

Text Summarization Using Fuzzy Logic

Ms.Pallavi D.Patil*

Department of Computer Science, ZES's, Dnyanganga College of Engg. & Research Narhe, Pune, India. me 1314 521017@zealeducation.com

Prof.N.J.Kulkarni

Department of Computer Science, ZES's, Dnyanganga College of Engg. & Research Narhe, Pune, India. nikhita.kulkarni @zealeducation.com

Abstract— In this new generation, where the tremendous information is available on the internet, it is difficult to extract the information quickly and most efficiently. There are so many text materials available on the internet, in order to extract the most relevant information from it, we need a good mechanism . This problem is solved by the Automatic Text Summarization mechanism. "Text Summarization" is a process of creating a shorter version of original text that contains the important information. Text summarization can be broadly classified into two types: Extraction and Abstraction. This paper focuses on the Fuzzy logic Extraction approach for text summarization.

Keywords — Text summarization; Fuzzy logic; fuzzy rule.

I. Introduction

Before going to the Text summarization, first we, have to know that what a summary is. A summary is a text that is produced from one or more texts, that conveys important information in the original text, and it is of a shorter form[1]. The goal of automatic text summarization is presenting the source text into a shorter version with semantics. The most important advantage of using a summary is, it reduces the reading time. Text Summarization methods can be classified into extractive and abstractive summarization. An extractive summarization method consists of selecting important sentences, paragraphs etc. from the original document and concatenating them into shorter form. An Abstractive summarization is an understanding of the main concepts in a document and then expresses those concepts in clear natural language.

There are two different groups of text summarization: Indicative and Informative. Inductive summarization only represents the main idea of the text to the user. The typical length of this type of summarization is 5 to 10 percent of the main text. On the other hand, the informative summarization systems gives concise information of the main text. The length of informative summary is 20 to 30 percent of the main text.

The automatic summarization means an automatically summarized output is given when an input is applied. Remember that input is well structured document. For this there are initially preprocesses such as Sentence Segmentation, Tokenization, Removing stop words and Word Stemming. Sentence Segmentation is separating document into sentences. Tokenization means separating sentences into words. Removing stop words means removing frequently occurring words such as a, an, the etc. And word stemming means removing suffixes and prefixes. After preprocessing each sentence is represented by attribute of vector of features. For each sentence there are 8 features and each feature has a value between 0 and 1. The 8 features are: Title features, Sentence length, Term weight, Sentence position, Sentence to sentence similarity. Proper noun, thematic word and Numerical data. Our approach is as follows: After extraction of 8 features the result is passed to fuzzifier then to inference engine and finally to defuzzifier. Rules for Inference engine is supplied from Fuzzy rule base. After this each sentence will have score and the sentence is sorted in the decreasing order of the score. Then 20% of these finally sorted sentences will be the summary of the given document.

This document is a template. An electronic copy can be downloaded from the Journal website. For questions on paper guidelines, please contact the journal publications committee as indicated on the journal website. Information about final paper submission is available from the conference website.

This document is a template. An electronic copy can be downloaded from the Journal website. For questions on paper guidelines, please contact the journal publications committee as indicated on the journal website. Information about final paper submission is available from the conference website.

II. RELATED WORKS

The first Automatic text summarization was created by Luhn in 1958[1] based on term frequency. Automatic text summarization system in 1969, which, in addition to the standard keyword method (i.e., frequency depending weights), also used the following three methods for determining the sentence weights: a) Cue Method b) Title Method c) Location Method. The Trainable Document Summarizer in 1995 performs sentence extracting task, based on a number of weighting heuristics. Following features were used and evaluated [2]:

- 1. Sentence Length Cut-O Feature: sentences containing less than a pre-specified number of words are not included in
- 2. Fixed-Phrase Feature: sentences containing certain cue words and phrases are included

ISSN: 2278-2311 IJIRAE | http://ijirae.com Page - 42

International Journal of Innovative Research in Advanced Engineering (IJIRAE) Volume 1 Issue 3 (May 2014) SPECIAL ISSUE

- 3. Paragraph Feature: this is basically equivalent to Location Method feature
- 4. Thematic Word Feature: the most frequent words are defined as thematic words. Sentence scores are functions of the thematic words' frequencies
- 5. Uppercase Word Feature: upper-case words (with certain obvious exceptions) are treated as thematic words.

In 1990s the machine learning techniques in Natural Language Processing used statistical techniques to produce document summaries. They have used a combination of appropriate features and learning algorithms. Other approaches have used hidden Markov models and log-linear models to improve extractive summarization. Now a day's neural networks are used to generate summary for single documents using extraction. Ladda Suanmali [4] in his work has used sentence weight, a numerical measure assigned to each sentence and then selecting sentences in descending order of their sentence weight for the summary. Recently, neural networks are used to generate summary for single documents using extraction [6].

A lot of work has been done in single document and multi document summarization using statistical methods. A lot of researchers are trying to apply this technology to a variety of new and challenging areas, including multilingual summarization and multimedia news broadcast.

III. MOTIVATION FOR TEXT SUMMARIZATION

Text Summarization is an active field of research in both the IR and NLP communities.

- People keep up with the world affairs by listening to news bites.
- People even go to movies largely on the basis of reviews they've seen
- Bottom People base investment decisions on stock market updates.
- With summaries, People can make effective decisions in less time.
- The motivation here is to build such tool which is computationally efficient and creates summaries automatically.

IV. APPROACHES TO SUMMARIZATION

Text summarization approach consists of following stages:

- A. Preprocessing
- B. Feature Extraction
- C. Fuzzy logic scoring
- D. Sentence selection and Assembly

A. Text Preprocessing

There are four steps in preprocessing:

- 1. Segmentation: It is a process of dividing a given document into sentences.
- 2. Removal of Stop words: Stop words are frequently occurring words such as 'a' an', the' that provides less meaning and contains noise. The Stop words are predefined and stored in an array.
- 3. Tokenization:
- 4. Word Stemming: converts every word into its root form by removing its prefix and suffix so that it can be used for comparison with other words.

B. Feature Extraction

The text document is represented by set, $D=\{S1, S2, ---, Sk\}$ where, Si signifies a sentence contained in the document D. The document is subjected to feature extraction. The important word and sentence features to be used are decided. This work uses features such as Title word, Sentence length, Sentence position, numerical data, Term weight, sentence similarity, existence of Thematic words and proper Nouns.

1. Title word: A high score is given to the sentence if it contains words occurring in the title as the main content of the document is expressed via the title words. This feature is computed as follows:

F1=Nt / Ntotal

2. Sentence Length: Eliminate the sentences which are too short such as datelines or author names. For every sentence the normalized length of sentence is calculated as:

$F2 = \frac{Number\ of\ words\ in\ the\ sentence}{Number\ of\ words\ in\ the\ longest\ sentence}$

3. Sentence Position: The sentences occurring first in the paragraph have highest score. Suppose a paragraph has n sentences then the score of every sentence for this feature is calculated as follows:

 $F3(S_1) = n/n$; $F3(S_2)=4/5$; $F3(S_3)=3/5$; $F3(S_4)=2/5$; and so on.

ISSN: 2278-2311 IJIRAE | http://ijirae.com

International Journal of Innovative Research in Advanced Engineering (IJIRAE) Volume 1 Issue 3 (May 2014) SPECIAL ISSUE

Numerical data: The sentences having numerical data can reflect important statistics of the document and may be selected for summary. Its score is calculated as:

$$F4(Si) = \frac{Number\ of\ numerical\ data\ in\ the\ sentence\ \ Si}{Sentence\ Length}$$

Thematic words: These are domain specific words with maximum possible relativity. The score for this feature is calculated as the ratio of the number of thematic words that occurs in a sentence over the maximum number of thematic words in a sentence.

$$F5(Si) = \frac{\text{Number of Thematic data in the sentence } \ Si}{\text{Max no of thenatic words}}$$

6. Sentence to Sentence Similarity: For each sentence S, the similarity between S and every other sentence is computed by the method of token matching. The [N][N] matrix is formed where N is the total number of sentence in a document. The diagonal elements of a matrix are set to zero as the sentence should not be compared with itself. The similarity of each sentence pair is calculated as follows:

$$F6 = \frac{\sum [\text{Sim}(\text{Si}, (\text{Sj})]}{\text{Max}[\text{Sim}(\text{Si}, (\text{Sj})]}$$

Term weight: The score of this feature is given by the ratio of summation of term frequencies of all terms in a sentence over the maximum of summation values of all sentences in a document. It is calculated by the following equation.

$$F7 = \sum TF_{I}$$

$$-----$$

$$MAX(\sum TF_{I})$$

Where, i=1 to n, n is the number of terms in a sentence.

Proper Nouns: The sentence that contains maximum number of proper nouns is considered to be important. Its score is given by,

C. Fuzzy Logic Scoring

Thus each sentence is associated with 8 feature vector. Using all the 8 feature scores, the score for each sentence are derived using fuzzy logic method. The fuzzy logic method uses the fuzzy rules and triangular membership function .The fuzzy rules are in the form of IF-THEN .The triangular membership function fuzzifies each score into one of 3 values that is LOW, MEDIUM & HIGH. Then we apply fuzzy rules to determine whether sentence is unimportant, average or important. This is also known as defuzzification. For example IF (F1 is H) and (F2 is M) and (F3 is H) and (F4 is M) and (F5 is M) and (F6 is M) and (F7 is H) and (F8 is H) THEN (sentence is important).

D. Sentence Selection

All the sentences of a document are ranked in a descending order based on their scores. Top n sentences of highest score are extracted as document summary based on compression rate. Finally the sentences in summary are arranged in the order they occur in the original document.

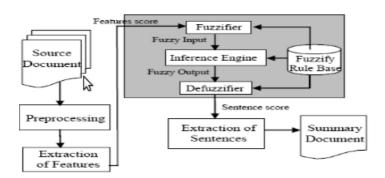


Fig. 1 Text Summarization using Fuzzy Inference System [6].

ISSN: 2278-2311 IJIRAE | http://ijirae.com

International Journal of Innovative Research in Advanced Engineering (IJIRAE) Volume 1 Issue 3 (May 2014) SPECIAL ISSUE

V. CONCLUSIONS

The Automatic summarization is a complex task that consists of several sub-tasks. Each of the sub-tasks directly affects the ability to generate high quality summaries. In extraction based summarization the important part of the process is the identification of important relevant sentences of text. Use of fuzzy logic as a summarization sub-task improved the quality of summary by a great amount. The results are clearly visible in the comparison graphs. Our algorithm shows better results as compared to the output produced by two online summarizers.

REFERENCES

- [1] Saeedeh Gholamrezazadeh ,Mohsen Amini Salehi, "A Comprehensive Survey on Text Summarization Systems", 978-1-4244-4946-0.2009 IEEE.
- [2] Vishal Gupta and Gurpreet Singh Lehal "A survey of Text summarization techniques ",Journal of Emerging Technologies in Web Intelligence VOL 2 NO 3 August 2010.
- [3] Oi Mean Foong ,Alan Oxley and Suziah Sulaiman "Challenges and Trends of Automatic Text Summarization ",International Journal of Information and Telecommunication Technology Vol.1, Issue 1, 2010.
- [4] S. Archana AB, Sunitha. C ,"An Overview on Document Summarization Techniques" ,International Journal on Advanced Computer Theory and Engineering (IJACTE) ,ISSN (Print) : 2319 "U 2526, Volume-1, Issue-2, 2013 .
- [5] Rafael Ferreira ,Luciano de Souza Cabral ,Rafael Dueire Lins ,Gabriel Pereira e Silva ,Fred Freitas ,George D.C. Cavalcanti ,Luciano Favaro , "Assessing sentence scoring techniques for extractive text summarization ",Expert Systems with Applications 40 (2013) 5755-5764 ,2013 Elsevier .
- [6] L. Suanmali , N. Salim and M.S. Binwahlan, "Fuzzy Logic Based Method for Improving Text Summarization" , International Journal of Computer Science and Information Security, 2009, Vol. 2, No. 1, pp. 4-10.
- [7] Mrs.A.R.Kulkarni, Dr.Mrs.S.S.Apte "A DOMAIN-SPECIFIC AUTOMATIC TEXT SUMMARIZATION USING FUZZY LOGIC ",International Journal of Computer Engineering and Technology (IJCET), ISSN 0976-6367(Print), ISSN 0976-6375(Online) Volume 4, Issue 4, July-August (2013).
- [8] Farshad Kyoomarsi ,Hamid Khosravi ,Esfandiar Eslami ,Pooya Khosravyan Dehkordy; "Optimizing Text Summarization Based on Fuzzy Logic ",Seventh IEEE/ACIS International Conference on Computer and Information Science ,978-0-7695-3131-1 ,2008
- [9] Ladda Suanmali ,Naomie Salim and Mohammed Salem Binwahla ,"Feature-Based Sentence Extraction Using Fuzzy Inference rules ",2009 International Conference on Signal Processing Systems ,978-0-7695-3654-5 ,2009 IEEE .
- [10] Ladda Suanmali, Naomie Salim and Mohammed Salem Binwahlan "Fuzzy Genetic Semantic Based Text Summarization", 2011 Ninth Ninth International Conference on Dependable, Autonomic and Secure Computing ,978-0-7695-4612-4 ,2011 IEEE .
- [11] Ladda Suanmali, Mohammed Salem Binwahlan and Naomie Salim "Sentence Features Fusion for Text Summarization Using Fuzzy Logic ",2009 Ninth International Conference on Hybrid Intelligent Systems ,978-0-7695-3745-0 ,2009 IEEE.
- [12] Hsun-Hui Huang ,Yau-Hwang Kuo ,Horng-Chang Yang ,"Fuzzy-Rough Set Aided Sentence Extraction Summarization",Proceedings of the First International Conference on Innovative Computing, Information and Control (ICICIC'06),0-7695- 2616-0/06, IEEE.
- [13] Feifan Liu and Yang Liu, Member, IEEE "Exploring Correlation Between ROUGE and Human Evaluation on Meeting Summaries ",IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 1, JANUARY 2010.
- [14] ZHANG Pei-ying ,LI Cun-he , "Automatic text summarization based on sentences clustering and extraction ",978-1-4244-4520-2 ,2009 IEEE .
- [15] Udo Hahn ,Inderjeet Man ,"The Challenges of Automatic Summarization ",0018-9162/00,2000 IEEE .
- [16] Róbert Móro, Mária Bieliková "Personalized Text Summarization Based on Important Terms Identification ",2012 23rd International Workshop on Database and Expert Sytems Applications ,1529-4188, 2012 IEEE .
- Rafael Ferreira ,Luciano de Souza Cabral ,Rafael Dueire Lins ,Gabriel Pereira e Silva , "Assessing sentence scoring techniques for extractive text summarization", Expert Systems with Applications 40 (2013) 5755-5764,,2013,Elsevier,Ltd.ovel ultrathin elevated channel low-temperature poly-Si TFT," *IEEE Electron Device Lett.*, vol. 20, pp. 569–571, Nov. 1999.

ISSN: 2278-2311 IJIRAE | http://ijirae.com