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Abstract:

Background:

Bone is the second most transplanted tissue and due to its complex structure, metabolic demands and various functions, current
reconstructive options such as foreign body implants and autologous tissue transfer are limited in their ability to restore defects. Most
tissue  engineering  approaches  target  osteoinduction  of  osteoprogenitor  cells  by  modifying  the  extracellular  environment,  using
scaffolds or targeting intracellular signaling mechanisms or commonly a combination of all of these. Whilst there is no consensus as
to what is the optimal cell type or approach, nanotechnology has been proposed as a powerful tool to manipulate the biomolecular
and physical environment to direct osteoprogenitor cells to induce bone formation.

Methods:

Review of the published literature was undertaken to provide an overview of the use of nanotechnology to control osteoprogenitor
differentiation and discuss the most recent developments, limitations and future directions.

Results:

Nanotechnology can be used to stimulate osteoprogenitor differentiation in a variety of way. We have principally classified research
into nanotechnology for bone tissue engineering as generating biomimetic scaffolds, a vector to deliver genes or growth factors to
cells  or  to  alter  the  biophysical  environment.  A  number  of  studies  have  shown  promising  results  with  regards  to  directing
ostroprogenitor cell differentiation although limitations include a lack of in vivo data and incomplete characterization of engineered
bone.

Conclusion:

There is increasing evidence that nanotechnology can be used to direct the fate of osteoprogenitor and promote bone formation.
Further analysis of the functional properties and long term survival in animal models is required to assess the maturity and clinical
potential of this.

Keywords: Nanofibre, Nanomaterials, Nanoparticles, Nanoscaffolds, Nanotechnology, Osteogenic differentiation, Osteoprogenitor
cells.
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INTRODUCTION

Bone  is  the  second  most  transplanted  tissue  after  blood  with  2.2  million  bone  grafts  performed  annually  [1].
Correction of congenital critical sized bone defects (e.g. midface hypoplasia in Treacher Collins syndrome) or acquired
skeletal defects (e.g. due to trauma or neoplasia) often require the use of vascularized or non vascularized bone grafts
with/without  associated  soft  tissue.  Reconstruction  of  bone  defects  with  foreign  body  implants  (either  used  as  a
prosthesis  or  as  a  scaffold  for  bone  growth)  contains  the  risk  of  infection,  extrusion  and  inability  to  grow or  fully
integrate with the rest of the skeleton. Whilst, autologous bone transfer bypasses many of the complications associated
with foreign body implants, there is the risk of absorption and donor-site morbidity. There is also a limit to the amount
of tissue that can be harvested. Due to the risks and limitations of reconstruction of defects with foreign body implants
and autologous bone transfer, tissue engineering provides the promise of generating autologous bone tissue without
many of the limitations and morbidities associated with the gold standard treatment.

Osteoprogenitor cells are stem cells capable of differentiation down the osteogenic lineage into osteoblasts [2]. They
can be derived from mesenchymal stem cells (MSC) found in a variety of endogenous locations including the bone,
bone  marrow,  periosteum,  adipose  and  even  muscle,  which  are  capable  of  differentiation  along  the  adipogenic,
chondrogenic and osteogenic line (Fig. 1). Although they express the general markers of pluripotency such as CD44,
CD90, CD105 and CD166 [3, 4], the sub-populations that have greatest osteoprogenitor potential have been shown to
also  express  STRO-1,  SB-10  and  HOP-26  [3  -  5].  Other  sources  of  osteoprogenitor  cells  include  embryonic  [6],
amniotic fluid [7] and induced pluripotent stem cells [8]. In order for new bone formation to occur, osteoprogenitor
cells must be recruited through a complex and highly regulated interplay between signalling from the systemic and local
biomechanical as well as biophysical environment [9] (Fig. 2). These signals co-ordinate activation and maturation of
the osteoprogenitor cells giving rise to osteoblasts which in turn produce and lay down the extracellular bone matrix
[10].  Additionally,  the role  of  the musculoskeletal  unit  (bone-tendon-muscle)  provides an important  biomechanical
stimulus  which  regulates  normal  bone  development  and  maintenance  [11].  Differentiated  bone  is  characterized  by
upregulation of genes and protein expression of early markers such as collagen I and alkaline phosphatase (ALP) and
late  markers  such  as  osteopontin  (OSP)  and  osteonectin  (OSC).  Alkaline  Phosphatase  (ALP)  enzyme  activity  is
frequently used in assays to verify bone formation. Also the amount and pattern of calcium deposition (mineralization),
extracellular matrix composition and mechanical properties can be used to demonstrate the stage and maturity of the
osteogenesis.

Fig. (1). Osteoprogenitor cell sources
Embryonic,  foetal  and adult  tissues  can  give  rise  to  multipotent/pluripotent  stem cells  from which  osteoprogenitor  cells  can  be
derived.
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As a tissue, bone is complex as it has a mechanical, haemopoeitic and metabolic functions. It provides structure and
protection to surrounding soft tissues and is necessary for metabolic regulation of calcium and phosphate as well as
haemopoeisis.  Additionally,  the  structure  and  function  for  each  bone  is  highly  site-specific  and  related  to  its
embryological origin as well as its ability to adapt (e.g. the weight-bearing long bones which are of mesenchymal origin
and facilitate  locomotion  compared  with  the  neural-crest  derived  flat  bones  of  the  face  which  provide  support  and
structure). Bone is composed of a cellular and acellular component [2]. The latter constitutes 80% of the overall bone
mass. Osteoblasts, osteocytes, osteoclasts and osteoprecursor/osteoprogenitor cells comprise the cellular constituents
[12].  There  is  extensive  cross-talk  between  these  cells  which  in  concert  regulate  bone  remodeling  [13]  (Fig.  2).
Osteoblasts  promote  bone  formation  and  mature  into  osteocytes  which  act  as  mechanosensors,  control  mineral
haemostasis  and  regulate  both  osteoclast  and  osteoblast  function  [14].  This  provides  a  balance  between  osteoblast
mediatied bone formation and osteoclastic resorption in response to the environment. The acellular components are
predominantly collagen I and extracellular matrix proteins as well as minerals such as hydroxyapatite. The acellular
components together provide a scaffold to support  cells  structurally as well  as facilitate their  growth, proliferation,
differentiation and signalling. Due to the multifunctional nature of bone, it is also richly vascularised. Any attempt at
bone tissue engineering must therefore address the multipurpose nature of bone and its metabolic requirements as well
as its complex structure.

Fig. (2). Osteoprogenitor differentiation and accompanying gene expression
Under the influence of physical, chemical and biological stimuli osteoprogenitor cells can be encouraged to undergo osteogenic
differentiation giving rise to osteoblasts. Depending on signaling, osteoblasts can be induced to lay down extracellular matrix and
eventually mature into osteocytes or contribute to remodeling by activating osteoclasts to help in resorption of bone.

To date, many different approaches have been taken to attempt bone tissue engineering using osteoprogenitor cells.
In  general,  the  focus  has  been  on  finding  the  optimal  stimulus  and  scaffold  to  provide  osteogenic  induction,
maintenance  of  differentiation  and  structural  support.  Many  studies  have  provided  evidence  for  promoting
osteoprogenitor osteogenic differentiation using growth factors such as BMP-2 [15], FGF-2 [16, 17] and VEGF [18],
genetic  modification  [19],  co-culture  with  other  cells  [20]  and  using  mechanical  stimulation  such  as  pulsed
electromagnetic fields [21].  The field of scaffold research to promote osteogenic differentiation is also vast but the
overall aim of the scaffolds is to promote cell adhesion, survival and osteogenic differentiation. Additionally, some
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scaffolds have been optimized to support vascularization, provide mechanical stimulation or deliver growth factors. The
most sophisticated scaffolds attempt to recreate the extracellular matrix and stem-cell niche [22, 23]. A wide-variety of
different scaffolds have been proposed for bone tissue engineering ranging from natural materials such as collagen [24]
and  fibrin  [25]  to  synthetic  biomaterials  in  the  form  of  polymers  [26]  and  bioactive  ceramics  [23].  Each  of  these
scaffolds has advantages and disadvantage for its use for bone tissue engineering (Table 1). Due to the complexity of
bone with respect to structure, function and metabolic requirements as well as a need to tissue engineer bone rapidly
due  to  the  large-scale  therapeutic  demand,  combinations  of  these  scaffolds  can  yield  the  best  results.  Composite
scaffolds could provide the biomimetic properties of the extracellular matrix bestowed by natural scaffolds such as
hydrogels  whilst  possessing  the  mechanical  strength,  mass  production  and  ease  of  surface  modification  that  the
synthetic scaffolds provide.

Nanotechnology can be broadly defined as the science and technology which allows the manipulation of matter on
an atomic or molecular scale to produce new structures, materials or devices which are between 1-100 nanometers in at
least one dimension [27]. At this scale, manipulation of these materials or devices allows control of the macroscopic
physical, biological and mechanical properties [28]. These technologies can also interact with the body on a molecular
level thus providing the potential for targeted therapies with high efficiency and reduced side effects. Carbon nanotubes
and  nanoparticles  are  amongst  the  most  frequently  studied  nano  devices  for  bone  tissue  engineering  [29].
Nanotechnology provides the tools to generate scaffolds that combine the mechanical strength and biological molecules
required to optimize osteoprogenitor differentiation. It also allows surface modification to alter nanotopography and
architecture  which  helps  promote  cell  migration,  survival  and  proliferation.  Scaffolds  can  also  be  generated  in  a
reproducible manner with rapid-prototyping and mass-production possible [30]. Additionally, nanotechnology has been
used to engineer nanoparticles which target cells and modify their behavior by delivering genes or biophysical stimuli
[31]. This review will provide an overview of the use of nanotechnology to control osteoprogenitor differentiation and
discuss the most recent developments, limitations and future directions.

NANOTECHNOLOGY FOR CONTROLLING OSTEOGENIC DIFFERENTIATION

There  are  a  number  of  potential  applications  for  nanotechnology  in  bone  repair  which  include  delivery  of
pharmaceutical agents such as growth factors to stimulate bone repair, as a stand-alone implant to mimic the mechanical
and structural  support  afforded by bone or  to  support  bone tissue  engineering [31].  The control  of  osteoprogenitor
differentiation can be targeted by using nanotechnology to stimulate osteoinduction of local cells (e.g. at the site of a
fracture),  as  a  carrier  to  prime  and  deliver  stem cells  to  reconstruct  an  area  of  bone  loss  or  as  a  scaffold  to  tissue
engineer bone prior to implantation for reconstruction of a bone defect. Additionally, nanotechnology can be used to
modify scaffold properties in order to influence cell fate. Reviews undertaken to date, have addressed each of these
applications separately. In a review of nanotechnology in bone tissue engineering, Kim et al. presented the evidence for
the use of nanoparticles to promote osteogenic differentiation through fabrication of scaffolds that support cells, provide
mechanical strength to support bone formation and for the delivery of genetic material encoding growth factors [31].
Makhdom et  al.  reviewed the  use  of  nanomaterials  to  provide  mechanical  support  and encourage cell  migration to
surgically created bone defects in distraction osteogenesis [32]. In a wider review of biomimetic scaffolds, Motamedian
et al. discussed studies relating to various modifications of polymer scaffolds including the addition of nanoparticles to

Key definitions 

 

 Nanoscale – defined as between 1-100 nanometeres 

 Nanotechnology – the science and technology enabling the manipulation 

of matter at the nanoscale 

 Nanostructure – structures possessing at least one dimension between 1-

100nm length 

 Nanofibre – fibres with diameter less than 100nm  
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stimulate osteogenic differentiation of mesenchymal derived osteoprogenitor cells as well as osteoblasts by mimicking
the properties of the extracellular matrix [33]. This review will provide an overview of the latest evidence for the use of
nanotechnology  to  promote  osteogenic  differentiation  of  osteoprogenitor  cells  and  support  bone  tissue  engineering
either  indirectly  as  a  carrier  of  osteogenic  factors  and  to  modify  scaffold  biophysical  properties  or  directly  as  an
osteoinductive scaffold.

The Use of Nanoparticles and Nanofibres to Deliver Osteoinductive Agents to Control Recruitment, Migration
and Differentiation of Osteoprogenitor Cells

Nanotechnology  has  been  used  to  generate  implants  that  mimic  the  inorganic  component  of  bone  in  order  to
encourage migration, proliferation and osteogenic differentiation of osteoprogenitor cells and thus enhance the body’s
regenerative potential.  Minardi et al.  demonstrate this by using a nanocrystalline magnesium-doped hydroxyapatite
particle/type  I  collagen  composite  scaffold  which  was  designed  to  mimic  the  microarchitecture  and  biomechanical
properties  of  trabecular  bone  extracellular  matrix  [23].  This  nanocomposite  scaffold  demonstrated  similar
microarchitecture  to  trabecular  bone  when  compared  using  X-ray  diffraction  (XRD),  infrared  spectroscopy  and
scanning electron microscopy (SEM). Nanomechanical properties also compared favourably to bone when compared
using atomic force microscopy (AFM). They were able to promote osteogenic differentiation of human bone marrow
derived  stem  cells  on  these  scaffolds,  which  was  evidenced  by  upregulation  of  osteogenic  genes  such  as  alkaline
phosphatase when compared with cells grown in collagen scaffold alone or plastic monolayer. They then implanted the
unseeded scaffolds subcutaneously in rabbits which prompted ectopic bone formation at this site on CT scan. The time
range for the in vivo  study was 24 hours-6 weeks. The latter time points (4 and 6 weeks) show both trabecular and
corticle bone formation (the majority being trabecular). Based on the in vitro and in vivo results, the authors suggest that
these constructs provide an acellular “stem cell niche” for osteoinduction. Whilst these results are promising, there are
some limitations. The in vitro work compared survival, proliferation and osteogenic differentiation of Bone marrow
derived stem cells on the nanocomposite scaffolds, collagen scaffolds and 2D culture but for a one week period only.
This  short  time-frame  has  not  have  provided  an  opportunity  to  determine  the  scaffolds’  ability  to  maintain
differentiation and cell  survival in the long term. Additionally,  the in vivo  work determined the scaffolds ability to
recruit local cells to induce bone formation. However, they do not characterise what this cell population is nor do they
analyse the biological or mechanical properties of this ectopic bone. Another limitation of this study is that the in vivo
model is not clinically translatable as they show ectopic bone formation when implanted subcutaneously rather than to
reconstruct a bone defect.

Nanofibres have also been used as vesicles to deliver stimuli to promote osteogenic differentiation of precursor
cells. Gulseren et al. developed nanofibres which mimic the enzymatic activity of alkaline phosphatase [34]. In their
study, these self-assembling peptides were able to induce osteogenic differentiation of human osteosarcoma and rat
mesenchymal derived stem cells (as evidenced by up regulation of bone markers such as collagen I and osteopontin as
well as bone nodule formation) when cultured on surfaces coated with these peptides. Promisingly, they showed that the
rat  mesenchymal  stem cells  differentiated  into  osteoblast  on  the  coated  surfaces  without  any  additional  osteogenic
differentiation supplements. They also created a gel from these peptides and used it as a scaffold to support 3D culture
which  demonstrated  similar  results.  Whilst  this  data  suggest  that  these  nanopeptides  can  be  used  to  generate  an
osteoinductive scaffold capable of supporting osteogenic differentiation. The limitations of this study is that it is in vitro
only,  uses  rat  mesenchymal  stem  cells  and  do  not  look  at  the  architecture  or  mechanical  properties  of  this  tissue
engineered bone. In another study by Sever et al., self-assembling peptide nanofibres incorporating fibronectin were
used to mimic the extracellular matrix and promote osteogenic differentiation of rat derived mesenchymal stem cells in
vitro  [35].  Similarly,  whilst  this  study  shows  that  self-assembling  nanopeptides  can  direct  Osteoprogenitor
differentiation alone the limitations include that it is an in vitro study on rat cells and only looks at mineralisation and
gene expression to verify osteogenic differentiation.

Gene delivery is another potential use of nanotechnology in order to deliver osteogenic stimuli to osteoprogenitor
cells.  The nanomaterial  Polyethylenimine-conjugated chitosan was used as a vector by Yue et  al.  to transfect  bone
marrow stem cells with the BMP-2 gene and thus promote osteogenic differentiation which was evidenced by both
alkaline  phosphatase  activity  and  mineralisation  assay  [36].  The  authors  suggest  that  this  nanomaterial  has  future
potential for use in gene therapy. The limitations of this study are that they used mouse stem cells only and that it was
on  monolayer  culture.  This  application  of  nanotechnology  was  also  demonstrated  in  an  in  vivo  mouse  model  of  a
calvarial bone defect by Itaka et al. [37]. They used Polyplex nanomicelles that were released from a calcium phosphate
scaffold to transfect osteoprogenitor cells with caALK6 and Runx2 genes and thus promote osteogenic differentiation.
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Similar to the study by Yue et al. [36], there was good transfection efficiency with little cytotoxicity. Whilst this in vivo
study shows potential for the use of nanotechnology as a non viral vector for delivering osteogenic genes, it is limited
by the fact that the bone formation was only evaluated biologically and no with respect to architecture or mechanical
properties. Growth factor delivery is an additional use of nanotechnology to promote bone formation. Levy et al. used
iron oxide nanoparticles coated with human serum albumin and conjugated with FGF-2 to deliver this growth factor to
human bone marrow derived stem cells [38]. These cells exhibited greater osteogenic differentiation compared with
those cultured in the growth factor alone. This conjugation was also shown to encourage neurogenic and adipogenic
differentiation of the same cells hence reducing the sensitivity of this method for achieving osteogenic differentiation.
Low  molecular  weight  Protamine  peptide  nanoparticles  were  also  used  to  successfully  deliver  a  transcriptional
coactivator intracellularly to human mesenchymal stem cells by Suh et al. [39]. This induced osteogenic differentiation
in vitro  which was shown by upregulation of osteogenic genes and mineralisation. Implantation if  these cells in an
alginate gel in a rabbit cranial defect yielded bone formation on histology and micro CT scanning. Whilst promising,
these results are limited by a lack of assessment of the mechanical properties of the bone formed in vivo.

Nanomaterials as Scaffolds to Induce Osteogenesis of Osteoprogenitor Cells

The qualities that make nanomaterials particularly suited for use as a scaffold in bone tissue engineering include
mechanical  strength,  biocompatibility,  controlled biodegradation,  an easily modifiable surface and porous structure
which can promote cell proliferation and vascularisation [26]. Nanotechnology has been used to enhance bone tissue
engineering through the creation of nanoscaffolds or by combining with pre-existing natural or synthetic scaffolds to
mimic the biomechanical environment required to differentiate osteoprogenitor cells.

Nanoscaffolds can be developed using electrospun nanofibres or self-assembling nanoparticles. Nanofibres have
been  proposed  as  a  suitable  scaffold  for  bone  tissue  engineering  because  they  can  mimic  the  structure  and
nanotopography  of  the  extracellular  matrix.  Polycaprolactone  (PCL)  electrospun  nanofibres  have  been  shown  to
enhance osteoprogenitor differentiation. Human mesenchymal stem cells were driven down the osteogenic lineage by
Binulal et al. on nanofibre PCL scaffolds. These exhibited greater levels of osteogenic differentiation on analysis of
alkaline phosphatase activity, upregulation of ALP and OSC gene expression as well as mineralisation when compared
with  microfiber  scaffolds  in  vitro  [40].  Electrospun  PCL  nanofibres  were  also  used  by  Cheng  et  al.  to  generate  a
collagen I-Chitosan-PCL nanocomposite scaffold. Culture of rat bone marrow derived stem cells on these scaffolds
enhanced osteogenic differentiation as evidenced by upregulation of ALP activity, increased mineralisation and the
osteogenic markers ALP, OSP and OSC [41]. Both of these in vitro studies are limited by the fact that analysis of the
osteogenic differentiation did not include architecture or mechanical function.

Self-assembling nanoparticles have been used to generate scaffolds which can mimic the biophysical properties of
the  bone  extracellular  matrix.  In  a  study  by  Yang  et  al.,  a  nanocomposite  scaffold  was  fabricated  using  a  self
assembling matrix of silk-derived protein and hydroxyapatite nanoneedles which promoted survival and successfully
drove osteogenic differentiation of human bone marrow derived stem cells [42]. Although the authors suggest that these
scaffolds are biocompatible and osteoinductive, the culture period was short (5 days) and osteogenic differentiation was
only  assessed  by  ALP  activity  and  mineralisation.  A  longer  time  period  and  in  vivo  study  would  provide  more
information regarding long term survival and behaviour of these cells whilst biological, architectural and mechanical
analysis is required to assess the maturity and quality of tissue engineered bone.

Nanoparticles can be combined with synthetic polymers such as polylactic acid (PLA), polyglycolic acid (PGA),
polylactide-co-glycolide (PLGA) and PCL or natural materials such as proteins, alginate, silk and chitosan to fabricate
nanocomposite  scaffolds  which  possess  the  above  desirable  biomechanical  characteristics  in  order  to  optimise
osteogenic differentiation of osteoprogenitor cells. One such example is the incorporation of graphene oxide nanoflakes
into gelatin-hydroxyapatite which when used as a scaffold by Nair et al., promoted the osteogenic differentiation of
human  adipose  derived  stem  cells  without  the  need  for  addition  of  differentiation  media  [43].  They  looked  at  the
proliferation and survival of these cells for three weeks and demonstrated osteogenic differentiation through ALP assay
and cell morphology on scanning electron microscope. Although they conducted tests on the mechanical properties of
the  scaffolds  which  revealed  increased  strength  when  graphene  oxide  flakes  were  incorporated,  they  did  not  show
whether culture of cells on the scaffolds affected these properties. Nanocomposite scaffolds which combined porous
poly lactic acid-co-polycaprolactone/silk fibroin/ascorbic acid/tetracycline hydrochloride and nanohydroxyapatite were
shown to mimic the extracellular bone matrix and initiate osteogenic differentiation of human mesenchymal stem cells
by Gandhimathi et al. [44]. After a three-week culture period, osteogenic differentiation was evidenced by increased
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ALP  activity,  mineralisation  and  upregulation  of  OSC  gene  expression.  They  also  used  SEM  to  visualise  the
extracellular matrix deposited by these differentiated cells. Although, they conducted mechanical tests on the scaffolds
and showed increased strength, this was not performed with the cells cultured on them.

Nanoceramics have also shown promise in bone tissue engineering. These properties are detailed in a review by Gao
et al. who conclude that this is due to their ability to form direct bonds with bone when implanted into a defect [30].
They can mimic the extracellular matrix, have good bioactivity, biodegradability, biocompatibility and allow controlled
degradation  [30].  Human  adipose  and  bone  marrow  derived  stem  cells  were  induced  to  undergo  osteogenic
differentiation on a Zr-Si organic-inorganic porous nanoindented bioceramic scaffold by Koroleva et al. [45]. These
cell-scaffold constructs demonstrated mature bone formation evidenced by expression of late markers of osteogenic
differentiation  (osteocalcin)  and  mineralisation  in  the  absence  of  osteogenic  differentiation  media.  They  also
demonstrated  extracellular  matrix  deposition  on  SEM  and  conducted  mechanical  testing  of  the  scaffolds  with  and
without  culture  of  cells.  These  results  showed  that  these  nanoindented  ceramics  directed  osteoprogenitor  cell
differentiation into mature bone tissue formation as evidenced by biomechanical testing. The main limitation of this
study is that it was in vitro. Nanoceramics can also interact with growth factors to induce osteogenic differentiation of
precursor  cells.  Lu  et  al.  incorporated  bioactive  glass  nanoparticles  into  a  polycaprolactone  coating  on  a
hydroxyapatite/β-tricalcium phosphate scaffold and demonstrated that this had a synergistic effect on the actions of
BMP-2 which was separately added to adipose derived stem cells in vitro [46]. Differentiation down the osteogenic
lineage was demonstrated by upregulation of osteogenic genes, ALP activity and SEM images of extracellular matrix
deposition. They also analysed protein expression and suggested that these scaffolds caused osteoinduction through
increasing Wnt signalling which in synergy with BMP-2 signaling resulted in osteogenic differentiation of the cells.
This study provides a good model of the interplay between environmental queues, scaffolds and signalling pathways in
orchestrating osteogenic differentiation of osteoprogenitor.

Nanotechnology to Modify Scaffold Surface Topography, Porosity and Mechanical Properties

Cell migration, adherence, survival and differentiation can be enhanced and directed using nanopatterning to alter
scaffolds.  Whilst  titanium  has  been  suggested  as  a  scaffold  for  bone  tissue  engineering  due  to  its  mechanical  and
morphological similarity to trabecular bone [47], Tan et al. demonstrated that nanopatterning of these scaffolds with
chemical oxidation improved mouse bone marrow derived stem cell osteogenic differentiation evidenced by increased
alkaline phosphatase expression and mineralisation [48]. They hypothesise that nanotechnology can be used to alter
titanium implant surface topography and chemical properties in vivo to enhance osseointegration of implants although
the study only assessed in vitro outcomes. They also only assessed the mechanical properties of the unseeded scaffolds.
This is supported by the work of Mendonça et al. who found that nanostructuring of titanium surfaces with H2SO4/H2O
increased adherence and upregulation of  osteogenic genes of  human mesenchymal  stem cells  when compared with
smooth  titanium  and  microstructured  titanium  surfaces  [49].  Interestingly,  the  effect  of  topography  on  murine
osteoprogenitor cells was further characterised on smooth, micro- and nanopatterned titanium surfaces by Ogino et al.
[50]. The authors found that cells cultured on smooth and microstructured Titanium surfaces behaved differently than
those  on  nanopatterned  titanium  surfaces  when  the  main  intracellular  signalling  pathway  regulating  cell  adhesion,
spreading,  migration and osteogenic differentiation was activated by RhoA. This study found that  pharmacological
blocking of RhoA affected adhesion and behaviour of cells on smooth and microstructured surfaces but not on scaffolds
with nanopatterned surfaces thus suggesting that nanotopography may result in cells using alternate signalling pathways
to mediate adhesion, migration and osteogenic differentiation [50]. Further evidence of the influence of nanotopography
on cell biology was provided by Jimbo et al. who evaluated the impact of nanostructured calcium phosphate-coated
titanium  implants  on  osseointegration  of  the  implant  in  a  rabbit  defect  model  [51].  Coated  titanium  implants
demonstrated upregulation of ALP and Runt-2 with downregulation of tumour necrosis factor-α suggesting increased
osteoprogenitor  activity  and  reduced  inflammation  at  2  weeks  of  implantation.  At  4  weeks,  they  found  further
upregulation of osteogenic genes and interestingly upregulation of markers of osteoclast activity in the coated implants.
This  alongside  analysis  of  conventional  removal  torque  suggested  progressive  mineralisation  of  bone  around  the
implants and resorption of the coating by Osteoclast. Unfortunately, the significance of this coating with respect to long
term  osseointegration  of  the  implant  is  not  evident  due  to  the  short  time  course  (2  and  4  weeks)  of  the  in  vivo
implantation. The importance of nanotopography in controlling stem cell fate was also demonstrated by Ahn et al. who
through altering nanopost density of polyurethrane scaffolds were able to encourage human mesenchymal stem cells to
undergo  adipogenic  or  osteogenic  differentiation  depending  on  the  spatial  arrangement  [52].  This  study  gives  an
important insight into the role of nanotopography in controlling osteoprogenitor differentiation through manipulating
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cystoskeletal structure and intracellular signalling. Whilst further in vitro and in in vivo work is needed, it provides the
potential  for  developing  biphasic  scaffolds  capable  of  differentiating  cells  into  different  tissue  types.  This  could
eventually be useful in tissue engineering cartilage and bone for reconstructing joints.

It is increasingly acknowledged that the physical environment plays a crucial role in determining stem cell fate in
the  case  of  osteogenic  differentiation.  Ribeiro  et  al.  recently  demonstrated  that  polymer  scaffolds  which  provided
dynamic piezoelectric stimulation optimised osteogenic differentiation of human adipose derived stem cells in vitro
[53]. Nanotechnology can be used to generate a mechano-physical environment which will influence osteoprogenitor
differentiation. Whilst verification of osteogenic differentiation was limited to ALP activity only, this study is important
as  it  shows the  importance  of  the  biophysical  environment  in  directing cell  fate.  Cho et  al.  used a  nanoactuator  to
generate a piezoelectric signal on polymeric scaffolds PCL, PLGA and tricalcium phosphate. They then demonstrated
that this biophysical environment stimulates human adipose derived stem cells towards osteogenic differentiation and
provide tissue for repair of calvarial defects in rats [54].

Porosity of a scaffold is also an important dictator of osteoprogenitor cell behaviour and differentiation as well as
vascularisation [55]. Nanotechnology was used by Kim et al. to fabricate a porous chitosan and nanohydroxyapatite
nanocomposite scaffold. In this instant, the use of nanohydroxyapatite provided a scaffold with high porosity, uniform
pore size and an increased hydroxyapatite content [56]. Additionally these nanomodified scaffolds exhibited greater
compressive strength. in vitro, this scaffold optimised osteogenic differentiation of murine calvarial-derived osteoblast
precursor cells when compared with unmodified scaffolds. The limitation of this study is that analysis of osteogenic
differentiation  was  restricted  to  ALP  activity  and  mineralisation  only.  There  was  no  data  on  architecture,  matrix
deposition or mechanical properties of cell-scaffold constructs.

Proposed Mechanisms by which Nanomaterials Cause Osteogenic Differentiation

Osteogenic  differentiation  involves  a  complex  and  tightly  regulated  process  of  inter-,  intra-  and  extracellular
signalling  (Fig.  2).  A  number  of  studies  have  attempted  to  describe  the  pathways  through  which  osteogenic
differentiation  of  osteoprogenitor  cells  is  caused  by  nanomaterials.  Xia  et  al.  demonstrated  enhanced  osteogenic
differentiation of rat adipose derived stem cells on hydroxyapatite bioceramic scaffolds which had nanotopographical
features  as  evidenced by upregulation of  osteogenic  and angiogenic  markers  [57].  They then showed that  using an
inhibitor of the AKT signalling pathway resulted in suppression of these effects. These scaffolds were then implanted in
a critical sized calvarial defect in rats which again showed increased osteogenesis and angiogenesis in the micro-nano
topography groups compared with smooth surface. This study however did not assess the effect of inhibition of the
AKT signalling pathway in vivo.  Nanotopography on titanium surfaces was similarly shown to increase osteogenic
differentiation of human bone marrow derived stem cells by Kato et al. [58]. Osteogenic differentiation of these cells on
titanium with nanotopgraphy was shown to regulate a number of microRNAs, three of which are key in the SMAD-
BMP-2 signalling pathways.

Nanofibrous  scaffolds  demonstrated  enhanced  osteogenic  differentiation  in  vitro  and  in  vivo  of  bone  marrow
derived stem cells with upregulation of genes associated with the integrin-SMAD-BMP pathways. This study provides
further insight into how nanomaterials induce osteogenic differentiation but this is limited to in vitro work only as the in
vivo study only studied the effect of nanofibre scaffolds on bone formation in repairing a calvarial critical defect. The
use of rat Bone marrow derived stem cells also limits the applicability of these findings.

Both Yi  and Yang demonstrate  promotion of  osteogenic  differentiation of  mesenchymal  stem cells  when using
nanoparticles and the signalling pathways by which this occurs [59, 60]. Yi et al. found that gold nanoparticles altered
MSC  behaviour  and  resulted  in  activation  of  the  MAPK  signalling  pathway  yielding  osteoblastic  cells  [59].  The
metallofullerine nanoparticles studied by Yang et al. were also shown to promote osteogenic differentiation of MSC
which was inhibited on addition of noggin which is an inhibitor of the BMP signalling pathway. They also describe
rescue of bone density in ovariectomised osteoporotic rats when these nanoparticles were used in vivo [60].

A number of studies have explored the mechanism by which nanomaterials can promote osteogenic differentiation
of osteoprogenitor cells. Depending on the type of osteoprogenitor used and application of nanotechnology, different
pathways have emerged. This suggests that there is likely a complex network of signalling pathways through which
nanomaterials  alter  cell  behaviour  and  fate.  More  studies  are  required  using  human  osteoprogenitor  cells  and  also
investigation of the pathways involved when nanomaterials are used in vivo.
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Table 1. Traditional scaffolds available for bone tissue engineering.

Scaffold type Example Derivation Main advantages Limitations
Natural Alginate Polysaccharide

(derived from
seaweed)

Licensed for clinical use.
Available as a hydrogel or microparticle .
Easy functionalization with growth
factors/peptides and conjugation with other
scaffolds.

Rapid degradation
Low mechanical strength

Collagen Main
extracellular
matrix
component of
bone

Easily modified through addition of growth
factors.
Licensed for clinical use.
Easily combined with other scaffolds.

Fibrin Fibrous protein
synthesized
during the
clotting cascade

Licensed for clinical use.
Osteoinductive properties.
Mass producible.

Gelatin Proteins and
peptides derived
from collagen

Available in many forms including hydrogels

Silk Protein polymer Low immunogenicity.
Controlled degradation.

No long term degradation
studies

Decellularised matrix Fabricated
through
decellularisation
of tissues

Frequently used in preclinical and clinical tissue
engineering research.
Low inflammation.
Preserves extracellular architecture and
components.

Lengthy fabrication protocols.
Risk of immunogenicity.
Not easily reproducible.

Synthetic Polygcolic acid Polyester
porous scaffold

Biodegradable
Mass producible.
Easily modified to alter topography or
functionalise with groups/motifs.

Degradation products induce
inflammation

Polyethylene glycol Polyether
compound

Licensed for clinical use.
Mass producible.
Low toxicity.
Biodegradable.

Low mechanical strength
Rapid degradation

Polycaprolactone Biodegradeable
polymer

Mass producible.
Easily modified to incorporate groups/motifs.
Provides mechanical strength.

Unstable degradation

Poly-l-lactic acid Biodegradable
polymer

Mass producible.
Easy surface modification to alter topography.
Provides mechanical strength.

Rapid degradation

Natural-Synthetic
composite scaffolds

Alginate/O-carboxymethyl
chitosan (O-CMC)

Biodegradable
hydrogel

Mass producible.
Mimics extracellular matrix.
Easily injected into tissues.

Rapid degradation.
Low mechanical strength.

PLGA/hydrogel Biodegradable
hydrogel

Mass producible.
Provides mechanical strength.

Rapid degradation.

Alginate/poly vinyl
alcohol (PVA)

Crosslinked
biodegradable
scaffold

Available as a hydrogel or porous scaffold.
Mass producible.
Provides mechanical strength. Mimics
extracellular matrix.

Unstable degradation.

CONCLUSION AND FUTURE DIRECTION

The highly complex mechanical, metabolic and haemopoietic functions of bone means it is virtually impossible to
replace with foreign body implants alone. It requires a vascular supply and thus autologous bone grafts are limited to
reconstructing small defects. Vascularised bone grafts are also limited to smaller sized defects as they generate a donor
site morbidity, which must be offset by the benefits of reconstruction. For this purpose, tissue engineering offers the
potential  to  bioengineer  autologous  bone  tissue  from osteoprogenitor  cells  that  can  be  harvested  from a  variety  of
different tissues. Opinion with respect to optimal cell type differs and although generally, the need for a scaffold to
directly or indirectly support osteoinduction of cells is agreed upon, the type of scaffold is not.

Nanotechnology can be used to guide osteoprogenitor cell differentiation in order to regenerate bone defects. The
most recent reviews and studies were discussed in this paper and they demonstrate that the biophysical properties of the
bone  extracellular  matrix  can  be  successfully  mimicked  using  nantoechnology  in  order  to  promote  osteogenic
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differentiation of progenitor cells. This has been achieved by using nanoparticles and fibres as scaffolds or conjugation
of  nanoparticles  with synthetic  and natural  scaffolds  to  generate  nanocomposite  structures,  which can then support
osteoinduction.  Nanotechnology  can  also  be  used  to  deliver  genes  or  growth  factors  to  cells  and  thus  stimulate
osteogenic differentiation of the cells. We have also reviewed how scaffold strength, structure, physical properties and
topography can be modified using nanotechnology to promote osteoprogenitor differentiation. The limitations of the
studies have however been that most are in vitro and those in vivo were small animal studies which do not provide long
term follow up. Additionally, most studies only analyses the biochemical behaviour of the osteogenically differentiated
cells  with  a  paucity  of  data  on  the  mechanical  and  organisation/architecture  of  these  tissue-engineered  bones.
Combination of these is needed to demonstrate the maturity and quality of bone formation. Further data is also required
with respect to long term maintenance of osteogenic differentiation of the cells and structure of the engineered bone in
vitro  and  in  vivo  during  and  after  degradation  of  these  biomaterials.  Despite  this,  nanotechnology  is  a  rapidly
progressing field, which provides the tools to mimic the extracellular matrix and biophysical environment present in
tissues thus allowing the tissue engineer to control proliferation, survival and fate of stem cells. This has enormous
potential  for  clinical  application  in  the  treatment  of  bone  disorders.  Nanoparticles  and  nanofibres  can  be  used  to
influence the migration and behaviour of precursor cells through the delivery of genes, signals or therapeutic agents to
promote  defect  repair,  increase  bone  density  or  treat  disease.  Nanoscaffolds  can  be  used  to  promote  osteogenic
differentiation of precursor cells and thus provide bone for the repair or replacement of defective tissue without the need
for using foreign body implants or invasive autologous tissue transfer procedures.
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