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ABSTRACT  
As it is the well known, the control terms P1 and P2 are used in control theory for description of the 

dynamics of control objects. The control terms P1 and P2 describe linear system of the first and 

second order, respectively. In this paper it has been shown that these terms can also be used in the 
estimation of the rotation curve of the stars around galaxy. Following the related observation 

information, control terms P1 estimates the rotation curve related to Dark Matter, while control term 

P2 estimates the rotation curve related to Total Matter (Visible Matter + Dark Matter). On that way 
one obtains the analytical models for rotation curves that can be used for calculation of the mass of 

Dark and Total Matters.  

Keywords: rotation curves, dark matter, proportional control terms P1 and P2. 

 
1.   INTRODUCTION 

As it is the well known, the predicted and observed rotation curve of a typical spiral galaxy are 
different. The predicted rotation curve is slowing down when we run out of the stars (visible matter) 

in the galactic disc.  On the other hand, the observed rotation curve keeps the constant velocity when 

we run out of the stars in the galactic disc. Dark matter can explain this 'flat' appearance of the 

velocity curve out to a large radius 1,2. Dark matter cannot be seen directly with telescopes because 
it neither emits nor absorbs light or other electromagnetic radiation at any significant level. Instead, 
the existence and properties of dark matter are inferred from its gravitational effects on visible matter, 

radiation, and the large-scale structure of the universe. Unfortunately, the composition of the dark 

matter is unknown. 
The problem is to construct analytical models that can be useful in the estimation of the observed 

rotation curve of typical spiral galaxies.  In this paper we proposed the procedure for determination of 

the analytical models for rotation curves that can estimate the observed rotation curve of a typical 

spiral galaxy. In that sense, we started with the two well known control terms P1 and P2 that usually 
are used in control theory for description of the dynamics of control objects. The control terms P1 and 

P2 describe linear system of the first and second order, respectively. In this paper it has been shown 

that these terms can also be used in the estimation of the rotation curve of the stars around galaxy. 
Following the related observation information, control term P1 estimates the rotation curve related to 

Dark Matter, while control term P2 estimates the rotation curve related to Total Matter (Visible 

Matter + Dark Matter). On that way one obtains the analytical models for rotation curves that can be 

used, among the others, for calculation of the mass of Dark and Total Matters in the typical spiral 
galaxies. 
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2.   ANALYTIC ESTIMATION OF STARS ROTATION CURVES ABOUT GALAXY 

In order to derive the analytic estimation equation for stars velocities about galaxy, one can consider a 
linear general second-order Input-Output (IO) system with q1 = q2 = 0 (P2 system) and a linear general 

first-order Input-Output (IO) system with q1 = 0 (P1 system), given in the following forms [3]: 
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2 n n 0 1 0 0P y 2 y y q u, P y p y q u.                          (1) 

In these equations u is an input variable, y is an output variable, n is a natural frequency,   is a 

dimensionless damping ratio, and 0p 0  and 0q 0  are related coefficients. If in the P2 

system u(t) 0 , then the relation P2 in (1) describes the so-called damped harmonic oscillator.  

Let the systems given by (1) are subjected to a step input function 0u(t) u const.  , where in P2 

system we have y(0) y(0) 0  , n 0 > and 0  <1and in P1 system we have y(0) 0 . 

For those cases the systems (1) have the well known solutions: 
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Here pK is the proportional parameter, d is the damped frequency and  is the phase angle in P2 

system, while p1K  is the proportional parameter and   is the time constant in P1 system. 

2.1. Proposition 1.  

Let the output and input variables, y(t) , and u(t) , of the linear general second-order (P2) and first-

order (P1) IO systems (1) are replaced by the star velocity v(r) in P2, or dv (r) in P1, and input 

variable u(r) , respectively, as functions of the radius, r: 

              
2 1 dP t r, y(t) v(r), u(t) u(r), P t r, y(t) v (r), u(t) u(r).              (3) 

Here v(r) is the star velocity related to the total matter (visible + dark), dv (r)  is the star velocity 

related to the dark matter, and radius r determines the distance between a star and the centre of a 

galaxy. Now, including (3) into the relation (1), the dynamics of the stars velocities around the galaxy 
can be approximately described by the following equations: 
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Here er  is the radius region in which the equations (4) are valid.  Further, let the systems, given by 

(4), are subjected to a step input function 0u(r) u const.  , where in P2 system we 

have v(0) v(0) 0  , n 0 > and0  <1, while in P1 system we have dv (0) 0 .  For those 

cases the solutions of the systems (4) are given by the relations: 
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The solutions v(r)  and dv (r)  in (5) describe the approximations of the stars velocities around 

related galaxy. 

2.2. Proof of the Proposition 1. In order to prove the Proposition 1 for P2 system, one should 

determine, by the observation and simulation, the set of parameters p n(K , , )   for each galaxy and 
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to calculate the parameters d and  by using (2). In order to prove the Proposition 1 for P1 system, 

one should determine, by the observation and simulation, the parameters p1K and  for each galaxy. 

Further, the obtained velocities curves v f (r)  and d dv f (r) from (5) should be compared to the 

observed velocities curves ob obv f (r)  and dob dobv f (r) for the related galaxy.  

The estimation of the approximation of the stars rotational curve around the galaxy has been proved 

by the three galaxies: the Andromeda galaxy, the NGC 3198 galaxy and our Milky Way galaxy. 
Because of the limited space, here has been presented the Proof of the Proposition 1 only for the NGC 

3198 galaxy. The observed rotation curves for the stars in the disk of the NGC 3198 galaxy is taken 

from [2] and shown by Fig. 1. 

 

Fig. 1: The observed rotation curves ( obv ) for the stars in the disk of the NGC 3198 galaxy [2]. 

As it is well known, the stars in this galaxy extend out only to 10 kpc [1,2]. But from Fig. 1 one can 

see that the rotation curve remains flat out to 30 kpc. There must be something besides the stars 

dominating the mass of the galaxy. The curve labelled by "disk" indicates the expected rotation curve 
due to the stars (visible matter) in the galaxy. The curve labelled by "halo" indicates the rotation curve 

due to the "dark matter halo" of the galaxy. Unfortunately, the composition of the "dark matter halo" 

is unknown. From Fig. 1 we can see that at large radial distance the rotation curve is flat. This means 
that the rotational velocity v = vf = constant (about 150 km/sec). Further, from this figure one can 

directly estimate for P2 system the maximal velocity maxv at the radius 
maxvr and the proportional 

parameter p fK v . For P1 system one can estimate the proportional parameter 
1pK which is equal 

to maximal velocity related to dark matter dmaxv and constant  . For visible mater we estimate the 

maximal velocity vmaxv at the radius 
vmaxvr and velocity sev at the radius er . Finally, we estimate the 

radius region er in which the equations (4) and (5) are valid: 
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             (6) 

Using the parameters from (6) and the related computer simulation of velocity equation v(r) from 

(5), one can estimate the following parameters, valid for the NGC 3198 galaxy: 

                                 20 1
n0.689, 1.766989 10 s , 0.810687 rad.                                   (7) 

Applying the parameters from (6) and (7), we obtain the estimated rotation curves v, vd and vs for the 
stars in the disk of the NGC 3198 galaxy, shown in the Fig. 2a.  
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Fig. 2: The estimated rotation curves ( d sv,v ,v ) (a), and (b) distribution of total, dark and visible 

matters for the stars in the disk of the NGC 3198 galaxy. 

Table 1. Comparison between observed and estimated rotation curves, Fig. 1 and Fig. 2a, respectively, 

has been presented by five control points. 

Velocities Radius r  Observed values Estimated values  

Max. Velocity Vmax 
202.453 10 m  3157 10 m/s  3157.5689 10 m/s  

Flat velocity Vf 

211.471878 10 m  3150 10 m/s  3150.000049 10 m/s  

Dark Matter Max. Veloc. Vdmax 

211.471878 10 m  
3141 10 m / s  3140.4252 10 m/s  

Visible Matter Max. Veloc. Vmax 

202.158755 10 m  3139 10 m/s  3138.5435 10 m/s  

Visible Matter Velocity Vse 
211.471878 10 m  352 10 m / s  

352.7327 10 m/s  

The comparison between observed and estimated rotation curves, Fig. 1 and Fig. 2a, respectively, and 

between observed and estimated data in the Table 1 shows an acceptable estimation of the observation 
data. Thus, on that way, the Proof of the Proposition 1 has been finished for the NGC 3198 galaxy. 

Using the well known relations from the general relativity [4] we can calculate the total matter Mt, 

dark matter Md and visible matter Mv : 2 2 2
t d d v sM rv / G, M rv / G, M rv / G   . Here G is the 

Newtonian gravitational constant. Applying those relations we obtain the distribution of the total, dark 

and visible matters in the disk of the galaxy NGC 3198, shown on the Fig. 2b. 

 

3.   CONCLUSION 
In this paper it has been shown and proved that the control terms P1 and P2 can be used in the 

estimation of the rotation curve of the stars around galaxy. Following the related observation 

information, control terms P1 estimates the rotation curve related to Dark Matter, while control term 
P2 estimates the rotation curve related to Total Matter (Visible Matter + Dark Matter). On that way 

one obtains the analytical models for rotation curves that can be used, among the others, for 

calculation of the mass of Dark and Total Matters in the typical spiral galaxies. In the future work the 
influence of Dark Matter will be included in the calculation of the motion of nanorobotic rockets [5]. 
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