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Abstract:

Background:

Combined  chemotherapy  has  gradually  become  one  of  the  conventional  methods  of  cancer  treatment  due  to  the  limitation  of
monotherapy. However, combined chemotherapy has several drawbacks that may lead to treatment failure because drug synergy
cannot be guaranteed, achievement of the optimal synergistic drug ratio is difficult, and drug uptake into the tumor is inconsistent.
Nanomedicine can be a safe and effective form of drug delivery, which may address the problems associated with combination
chemotherapy.

Objective:

This  review  summarizes  the  recent  research  in  this  area,  including  the  use  of  nanoparticles,  liposomes,  lipid-polymer  hybrid
nanoparticles, and polymeric micelles, and provides new approach for combined chemotherapy.

Methods:

By collecting and referring to the related literature in recent years.

Results:

Compared with conventional drugs, nanomedicine has the following advantages: it increases bioavailability of poorly soluble drugs,
prolongs drug circulation time in vivo,  and permits multiple drug loading, all  of which could improve drug efficacy and reduce
toxicity. Furthermore, nanomedicine can maintain the synergistic ratio of the drugs; deliver the drugs to the tumor at the same time,
such that  two or more drugs of  tumor treatment achieve synchronization in time and space;  and alter  the pharmacokinetics and
distribution  profile  in  vivo  such  that  these  are  dependent  on  nanocarrier  properties  (rather  than  being  dependent  on  the  drugs
themselves).

Conclusion:

Therefore, nanomedicine-mediated combination drug therapy is promising in the treatment of tumors.

Keywords: Nanomedicine, Combined chemotherapy, Combination drug therapy, Tumor.

1. INTRODUCTION

1.1. Tumor Chemotherapy

Tumor  chemotherapy  refers to the  use of chemical  substances to treat cancer.  It is a systemic  treatment  that  can
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effectively kill tumor cells, inhibit the growth of tumors, and improve the survival rate. However, due to poor targeting,
chemotherapy drugs not only kill tumor cells, but also damage the body's normal cells, resulting in a series of toxic side
effects [1]. These include bone marrow suppression, cumulative cardiotoxicity, neutropenia, alopecia, vomiting, etc.
Furthermore,  the  development  of  multidrug  resistance(MDR)  is  a  major  obstacle  for  tumor  chemotherapy  [1,  2].
Generally,  the  toxic  side  effects  and  MDR  of  chemotherapy  could  be  partially  overcome  by  the  combined
chemotherapy.

1.2. Combined Chemotherapy

Because  a  single  chemotherapeutic  agent  is  ineffective  in  tumor  treatment,  the  use  of  two  or  more  drugs
simultaneously or sequentially has become commonplace; this regimen is called combined chemotherapy [3 - 5]. This
approach needs to abide by the following principles: (1) each chemotherapeutic drug should be effective in isolation; (2)
the mechanism by which the drugs act should be different;  (3) the combined effect of the chemotherapeutic agents
should be additive or synergistic; (4) toxicity profiles should not overlap; and (5) the drug combination must have an
acceptable therapeutic window [5, 6]. When compared with individual drug approaches, combined chemotherapy can
reduce the risk of MDR and improve the therapeutic effect, as well as avoiding the side effects associated with the long-
term use of a single drug [7].

To achieve the best therapeutic effect, it is necessary to determine optimal drug ratios in order to maximize drug
synergy. A variety of mathematical methods have been used to calculate the interactions between drug combinations
(namely  synergistic,  additive,  or  antagonistic)  [8,  9].  The  median-effect  method  of  Chou  and  Talalay  is  the  most
common method used for combination drug analysis because it utilizes CalcuSynsoftware to evaluate the optimal drug
ratio  [10].  The  combination  index  (CI)  develops  this  median-effect  method  further  [11],  and  states  that:
CI=(D1)/(DX)1+(D2)/(DX)2, (where (DX)1 and (DX)2 are the concentrations of drug1 and 2 that inhibit the rate of tumor cell
proliferation at X% in isolation, and D1 and D2 are the concentrations of drug1 and 2 in combination that inhibit the rate
of tumor cell proliferation at X%). When CI=1, the drug interactions are additive, whereas the combination drugs act
synergistically when CI<1 and antagonistically when CI>1.

However, there are still some factors, which may contribute to the failure of combined chemotherapy, for example,
uncertainty of drug synergy, difficulty in the achievement of the optimal drug synergistic ratio, and inconsistency of
drug uptake into the tumor [12].

1.3. Nanomedicine

Nanomedicine is a safe and effective form of drug delivery. These formulations use natural or synthetic polymeric
materials to encapsulate or absorb drugs, and the carrier materials include polymers, liposomes, micelles, proteins, and
metallic materials. Compared with traditional drug delivery systems, nanomedicine has the following advantages: it
increases the bioavailability of poorly soluble drugs, prolongs drug circulation time, increases penetrability, permits
loading of a variety of drugs, improves drug efficacy and targeting, and reduces toxicity [13, 14]. These advantages
have  contributed  to  the  research  interest  in  nanomedicine-mediated  combined  chemotherapy  and  resulted  in  the
successful development of some novel nanomedicine-anticancer drugs.

1.4. Nanomedicine-Mediated Combined Chemotherapy

As previously mentioned, combined chemotherapy has certain drawbacks, which result in failure to kill tumor cells.
Nanomedicine may solve this problem by maintaining the optimal synergistic ratio of the drugs, delivering them to the
tumor simultaneously, and altering the pharmacokinetic and distribution profile in vivo because these are dependent on
nanocarrier  properties  (rather  than  being  dependent  on  the  drugs  themselves)  [15].  Thus,  nanomedicine-mediated
combination drug therapy appears to be very promising for tumor treatment and there are several drugs currently in
clinical trials.

2. NANOPARTICLE-MEDIATED COMBINED CHEMOTHERAPY

Nanoparticles  are  usually  prepared  from  natural  or  synthetic  polymeric  materials  using  supercritical  fluid
technology  [16],  the  solvent  evaporation  technique  [17],  and  high  pressure  homogenization  [18].  Ideal  polymeric
materials should be biodegradable and biocompatible. Examples of natural polymers include gelatin, chitosan, alginate,
gliadin, etc., while those of synthetic polymers include polylactic acid (PLA), polyglycolic acid (PGA), poly (lactic-co-
glycolic) acid (PLGA), poly (alkylcyanoacrylate) (PACA), etc. However, some non-biodegradable polymeric materials
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can  also  be  used  for  the  preparation  of  nanoparticles  such  as  polymethyl  methacrylate  (PMA)  and  polymethyl
methacrylate  (PMMA)  or  similar  materials.

Table 1 gives several examples of recent research reports relating to nanoparticle-mediated combined chemotherapy
[15, 19 - 25, 27 - 30]. For instance, co-delivery of docetaxel (DTX) and tanespimycin (17-AAG) by hyaluronic acid
(HA)-modified PLGA nanoparticles had shown the highest synergistic effect in killing MCF-7, MDA-MB-231 and
SCC-7 cells at the molar ratio of 2:1 (DTX:17-AGG), and this synergistic antitumor activity was also demonstrated in
vivo  [19].  Furthermore, Wang et al.  [20] developed PEGylated PLGA nanoparticles for co-encapsulating paclitaxel
(PTX) and etoposide (ETP) and demonstrated that co-delivery system enhanced cell cycle arrest and apoptosis of the
human osteosarcom cells and improved cytotoxic activity of chemotherapeutic drugs.

Table 1. Nanoparticle-mediated combined chemotherapy.

Combined Chemotherapeutics Drug delivery system Type of cancer Ref.
Docetaxel and tanespimycin Hyaluronic acid-decorated PLGA nanoparticles Breast cancer, squamous cell carcinoma [19]
Paclitaxel and etoposide PEG-PLGA nanoparticles Osteosarcoma [20]
Cisplatin and paclitaxel Folic acid modified PEG-PLGA nanoparticles Non-small lung cancer [21, 22]
Cisplatin and doxorubicin Transferrin modified PEG-PLGA nanoparticles Human hepatoma carcinoma [23]

Combretastatin-A4 phosphate and doxorubicin mPEG-PLA nanoparticles Human  nasopharyngeal  epidermal
carcinoma [24]

Paclitaxel and tetrandrine CTAB@MSN Breast cancer [25]
mPEG-PCL nanoparticles Gastric cancer [27]
PEG-b-PCL nanoparticles Gastric cancer [28]

Pirarubicin and paclitaxel Human serum albumin nanoparticles Breast cancer [15]
Hypocrellin B and paclitaxel Hyaluronic acid–ceramide nanoparticles Lung cancer [29]
Doxorubicin and paclitaxel mPEsG-b-PLG-b-PLL/DOCA nanovehicle Non-small cell lung cancer [30]

PEG-PLGA  and  PEG-PLA  nanoparticles  have  also  been  chemically  altered  to  improve  tumor  targeting.  For
example, He et al. [21, 22] utilized folic acid (FA)-modified PEG-PLGA nanoparticles for the co-delivery of cisplatin
(CDDP)  and  PTX.  This  approach  inhibited  non-small  cell  lung  cancer  with  a  drug  concentration  ratio  of  1:2
(CDDP:PTX). Similarly, Zhang [23] and colleagues designed transferrin-modified PEG-PLGA nanoparticles (Tf-DDP/
DOX  NPs)  for  co-delivery  of  CDDP  and  doxorubicin  (DOX).  Compared  with  free  drugs,  Tf-DDP/DOX  NPs
demonstrated greater antitumor activity for hepatoma carcinoma both in vivo and in vitro. Finally, Zhang et al. [24]
synthesized  methoxy  poly  (ethylene  glycol)-b-polylactide  (mPEG-PLA)  diblock  copolymers  by  ring-opening
polymerization. Combretastatin-A4 phosphate (CA4P) and DOX were loaded onto these mPEG-PLA nanoparticles, and
demonstrated  effective  synergistic  cytotoxicity,  inhibiting  human  nasopharyngeal  carcinoma  angiogenesis  and
preventing proliferation of human nasopharyngeal epithelial cancer cells when the drug ratio of DOX:CA4P was 1:10.

In addition to using polymeric materials, inorganic materials, ceramides, and human serum albumin can also be used
as  nanocarriers.  Human  serum  albumin  (HSA),  a  protein  found  in  the  human  serum,  is  particularly  suited  as  a
nanocarrier material due to its non-toxicity, biocompatible, and biodegradable [26]. Yi et al. [15] prepared a co-delivery
system of  PTX and pirarubicin  (THP)  by  using  HSA,  and  their  results  indicated  that  the  nanoparticles  had  greater
cytotoxicity against 4T1 breast cancer cells when compared with single or free drug delivery. Furthermore, the side
effects  of  the  drugs  were  significantly  reduced,  including  bone  marrow  suppression,  and  organ  or  gastrointestinal
toxicity.

3. LIPOSOME-MEDIATED COMBINED CHEMOTHERAPY

Liposomes are spherical envelopes with a lipoid bilayer, adapted to encapsulate drugs [31]. When compared with
nanoparticles,  liposomes  have  greater  biocompatibility,  and  some  liposome-mediated  combined  chemotherapy
preparations  have  entered  into  clinical  trials.  There  searchers  at  Celator  Pharmaceuticals  utilized
distearoylphosphatidylglycerol  (DSPG),  distearoylphosphatidylcholine  (DSPC),  and  cholesterol  (Chol)  to  prepare
liposomes for co-encapsulating cytarabine (Ara-C) and daunorubicin (DNR) at a molar ratio of 5:1. The resulting drug,
CPX-351, significantly inhibited leukemia cells in vitro (while maintaining tumor cell selectivity), and the two drugs
still acted synergistically in vivo, with similar anti-leukemia effects [31 - 33]. Furthermore, CPX-351 is in stage III of
clinical  trials,  and  the  latest  reports  indicate  that  the  US  FDA  has  granted  breakthrough  therapy  status  to  Celator
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Pharmaceuticals’ CPX-351 for the treatment of adults with therapy-related acute myeloid leukemia (t-AML) and AML
with myelodysplasia-related changes (AML-MRC).

A list of recent studies concerning liposome-mediated combined chemotherapy is presented in Table 2 [34 - 44]. For
example, Riviereet et al. [34] compared the antitumor effect of co-delivery of the synergistic drugs fluoroorotic acid
(FOA) and irinotecan (IRN) in the same liposome versus delivery of the same drugs in separate liposomes. The co-
delivery system was more successful in inhibiting the proliferation of C26 cells in vitro; however, the drugs did not
have synergistic effects in the C26 tumor mouse model [34]. These results demonstrate the challenges associated with
developing synergistic treatment protocols in vivo based on in vitro studies.

Table 2. Liposome-mediated combined chemotherapy.

Combined Chemotherapeutics Drug delivery system Type of cancer Ref.
Fluoroorotic acid and irinotecan Liposome Colorectal cancer [34]
Salinomycin and chloroquine Liposome Human hepatoma carcinoma [35]
Salinomycin and Doxorubicin Liposome Human hepatoma carcinoma [36]
Doxorubicin and erlotinib Liposome Triple negative breast cancer, Non-small cell lung cancer [37]
Omacetaxine Mepesuccinate and doxorubicin Liposome Human cervical carcinoma [38]
Combretastatin A-4 and doxorubicin Octreotide-modified stealth liposomes Non-small cell lung cancer, Breast cancer [39]
Paclitaxel and doxorubicin Liposome Lung cancer [40]
Paclitaxel and lonidamine Liposome Breast cancer [41]
Topotecan and vincristine Liposome Daoy tumors [42]
Vincristine and quercetin Liposome Breast tumor [43]
Vincristine and temozolomide Solid lipid nanoparticles Glioma [44]

Our  group  reported  an  effective  strategy  for  targeting  liver  cancer  cells  (HepG2)  and  liver  cancer  stem  cells
(HepG2-TS)  by  developing  liposomes  for  co-delivery  of  salinomycin  (SAL)  and  chloroquine  (CQ)  [35].  After
screening, the synergistic molar ratio of SAL:CQ was 1:5, the liposome particle size was about 120nm, and the PDI was
greater. In vitro cytology results showed that combining drugs could improve the cytotoxic effect of SAL in HepG2
cells, but not in HepG2-TS. We surmised that the mechanism might be related to the basal autophagy flux, as autophagy
plays a  protective role  in  liver  cancer.  Therefore,  we measured the basal  autophagy flux of  the two cell  types,  and
demonstrated that it was significantly greater in HepG2 cells. When SAL was combined with CQ in HepG2 cells,the
antitumor effect of SAL was improved because CQ could inhibit autophagy [35]. Furthermore, our group loaded SAL
and DOX into liposomes separately, and in combination, to assess the subsequent antitumor activity in liver cancer. The
results showed that co-delivery liposomes and separate liposomes had similar antitumor activity [36].

In addition, Morton et al. used the chemical properties of liposomes and drugs to create a controlled sequence of
drug release [37]. The hydrophobic drug erlotinib and the hydrophilic drug DOX were encapsulated in the hydrophobic
compartment and the hydrophilic interior of liposomes, respectively. This enabled them to achieve the desired time
sequence of drug release in which erlotinib first inhibited EGFR activity in cancer cells and changed the intracellular
apoptotic pathways, thus improving the sensitivity of breast cancer cells to the later release of DOX. Encouragingly,
this time-staggered drug delivery could potentially enhance antitumor effects in vivo [37].

4. LIPID-POLYMER HYBRID NANOPARTICLE-MEDIATED COMBINED CHEMOTHERAPY

Lipid-polymer hybrid nanoparticles are prepared using polymeric and lipid materials  which exhibit  a  core-shell
structure [45]. They possess a wide range of potential applications, as they overcome some of the drawbacks associated
with liposome nanoparticles: they are less physically and chemically unstable and they are easier to store, thus reducing
drug leakage into the circulation. Furthermore, they have greater drug loading capacity than polymer nanoparticles, and
exhibit  better  tumor  targeting  [45  -  47].  The  recent  research  regarding  lipid-polymer  hybrid  nanoparticle-mediated
combined chemotherapy is summarized in Table 3 [48 - 52].

Table 3. Lipid-polymer hybrid nanoparticle-mediated combined chemotherapy.

Combined Chemotherapeutics Drug delivery system Type of cancer Ref.
Doxorubicin and curcumin Lipid nanoparticles Hepatoma carcinoma [48]
Doxorubicin and sorafenib Lipid-polymer hybrid nanoparticles Hepatocellular carcinoma [49]
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Combined Chemotherapeutics Drug delivery system Type of cancer Ref.

Axitinib and celastrol PEGylated  lipid  bilayer-supported  mesoporous  silica
nanoparticles

Squamous  carcinoma,  breast  cancer,
neuroblastoma [50]

Paclitaxel and curcumin PEGylated hybrid liposomes-albumin nanoparticles Breast cancer, melanoma cells [51]
Sorafenib and quercetin RGD peptide modified lipid coated nanoparticles Hepatocellular carcinoma [52]

Of particular note, Zhao [48] and colleagues employed lipid-polymer hybrid nanoparticles to encapsulate curcumin
(CUR) and DOX to investigate their antitumor activity on diethylnitrosamine (DEN)-induced hepatocellular carcinoma
in mice. The results showed that co-delivery of CUR and DOX in this way enhanced their antitumor effects, promoting
apoptosis of tumor cells and inhibiting both tumor cell proliferation and angiogenesis. Further analysis also indicated
that  DOX/CUR-NPs had greater  antitumor effects  than DOX-NPs,  which was related to regulation of  the levels  of
hypoxia-associated mRNA and protein, as well as drug resistance [48]. In another study, Zhang et al. [49] successfully
bound iRGD peptide to lipid-polymer hybrid nanoparticles in order to enhance the antitumor efficacy of DOX and
sorafenib  (SOR).  Compared  with  the  free  drugs  and  nanoparticles  without  iRGD  peptide  modification,
DOX+SOR/iRGD-NPs  had  greater  synergistic  cytotoxic  effects;  they  also  prolonged  the  cycle  time,  improved  the
biocompatibility, and enhanced endocytosis and drug accumulation in the tumor. In a mouse model of liver cancer, the
tumor inhibition effect of these DOX+SOR/iRGD-NPs was even more significant [49].

Furthermore,  although  lipid-polymer  hybrid  nanoparticles  are  generally  prepared  using  polymeric  and  lipid
materials, they have also been produced from inorganic materials and liposomes. In a recent research by Choi et al.
[50], combined ACML nanoparticles were formed by loading axitinib (AXT) in PEGylated lipid bilayers and celastrol
(CST) in MSN. Cytological experiments demonstrated that ACML could inhibit both angiogenesis and mitochondrial
function and induce apoptosis in several cell types (SCC-7, BT-474 breast cancer cells and SH-SY5Y neuroblastoma
cells). Notably, the tumor inhibition effects were even more significant in mouse tumor models.

5. POLYMER MICELLE-MEDIATED COMBINED CHEMOTHERAPY

Another promising form of nanocarrier is the polymer micelle, and several drug-loaded micelles have entered into
clinical  trials  (for  example,  the  PTX-loaded  polymer  micelles,  NK105,  and  the  CDDP-loaded  polymer  micelles,
NC-6004)  [53  -  55].  Table  4  provides  an  overview  of  recent  studies  using  polymer  micelle-mediated  combined
chemotherapy [56 - 62].

Table 4. Polymer micelle-mediated combined chemotherapy.

Combined Chemotherapeutics Drug delivery system Type of cancer Ref.
Cisplatin and paclitaxel PEG–PGlu90–PPhe25 hybrid micelles Ovarian cancer [56]

Linear-dendritic telodendrimer micelles Ovarian cancer [57]
Doxorubicin and disulfiram Polymeric micelles Breast cancer [58]
Doxorubicin and curcumin Polymeric micelles Breast cancer [59]
Doxorubicin and paclitaxel Pluronic mixed micelles Breast cancer [60]
Docetaxel and chloroquine PEO–PPO–PCL/TPGS micelles Breast cancer [61]
Paclitaxel and curcumin PEG-PE and vitamin E micelles Ovarian cancer [62]

In order to eradicate ovarian cancer, Desale et al. [56] synthesized biodegradable triblock copolymers containing
ethylene  glycol,  glutamic  acid,  and  phenylalanine  (PEG–PGlu–PPhe).  These  copolymers  self-assembled  to  form
micelles for the co-delivery of CDDP and PTX, and the resulting nanomedicine mounted strong tumor suppression
effects both in vitro and in vivo. Similarly, Cai et al. [57]. used polymeric micelles containing CDDP and PTX for the
treatment of ovarian cancer. They developed three-layered linear-dendritic telodendrimer micelles and loaded drugs at a
2:1 molar ratio of CDDP:PTX. Compared with the free drug combination and loading in separate micelles,  the co-
delivery micelles provided greater tumor targeting and prolonged drug half-life. Moreover, the antitumor effect was
significant and it could enhance the survival of mice [57].

Finally, Duan et al. [58] developed a pH-sensitive polymeric micelle system to achieve the temporal release of two
drugs.  The  researchers  conjugated  DOX  to  a  poly  (styrene-co-maleic  anhydride)  (SMA)  derivative  with  adipic
dihydrazide (ADH) through an acid-cleavable hydrazone bond. They then loaded disulfiram (DSF) into the polymer
micelles through the self-assembly of a SMA-ADH-DOX (SAD) conjugate [58]. This nanomedicine rapidly released
DSF to inhibit the activity of P-glycoprotein and then slowly released DOX to increase its accumulation within tumor
cells and enhance the antitumor response.

(Table 3) contd.....
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6. OTHER NANOMEDICINE-MEDIATED COMBINED CHEMOTHERAPY

Apart  from  the  previously  mentioned  nanocarriers,  microemulsions  and  microspheres  are  also  traditional  drug
carriers. Owing to the relatively large particle size, these drug carriers have some unique properties such as a high drug-
loading  capacity  and  reduced  drug  leakage.  Noh  et  al.  [63]  designed  and  prepared  multi-prodrug  nanocarriers
(MPDNCs), with PTX being conjugated with polylysine carboxylate to form a cationic polymer (PLL-PTX), and HA
and gemcitabine (GEM) combined to form an anionic polymer (HA-GEM). The two types of polymer then formed the
multi-prodrug nanocarrier through electrostatic interaction. Because HA binds to the CD44 receptor, these MPDNCs
targeted the CD44 over expression of the biliary cancer cell lines, HuCCT1, and therefore markedly inhibited cancer
cell proliferation. Furthermore, they also induced cancer cell apoptosis and improved anti-tumor activity [63].

Similarly, Lee et al. [64] prepared double-layered microparticles using DOX loaded into the PLGA shell and PTX
loaded  into  the  poly  (L-lactic  acid)  (PLLA)  core.  By  changing  the  polymer  ratio,  the  burst  release  of  DOX  was
controlled and the drug release time prolonged to 2 months. The double-layered microparticles significantly reduced the
rate of formation of microspheres and had a good antitumor effect when incubated with MCF-7 microspheres [64].

7. SEPARATE NANOMEDICINE-MEDIATED COMBINED CHEMOTHERAPY

As discussed above, co-delivery of chemotherapeutic agents in nanoparticles can improve the effects of combined
chemotherapy  for  the  treatment  of  tumors.  However,  there  is  also  evidence  that  loading  single  drugs  into  separate
nanoparticles can also achieve the desired antitumor effect. These preparations overcome certain difficulties associated
with co-delivery, namely that the drug combinations are flexible, the synergistic ratio of the drugs is maintained, and
drugs  with  disparate  chemical  properties  can  be  effectively  delivered  within  their  own  uniquely  tailored  carrier
particles. Nevertheless, it is difficult to control the synergistic ratio and the concentration of the two drugs at the target
site in vivo, so the success of this strategy is dependent upon the specific circumstances in which it is used.

In general, two kinds of chemotherapeutic drugs are respectively loaded into the carriers to target both cancer stem
cells  and  tumor  cells.  Cancer  stem  cells  are  a  form  of  undifferentiated  or  primitive  cells,  with  the  capacity  for
multipotent  differentiation  and self-renewal  ability  [65  -  69].  Our  group has  used  this  strategy previously  to  target
MCF-7  and  MCF-7  microspheres  [70].  In  this  study,  we  used  silane  coupling  agent-modified  MSN  to  separately
encapsulate 8-hydroxyquinoline (8-HQ) and DTX. The DTX-loaded MSN and 8-HQ-loaded MSN were then covered
with lipid bilayers and HA-bound lipid bilayers, respectively, producing DTX-MSS and 8-HQ-HA-MSS. Our results
demonstrated that DTX-MSS was more effective in inhibiting MCF-7 than MCF-7 microspheres, whereas the role of 8-
HQ-HA-MSS was just the opposite . Therefore, combining the two forms of nanomedicine resulted in better antitumor
activity and reduced drug toxicity in normal cells [70].

In another example of this approach, Ke et al. [71] used polymer micelles to target tumor cells and cancer stem
cells.  The  polymer  micelles  were  prepared  using  two  diblock  copolymers,  one  of  PEG  and  urea-functionalized
polycarbonate (PEG-PUC), and another of PEG and acid-functionalized polycarbonate (PEG-PAC) in a 1:1 molar ratio.
Thioridazine (THZ) and DOX were loaded into these polymer micelles, respectively (THZ-MM and DOX-MM). It has
been reported that THZ could kill cancer stem cells [72].The results confirmed that the free drug THZ and THZ-MM
had inhibitory effect on cancer stem cells, and both the free drugs in combination and the polymer micelle combination
could effectively inhibit the proliferation of cancer stem cells. However, the polymer micelle combination was found to
have the most significant antitumor effect in a BT-474 nude mice tumor model [71].

Finally, Li et al. [73] demonstrated that decitabine (DAC) and DOX-loaded nanoparticles had the best inhibitory
effect on cancer stem cells.

CONCLUSION

Cancer is one of the main threats to human health; therefore, the question of how to cure it has become an important
research topic worldwide. Currently, chemotherapy is a common mode of treatment, and the combination of two or
more chemotherapeutic agents greatly improves the therapeutic effect. However, this combined strategy has significant
drawbacks, namely drug toxicity and difficulty maintaining the synergistic ratio of the drugs, which leads to treatment
failure.  Nanomedicine  may  provide  a  solution  for  this  problem  by  increasing  the  antitumor  activity  of  combined
chemotherapy through novel delivery methods. At present, however, few preparations progress to the clinical research
stage, and the scientific community faces challenges in terms of enhancing the antitumor effects, overcoming practical
application problems, and expanding the scope of nanomedicine-mediated combined chemotherapy. We believe that
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with scientific and technological progress, these challenges are not insurmountable and that nanomedicine-mediated
combined chemotherapy will succeed in the treatment of cancer.
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