (= perfect foresight). It takes its worst value of B = 1 when

the only predicted probabilities of default are 0 and 1, and when always the

opposite of what has been predicted occurs.
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If we attach to each borrower the default probability from table 3, column 4

(Moody’s) and column 5 (S & P), we obtain

BM = 0, 0684, BS&P = 0, 0735. (10)

If we attach to each borrower the default probability from table 3, column 3,

we obtain

BM = 0, 0662, BS&P = 0, 0689, (11)

and if we attach to each borrower the observed default rate of the class these

borrower has been sorted into, we obtain

BM = 0, 0660, BS&P = 0, 0686. (12)

As small values of the Brier score are ”good”, Moody’s outperforms S&P ac-

cording to this criterion. It also outperforms S&P according to the logarithmic

score, defined as

L =
1

n

n∑
i=1

�n(|pi + θi − 1|). (13)

The logarithmic score is always negative, with closeness to zero signalling a

good performance. For our data set, it takes the following values if default

probabilities from table 3, column 4 (Moody’s) and column 5 (S & P) are

used:

LM = −0, 2135, LS&P = −0, 2260. (14)

If we attach to each borrower the default probabilities from table 3, column 3,

we obtain

LM = −0, 2068, LS&P = −0, 2141. (15)
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And if we attach to each borrower the observed default rates of the class the

borrower has been sorted into, we obtain

LM = −0, 2005, LS&P = −0, 2056. (16)

As large values of the logarithmic score are ”good”, Moody’s outperform S&P

also according to this criterion. They also outperform S&P according to the

spherical score, defined as

S =
1

n

n∑
i=1

|pi + θi − 1|√
p2

i + (1 − pi)2
. (17)

This gives

SM = 0, 9025, SS&P = 0, 8963 (column 4 and 5)

SM = 0, 9048, SS&P = 0, 9015 (column 3)

SM = 0, 9051, SS&P = 0, 9019 (column 1 and 2)

As the spherical rule is always positive, with large values signalling superior

performance, Moody’s wins here as well.

However, it is easy to find scores such that this ranking is reversed. This reversal

is made possible by the noncomparability of Moody’s and S&P in terms of the

empirical refinement ordering. It is well known (see e.g. DeGroot and Eriksson

1985 for a review of this literature) that second order stochastic dominance of

a distribution qB(ai) by a distribution qA(ai) is equivalent to the fact that

∑
i

g(ai)q
A(ai) ≥

∑
i

g(ai)q
B(ai) (18)

for all continuous convex functions g on the unit interval. On the other hand,

it is also well known (see e.g. Winkler 1996; the basic theorem is due to

Savage 1971) that, for well calibrated forecasters, all proper scoring rules
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S(p1, . . . , pn; θ1, . . . , θn) depend on the pi and θi only via the aj’s and can

be written as

S(p1, . . . , pn; θ1, . . . , θn) =
K∑

j=1

g(aj)q(aj) (19)

with some strictly convex function g. For the Brier score, for instance, we have

g(p) = p(1 − p). (20)

If second order stochastic dominance fails, one can therefore always find two

convex functions f and g (corresponding to two proper scoring rules Sf and

Sg) such that the ranking of two forecasters is reversed.

An example is the asymmetric version L∗ of the logarithmic score suggested

by Winkler (1994). Setting c = 0, 001 (Winkler’s notation) and equating ob-

served default rates to predicted ones, we obtain values of L∗,M = 0, 2446 and

L∗,S&P = 0, 2457, so S&P is slightly better now. For details, see Krämer (2003

b).

5 Statistical Significance

Next we explicitly acknowledge the randomness in our data and briefly com-

ment on the statistical significance of the differences in performance which we

have found. For instance, the accuracy ratios derived from figure 1 are 0,833

for Moody’s (ARM) and 0,819 for S & P (ARS), so there is a slight but in-

significant advantage for Moody’s here. Adapting result on areas under the

ROC-curve from medical statistics, Engelmann et al. (2003) show that the

statistic

T =
(ARM − ARS)2

σ2
ARM

+ σ2
ARS

− 2σARM ,ARS

(21)
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is asymptotically chi-squared with one degree of freedom. Approximating the

variances σ2
ARS

and σ2
ARM

and the covariance σARS ,ARM
of the respective ac-

curacy ratios ARS and ARM by bootstrapping produces a p-value of 0,087.

Estimating these for the areas under the ROC-curve by sample values pro-

duces a slightly lower p-value of 0,076. None of these indicates a systematic

difference.

The asymptotic null distribution of the T -statistic (21) should be applied with

caution, however. It is derived on the analogy with similar significance tests

for ROC-curves in medical statistics (see e.g. Hajian-Tilaki et al. 2002) and as-

sumes two independent simple random samples from the bivariate distributions

[qM(aj|1), qS(qj|1)] and [qM(aj|0), qS(aj|0)], respectively, with sample sizes n1

and n2 fixed in advance. None of these requirements is met in the credit rating

context. If we consider the 1927 ratings from the present paper as a random

sample from a hypothetical universe of potential ratings, then the sample sizes

n1 and n2 are not fixed but random and perfectly negatively correlated. And

more importantly, a sample of n observations from the bivariate distribution

r(θ, a) will in practice never be simple as the observed θ’s are known to be

positively correlated in practice. As the observed values of θ and a for a given

borrower are also highly correlated, this can then be shown to translate into

correlation among draws from the conditional distributions q(a|1) and q(a|0),

which are therefore not a simple random sample. As H0 in our case is not

rejected anyway, we do not investigate this issue any further here.

The same argument applies even more forcefully when assessing the significance

of the difference of other scalar measures of performance. For the Brier score,

it is easily seen (see e.g. Redelmeier et al. 1991) that the statistic

Z =

∑n
i=1(θi − πi)(p

S
i − pM

i )√∑n
i=1 πi(1 − πi)(pS

i − pM
i )2

(22)
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where πi = (pS
i + pM

i )/2, is asymptotically standard normal when population

Brier scores are identical. In our sample, Z takes the value 3,78, which at first

sight is highly significant. However, as in the case of the Engelmann et al. T -

statistic, its limiting null distribution obtains only for simple random samples,

which in the rating context will almost never be observed in practice due to

the positive correlation among the θ’s.

6 Discussion

There are various shortcomings in our data. For instance, in order to obtain

a reasonable data base, we had to collect all ratings as of Dec. 31, 1998 ir-

respective of the date the rating was produced or changed. This implies that

the default probabilities from columns (1) - (3) of table 3 are for a horizon of

slightly more than four years. However, as ”no change” need not imply ”no

assessment of creditworthyness”, and both Moody’s and S&P are known for

keeping a close track of their customers, the presumption is that the ratings

observed in December 1998 closely mirror the then prevailing economic situ-

ation. Also, there are no large deviations in the age of the ratings between

Moody’s and S&P, so this ”ragged edge” problem is unlikely to produce addi-

tional discrepancies.

The major question of course is whether or not the sample summarized in table

2 can be taken as typical for the performance of the agencies. It does not cover

a full business cycle but rather the end and apex of an extraordinary upswing

and the beginning of a downturn in 2001 and 2002, were the majority of the

defaults occurred. Therefore, it is necessary keep on collecting data on other

4-years prediction periods to check the robustness of our results.
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Table 1:

The refinement ordering

among well calibrated probability forecasters

forecast of distribution of borrowers across

default probability predicted default probabilities

% A B C D

0.5 0 0 0.25 0.2

1 0 0,5 0 0.25

1.5 0 0 0.5 0

2 1 0 0 0

3 0 0,5 0 0.55

4.5 0 0 0.25 0

Table 2:

Distribution of borrowers across rating grades

S&P Moody’s

rating frequency number rating frequency number

grade of defaults grade of defaults

AAA 55 0 Aaa 42 0

AA+ 33 0 Aa1 47 0

AA 80 0 Aa2 90 0

AA- 157 0 Aa3 142 0

A+ 167 1 A1 160 0

A 201 0 A2 191 2

A- 171 2 A3 154 0

BBB+ 170 3 Baa1 170 3

BBB 189 4 Baa2 180 1

BBB- 148 9 Baa3 165 9

BB+ 77 9 Ba1 69 6

BB 77 11 Ba2 50 2

BB- 85 26 Ba3 90 24

B+ 147 53 B1 76 19

B 106 49 B2 104 36

B- 43 25 B3 114 50

C 21 17 C 83 57

1927 209 1927 209
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Table 3:

Default Probabilities (%)

our sample historical
Grade

Moody’s S & P average Moody’s S & P

(1) (2) (3) (4) (5)

AAA / Aaa 0 0 0 0.04 0.07

AA / Aa2 0 0 0 0.16 0.17

A / A2 0.40 0.56 0.48 0.36 0.48

BBB / Baaa2 2.52 3.16 2.84 1.69 2.58

BB / Ba2 15.31 19.25 17.41 8.76 11.69

B / B2 35.71 42.91 39.32 27.04 27.83

C / C 68.68 80.95 71.15 55.05 51.25

Table 4:

Conditional grade distributions given default

and no given default, respectively

S&P Moody’s
Grade ∑

q(aj|1) × 209
∑

q(aj|0) × 1718
∑

q(aj|1) × 209
∑

q(aj|0) × 1718

AAA / Aaa 0 55 0 42

AA / Aa2 0 325 0 321

A / A2 3 861 2 824

BBB / Baaa2 19 1352 15 1326

BB / Ba2 65 1545 47 1503

B / B2 192 1712 152 1692

C / C 209 1718 209 1718
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Table 5: Second order stochastic dominance

of the distributions q(ai)

ai Moody’s S&P

(%) q(ai) Integral q(ai) Integral

0 16.66 0 16.86 0

0.40 26.21 0.065 0 0.067

0.56 0 0.135 27.97 0.094

2.52 26.72 0.978 0 0.976

3.16 0 1.418 26.31 1.259

15.31 10.85 9.977 0 9.906

19.25 0 13.043 12.40 12.706

35.71 15.26 26.289 0 26.463

42.91 0 33.171 15.27 32.471

68.68 4.31 57.832 0 57.933

80.95 0 70.111 1.19 70.065
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Figure 1: Power Curves for Moody’s and S&P
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