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Abstract:  Long  term  studies,  focusing  on  population-  and  socio-biology  research,  require  the  unequivocal  identification  of
individuals. DNA studies with Short Tandem Repeats (STR loci) became a widespread tool in population genetics. We used the next-
generation sequencing (NGS) approach with 454 shot-gun pyrosequencing to identify 13 new polymorphic STR loci for the Common
Tern, Sterna hirundo. To enlarge the marker set we added two more loci originally developed for Black-legged Kittiwake (Rissa
tridactyla) and Red-billed Gull (Chroicocephalus scopulinus) and arranged these 15 loci into three multiplex PCR panels for high
throughput genotyping. Loci characterization demonstrated that our marker set is of high quality. A PIC value of about 0.67 and a
power of exclusion value of 0.99 were reached. Deviation from Hardy-Weinberg expectations of some loci and low frequencies for
null alleles are interpreted as a result of inbreeding and founder effect in the investigated tern colony. We used a test data set of this
well-studied breeding colony of Common Tern at Banter Lake, Wilhelmshaven, Germany, to perform a parentage test. Parent-chick
relationships, known from the social pedigree of that colony, were compared with genetically calculated ones. In order to test our
markers and the used parentage program COLONY, we conducted six competing data sets with varying completeness of included
parental genotypes. By including fully sampled parent pairs of known family assignment, results were correct for nest mates, single
parents and parent pairs. Our marker set provides a powerful tool to investigate life-time reproductive success and other issues of
population and socio-biology for Common Terns, e.g. in the aforementioned colony monitored for decades.

Keywords:  Common  Tern,  COLONY  Software,  Genotyping,  Microsatellites,  Multiplex  PCR,  Next-Generation  Sequencing,
Parentage  Analysis,  Sterna  Hirundo.

INTRODUCTION

Population and socio-biology research of birds requires long-term studies. Monitoring of populations or breeding
colonies over a long period of time depends on the unequivocal identification of individuals. Trapping and re-trapping
as well as the utilization of different tagging methods (metal and color rings, pit-tags, wing-tags, radio- and satellite
transmitters)  are  among  the  most  common  means.  These  methods  are  extremely  useful  also  in  evaluating  animal
movements, especially in migrating species, as well as investigating habitat use in breeding and wintering areas, for
example in Montagu’s harriers [1 - 4] among many others.

However, some of them are invasive and may have possible influences on the survival of individuals [5 - 7], which
could for example affect interpretation of dispersal, philopatry and survival rate. Furthermore, methodical challenges
mayarise from different recovery probabilities.
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DNA analyses might be an additional and sometimes more powerful tool to identify individuals. It could improve
studies  on  philopatry  and  survival  and  enhances  research  topics  like  connectivity  and  exchange  rates  between
populations as well as genetic diversity within and between (sub)populations [8]. They also possess the advantage to
provide detailed knowledge of kinship and demographic structure within a particular population or breeding colony,
which  can  be  used  for  life-history  analyses.  Furthermore,  utilizing  parentage  tests  via  genetic  markers,  already
uncovered many peculiarities in breeding systems such as extra-pair parentage in many bird species [9 - 12]. Among
genetic applications, microsatellites (short tandem repeats, STR loci) and SNPs (single nucleotide polymorphisms) are
presently among the most useful genetic markers for population genetics [13 - 15].

With  the  development  of  next-generation  sequencing  (NGS)  approaches,  the  identification  of  highly  variable
markers for non-model species became efficient and cost saving [16 - 18]. Numerous species-specific marker sets have
been developed [19 - 26] in recent years.

We used NGS to identify new polymorphic STR loci for the Common Tern, Sterna hirundo (Linnaeus, 1758) and
developed three multiplex PCR panels for high throughput genotyping. Microsatellites are among the most often used
genetic markers to identify individuals for population studies such as paternity testing [9, 27 - 31] population structure
[32, 33] and phylogeography [34 - 36]. The paramount advantages of codominant multi-allelic markers has been shown
[23, 37].

In order to evaluate the suitability of the marker set for parentage assignments, we characterized the loci regarding
common parameters such as number of alleles, observed and expected heterozygosity, deviation from Hardy-Weinberg
expectations, polymorphism information content, power of exclusion and null-allele frequencies, as well as parameters
concerning identity, sibship and parentage discrimination. To test the ability of parentage assignment in reality we used
samples  from a  well-studied breeding colony of  Common Tern.  The investigated  breeding colony is  located  on an
artificial  island  on  the  Banter  Lake  in  Wilhelmshaven,  Germany  (53°30’  N,  8°06’  E)  [38,  39].  The  widely  used
parentage program COLONY 2.0 [40] was used. The test data set comprised samples of a known social pedigree. Since
1992 the social pedigree of the Banter Lake tern colony has been investigated via an ingenious registration system that
enables  a  completely  monitored colony.  Adults  and chicks  are  marked with  subcutaneous transponders  that  can be
recorded automatically at the breeding sites [38]. Numerous different studies dealing with population ecology have been
derived from these data [41 - 44]. By investigating this well studied colony, we were able to compare a data set of
known kinships (chicks and their social parents) with genetically assigned ones. Furthermore, we wanted to learn about
required quality of genotyping data and the reliability of the used parentage program COLONY. This software is able to
assign missing parents even without parental genotypes. It defines parents with a symbol (‘#’ for mothers and ‘*’ for
fathers) and a consecutive number, which enables sibship determination. For our quality test, we conducted six different
parentage tests and compared them with our known pedigree. Data sets for these tests varied in their completeness of
available  parental  genotypes  so  that  COLONY  had  to  construct  the  pedigree  with  more  or  less  complete  genetic
information.  Sampling  of  genetic  material  is  often  difficult  in  wild  animals  and  achieving  material  from complete
populations is often far from being realistic. Hence, assignment results of these competing data sets may give us an idea
about the required amount of parental genotypes in parentage assignment tests for future studies. Moreover it could
enable researchers to interpret and evaluate likelihood-based parentage studies in general conducted with COLONY.
The  development  of  new  species-specific  STR  markers  for  the  Common  Tern  now  also  facilitates  a  long-term
population genetic study of this colony, to investigate for example heterozygosity, fitness and inbreeding, among many
other topics. New microsatellite markers will help to determine the population genetic structure of the Common Tern
such as it has already been done for the endangered Roseate Tern, Sterna dougallii, in the northwestern Atlantic and
western Australia [45, 46].

MATERIALS AND METHODOLOGY

Blood Sampling

DNA samples from juvenile and adult Common Terns were collected in a well-monitored colony in the harbour area
of Wilhelmshaven (Banter Lake,  German North Sea coast).  During the breeding season, samples from non-fledged
nestlings  were  obtained  from  blood  of  quills  from  body  feathers  plucked  before  fledging  or  from  tissue  samples
collected from chicks found dead on the ground. Triatomine bugs, Dipetalogaster maxima Uhler, 1894 (Heteroptera,
Reduviidae) were used to sample blood from incubating adult birds [47, 48]. Since most of the breeding pairs were
equipped with a transponder, we were able to identify the social parents for each chick. Feathers, blood samples and
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tissue material from dead birds were stored in an EDTA buffer (10% EDTA, 0.5% NaF, 0.5% thymol, 1%, Tris-HCL,
pH = 7.5) at 4 °C until DNA extraction.

DNA Extraction, 454 Pyrosequencing and Primer Development

For  DNA  extraction  we  used  a  standard  proteinase  K  (Merck,  Darmstadt)  protocol  [49].  454  shot-gun
pyrosequencing (NGS) on a  GS Junior  sequencer  (454 Life  Sciences/Roche Applied Science)  was used to create  a
genomic  library  of  the  Common  Tern,  using  the  GS  FLX  Titanium  Rapid  Library  Preparation  Kit  following  the
manufacturer’s recommendations. Starting material for the sequencing library was 500 ng genomic DNA. Emulsion
PCR was carried out with a ratio of two DNA copies per bead. A single sequencing run yielded 56,755 reads with an
average read length of 391 (±165) base pairs, totaling ~22.19 Mb of sequence data. Sequence reads were scanned with
MSATCOMMANDER 0.8.1 [50] for repetitive loci. In total, 233 STR motifs (excluding mononucleotide repeats) could
be  identified.  Using  Primer3  software  [51]  we  found  96  primer  pairs  of  which  80  were  unique.  Of  those,  48
microsatellite loci containing at least six repeats were tested for polymorphisms. Ten Common Tern DNA samples were
amplified by PCR under the following conditions: a PCR reaction of 25 µL contained 60 ng of total genomic DNA, 0.4
pmol/µL of each forward and reverse primer, 0.1 mM of dGTP, dCTP and dTTP, as well as 45 µM of dATP, 1.5 x PCR
buffer (Bioron), 0.15 units of Top-Taq DNA polymerase (Bioron), 1 µCi [α-33P]-dATP (Amersham Biosciences) and a
variable amount of mono distilled water to reach a volume of 25 µL. In a TGradient ThermoCycler (Biometra) we
performed the following thermocycling program: initial denaturing for 5 min at 95 °C, followed by 38 cycles of 45 s at
95 °C, 60 s at 50–58 °C, 90 s at 72 °C, followed by a final extension step at 72 °C for 10 min and a cooling step at 15
°C  for  storage.  PCR  products  were  denatured  (95  °C  for  5  min)  for  electrophoresis  on  a  vertical  high-resolution
polyacrylamide gel (Urea 5%) at 65 W for 1.5 h (run length ca. 40 cm). An X-ray film (Hyperfilm-MP; Amersham) was
placed on the dried gel for 1–2 days for autoradiography and afterwards was developed with X-ray developer and fixer
(Kodak). Six primer pairs showed no amplification products, whereas the remaining 42 amplified well. Twenty-four of
them produced several different allele bands and were used for further development steps, including multiplex PCRs. In
order to enlarge the marker set, we included six primers developed for Black-legged Kittiwake (Rissa tridactyla) and
Red-billed Gull (Chroicocephalus scopulinus) [52, 53].

Primer Labelling, Multiplex PCR and Fragment Length Analysis

Of the 24 newly developed and tested loci 11 failed to amplify properly in multiplex PCRs or showed evidence for
null alleles after locus characterization and thus had to be rejected. Furthermore, we tested primers recently isolated
from Roseate Terns (Sterna dougallii)  that were shown to amplify in Common Terns [45, 46].  Unfortunately these
primers did not match to our multiplex PCR panels. Instead, two primers developed for Black-legged Kittiwake and
Red-billed Gull [52, 53] performed well in our test PCRs and were included in the marker set (see result part). With
these resulting 15 loci,  we established three multiplex PCR panels,  each containing five different  primer pairs.  All
forward primers were labeled at the 5’ end with one of three different fluorescent dyes (6-FAM and HEX produced by
Eurofins MWG Operon, as well as NED produced by Applied Biosystems). Primers with overlapping allele size ranges
were labeled with different dyes, whereas those with non-overlapping ranges were labeled with the same dye.

We used Type-it Microsatellite PCR Kit (Qiagen) for Multiplex PCRs under the following conditions: a reaction
volume of 15 µL contained 0.09–0.24 pmol/µL of each forward and reverse primer, 15 ng of total DNA, 7.5 µL of 2x
Type-it  Multiplex PCR Master Mix and a variable amount of RNase-free water to reach the end-volume of 15 µL.
Thermocycling started with an initial denaturing step at 95 °C for 5 min, followed by 29 cycles of 30 s at 95 °C, 90 s at
58 °C for each multiplex set and 72 °C for 30 s, a final elongation step at 60 °C for 30 min and a cooling step at 4 °C.

A 96-well plate of diluted PCR products (2.5 µL PCR product mixed with 7.5 µL sterile filtrated mono distilled
water) was analyzed on a Applied Biosystems DNA-Analyzer (ABI 3730) by GATC, Köln, Germany. As internal size
standard  ET-ROX  500  (Amersham  Biosciences)  was  added  to  each  sample.  Peak  Scanner  Software  2  (Applied
Biosystems) was used to analyze result files, which produces decimal numbers for each fragment. We wrote a script in
R v3.1.0 [54] to round the decimal numbers for each allele to full allele units in a more objective way. To first define
the expected number of alleles per locus, we sorted all  occurring unrounded alleles at  a specific locus per size and
plotted them in a diagram. Allele units were defined when significant gaps between fragment sizes became clear [17].
For each marker, rounding was performed by comparing each allele with the previous one by taking into account the
locus-specific repeat-motif  length and a pre-defined minimum discriminatory distance.  If  the distance between two
subsequently compared alleles was smaller than the defined distinction distance, both alleles were rounded to the same
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value.  On the contrary,  a  larger  value between two compared alleles  resulted in assigning two different  alleles.  To
achieve an accurate rounding result we also manually compared the received rounded alleles with the sizes gained from
Peak Scanner Software 2.

STR Characterization and Parentage Assessments

For STR characterization we used 46 adult Common Tern samples. Parentage assignment was conducted with these
parents and 85 of their chicks. Samples were collected in the breeding seasons of 2000–2012 and corresponded to 23
different families; they included both parents and their offspring that were produced in the study period. The number of
chicks per family varied between a single one and 11 individuals. 56.5% of families produced at least three chicks. All
of the analyzed samples were fully genotyped, which means that all alleles of the 15 markers were determined.

For  single  locus  characterization  we  used  CERVUS  3.0  [55]  to  estimate  number  of  alleles  (Na),  observed  and
expected  heterozygosity  values  (Hobs  and  Hexp)  as  well  as  polymorphism  information  content  (PIC).  Moreover,  the
program  was  used  to  estimate  PIC,  non-exclusion  probabilities  for  parents,  individual  identity  and  sib  identity
probabilities  for  the  whole  marker  set.  Genepop  V4  [56]  was  used  to  calculate  exact  values  for  Hardy-Weinberg
expectations (HWE) with a Bonferroni correction for multiple comparisons (probability test: dememorization steps:
100000, batches: 500, iterations per batch: 10000) and to estimate null allele frequencies. PowerStats V12 (Promega
Corporation 2000) was used to determine power of exclusion values (PE) for each locus and across all loci. COLONY
2.0 [40] was chosen for parentage assignment. We did not add information about full-sib relationships for computation,
which is  facultative  in  the  program’s  pre-setting.  A polygamous mating system was assumed for  both  sexes  in  the
calculation,  since  samples  from  half-sibs  of  different  years  were  present  in  the  data  set.  To  test  our  markers  and
COLONY  software  for  assignment  quality  we  prepared  six  contrasting  data  sets.  While  genotypes  for  nestlings
remained complete in all  of  the six calculations,  entire  used parental  genotypes varied:  Calculation one (23M.23F)
contained all available parental genotypes, the second one (11M.23F) contained 100% of paternal genotypes but only
11 randomly selected ones for mothers. The third one (11F.23M) contained 100% of maternal genotypes but only 11
randomly selected ones for fathers. Calculation four (0M.23F) contained only paternal genotypes while data set 0F.23M
only maternal ones and data set 0M.0F no parental genotypes at all. Assignment results concerning correct allocation of
nest mates and parent pairs were compared with information from the social pedigree. A family was defined according
to chicks that were sampled in the same nest and their social parents that were identified through transponder readings.
Additionally to COLONY software we confirmed the parentage assignments by eye and checked for sex-linked loci.
This was a necessary controlling step regarding the reliability of the new marker set.

RESULTS

By means of next-generation sequencing 13 new polymorphic STR loci could be isolated for the Common Tern. We
added two markers (locus K32, isolated from Black-legged Kittiwake [53] and locus RBG18, isolated from Red-billed
Gull [52]) and established three different multiplex panels, containing together 15 loci (Table 1).

Table 1. Three multiplex PCR panels for the amplification of microsatellite loci in the Common Tern.

Multiplex
Panels Locus Primer Sequence (5'–3') Dye

Concentration
[pmol/µL]

Panel 1 K32 F: CATTGCACGAGTGTTAAGCTG FAM 0.12
R: AAGGGTGCCTGTCCTTGTC

MsSh22 F: GCCAGCTCTGCAATTCTACG HEX 0.24
R: ACCCAGTAACCAGGCAGATG

RBG18 F: AAAGGGCTGCTCATAGTACG HEX 0.09
R: GTAGCATCATGTCTTCCCGC

MsSh07 F: AGGCATTCTGAAATAGTGGGC NED 0.09
R: AGGTCAGATATGTTCGTTGTGG

MsSh03 F: GTTGGTGCTTGGAAGTAGGC NED 0.20
R: AATGCCTGTCAGTTGGGTGG

Panel 2 MsSh23 F: GCGCATGAATGAGAGACAATTG FAM 0.11
R: TGTATCCATGGCTCAGCTACC

MsSh18 F: AGAGCCAGGCACCCATATTC FAM 0.23
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Multiplex
Panels Locus Primer Sequence (5'–3') Dye

Concentration
[pmol/µL]

R: CAGGTGGGTCGTCATGAGAG
MsSh20 F: GTCCGTACAGAGGTTAACGC HEX 0.12

R: ATGGTCACACTCGTCTCACC
MsSh21 F: TGGTGTGCATGCATTTGTGG NED 0.13

R: GGCATTAGTCAGGGTGTGTC
MsSh31 F: AGAGAGAAGGAATTGGTGTAGC NED 0.09

R: GGACCTGAGATCACCACAAG
Panel 3 MsSh10 F: GCTGCGTATGTCCCAACTTG FAM 0.12

R: CCAAATTGCTCCTCTGGCTG
MsSh08 F: GTAGCCTCAGTACTGGTGGG FAM 0.11

R: CCGTCTAAAGCCAGCACTTG
MsSh09 F: GTGTCACCTGCCCAGAAATG HEX 0.16

R: AGGGCATACATCCCTCATCC
MsSh48 F: ATACACTGGCGGATGTTGTC HEX 0.19

R: ACAAGATGACACAGAGCTGC
MsSh37 F: AGCCAAACGACCTGAGTGAG NED 0.14

R: GGAGAAGAGATGGTGTGTGC
Each forward primer is labeled with one of three different fluorescent dyes.

In Table 2 we characterized each locus. Mean number of alleles per locus is 8 and a calculation of PIC across all
loci revealed a value of 0.67. Only three loci (MsSh10, MsSh37 and K32) showed PIC values below 0.50. Significant
deviation from Hardy-Weinberg expectations was found for MsSh18 and MsSh23. Furthermore, null alleles may exist
in locus MsSh07, MsSh20, MsSh21, MsSh23 and MsSh31, when setting the acceptance boundary to 0.05. None of the
loci appeared to be sex-linked. Sex-linked loci would result in accumulated homozygote alleles in one sex, while the
other one mainly would appear heterozygote.

Table 2. Characterization of the 15 STR loci for the Common Tern.

Locus Repeat Na Size Range [bp] Hobs Hexp HWE PIC PE Null
MsSh03 (AAAC)6 5 292–308 0.63 0.62 0.90 0.57 0.33 0.00
MsSh07 (ATTC)7 6 192–216 0.54 0.65 0.06 0.59 0.23 0.10
MsSh08 (ATTC)7 8 213–253 0.80 0.81 0.89 0.77 0.61 0.02
MsSh09 (ATCC)10 7 237–261 0.87 0.84 0.67 0.81 0.73 0.00
MsSh10 (AGGC)7 4 147–163 0.57 0.54 0.88 0.48 0.25 0.00
MsSh18 (AAT)17 12 221–284 0.80 0.82 0.03 0.79 0.61 0.01
MsSh20 (AC)12 12 102–132 0.74 0.87 0.07 0.85 0.49 0.06
MsSh21 (AC)10 8 113–135 0.80 0.81 0.08 0.78 0.61 0.11
MsSh22 (AC)15 12 131–163 0.78 0.81 0.23 0.78 0.57 0.05
MsSh23 (AC)13 10 165–197 0.63 0.78 0.03 0.74 0.33 0.10
MsSh31 (AG)10 4 171–177 0.59 0.66 0.34 0.59 0.28 0.08
MsSh37 (AC)9 8 392–418 0.46 0.45 0.81 0.42 0.15 0.00
MsSh48 (AAT)8 10 326–353 0.89 0.88 0.40 0.86 0.78 0.02

K32 (GA)2(GT)12 4 109–115 0.41 0.38 0.70 0.35 0.12 0.00
RBG18 (GT)11 8 173–193 0.78 0.76 0.64 0.71 0.57 0.00

Na:  number  of  alleles;  Hobs:  observed  heterozygosity;  Hexp:  expected  heterozygosity;  HWE:  deviation  from Hardy-Weinberg  expectations;  PIC:
Polymorphism information content; PE: power of exclusion; Null: null allele frequency.

Parentage Analysis

Different statistics for parentage analyses and identity tests are represented in Table 3. A power of exclusion (PE)
value over all loci of about 0.99 was reached. The inclusion of parental genotypes in kinship calculation leads to a much
higher probability of excluding an unrelated candidate parent from parentage of an arbitrary offspring than without
including parental genotypes. We assume that individual identities (NE-I) and full-sibling relationships (NE-SI) are
highly reliable.

(Table 1) contd.....
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Table 3. Statistics for parentage analyses across all 15 loci.

Statistic of Interest Probability
PEall 0.99
NE-1p 1.13*10-3

NE-2p 9.53*10-6

NE-pp 2.96*10-9

NE-I 1.74*10-15

NE-SI 2.46*10-6

PEall: power of exclusion over all loci. Probability of combined non-exclusion of two potential parents with unknown (NE-1p) and known (NE-2p)
parental genotypes, as well as for parent pairs (NE-pp). Furthermore the probability of failing distinction between two randomly selected individuals
(NE-I) or full-siblings (NE-SI).

We analyzed parentage of 85 juvenile Common Terns and corresponding 46 parents (23 females and 23 males). In
order to test the program as well as the suitability of our marker set, six assignment runs were conducted. Results are
shown in Table 4, where each run differs by the inclusion of involved parental genotypes. For the case of providing all
maternal  and paternal  genotypes (23M, 23F),  COLONY 2.0 identified 23 different  parent-chick families  with their
expected sibship and parent-pair combinations. By omitting 12 maternal genotypes (11M, 23F) maternal and parent pair
assignment became incorrect for 1.2% of all chicks, while nest mates and fathers were correctly assigned to 100%. The
erroneous assignment corresponds to one nest with only one chick. For the case of omitting 12 paternal genotypes from
calculation (11F, 23M), only maternal genotypes could be correctly assigned for 100% of the cases. In two nests with
two chicks the assignments failed. When supplying only genotypes of a single parental sex (0M, 23F and 0F, 23M),
assignment was accurate for the supplied one but incorrect for the other sex and parent-pair combinations in 3.5% of all
chicks.  In total,  91.3% of nest  mates were assorted correctly in both cases.  In the first  calculation, assignment was
incorrect  for  one  nest  with  one  chick,  one  nest  with  two  chicks  and  one  nest  with  three  chicks.  For  the  second
calculation mistakes were found in two nests with two chicks. Finally, assignment results became more prone to errors
when no parental genotypes were provided at all. Additionally to the use of COLONY, we confirmed the parentage
assignments by eye. Mismatches among genotypes of expected parents were not present.

Table 4. Comparison of parentage assignment for six calculations.

Included parental genotypes
Assignment result for: 23M, 23F 11M, 23F 11F, 23M 0M, 23F 0F, 23M 0M. 0F
correct nest mates 100.0 100.0 91.3 91.3 91.3 60.9
correct father 100.0 100.0 96.5 100.0 96.5 87.1
correct mother 100.0 98.8 100.0 96.5 100.0 88.2
correct parent pair 100.0 98.8 96.5 96.5 96.5 78.8
Parentage was calculated for 85 chicks, 23 mothers and 23 fathers. Assortment of nest mates, single fathers, mothers and parent pairs to available
chicks were tested depending on provided parental genotypes. 23M, 23F: all parental genotypes are provided; 11M, 23F: 12 maternal genotypes are
left out from calculation; 11F, 23M: 12 paternal genotypes are left out from calculation; 0M, 23F and 0F, 23M respectively: only maternal or paternal
genotypes were involved; 0M, 0F: parentage test was performed without parental genotypes.

DISCUSSION AND CONCLUSION

Using 454 pyrosequencing we identified 13 new loci that provide a useful tool for genetic analyses and parentage
tests  of  Common Terns.  Only three  loci  showed PIC values  less  than 0.5,  which implies  a  moderate  polymorphic-
information content for them. Nevertheless, the whole marker set is highly informative, due to an overall high PIC value
and high discrimination probabilities for parents and sibs. Genepop software revealed deviation from Hardy-Weinberg
expectations for two loci and a slight to moderate possibility of existing null alleles for five loci. We interpret these
findings  as  a  result  of  the  small  initial  colony size.  The colony originated from a small  founder  population so that
inbreeding  is  possible  [57].  Nevertheless,  the  present  marker  set  is  of  very  good  quality,  since  identification  of
individuals, siblings and parent-pairs is given. This is evidenced by our comparison of expected (social) and assigned
(genetic) kinships, when varying the amount of included parental genotypes. The comparison of our six test data sets
shows that, by providing genetic information of all possible parents, kinship can be resolved to a very high degree and
resamples the expected pedigree. Without any parental genotypes, assignment result for nest mates, single parents as
well as for parent pairs is less reliable, compared to the known pedigree. This finding is not surprising, since relatedness
is  normally  much  higher  in  small  colonies  (such  as  the  investigated  one)  than  in  large  populations.  A  moderate
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sampling success of all possible parents where at least one parent of a pair is available or one sex could be sampled
completely is the most realistic scenario for many population studies. Under this condition, we achieved in our test data
sets a value of 96.5–100% correctness for single and parent pairs. In that way, we conclude that our new marker set is
able to discriminate adequate between closely related individuals under realistic sampling conditions. Therefore, we
recommend the following points to enable correct assignment results in wild populations and without known pedigree
information:  Development of species specific,  high quality markers,  utilization of fully genotyped samples without
missing alleles, supplemented as much as possible by corresponding parental genotypes. Furthermore, families having
at least three chicks and at least one parental genotype very likely produce unequivocal identifications. Adhering to
such a strict data selection the COLONY software should be able to assign the correct missing parent in most cases.
Hence, correct full- and half-sibship determination will become possible. Since in most biological studies, availability
of parental genotypes is the most crucial point and samples of parent pairs are often incomplete, COLONY software is
a powerful program to identify the missing parent.

The  three  multiplex  STR  panels  will  provide  a  cost  and  time  saving  approach  to  genotype  large  numbers  of
individuals of the Common Tern. They will supplement and expand the research on the social pedigree of the breeding
colony on the Banter Lake. Our aim is to genotype thousands of samples in a long-term population study. Together with
the automated transponder based identification system, it will enable us to receive a more detailed insight into breeding
system, life-time reproductive success, kinship and family structures within this colony.
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