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Abstract 

Pattern Matching is a fundamental problem in computer vision, and image and video processing. 

Exhaustive-Search equivalent algorithms yield the same results as exhaustively searching all 

patterns in the image but significantly faster. Though much work have been done over the L1 and L2 

distances, only small amount of work has been dedicated to the Chebyshev distance though its 

importance in many applications. In this paper, we provide an evaluation of available state-of-art 

exhaustive-search equivalent algorithm that targets the Chebyshev distance; we also provide 

detailed analysis of the performance characteristics of evaluated algorithms. 

Keywords:Pattern matching, template matching, fast algorithms, full search equivalent algorithm, 

Chebyshev distance, NOM.  

Introduction 

Template Matching or Pattern Matching is a fundamental problem in computer graphics, 

computer vision, signal processing, image and video processing, with a wide variety of applications 

such as video block motion estimation [1], image based rendering [2], image inpainting[3], object 

detection [4], super resolution [5], texture synthesis [6], texture edge extraction [7], image filtering 

[8], image summarizing [9], and even image compression [10]. 

The Template matching problem can be defined as follows: given an N=nx n pixels image sub-

window q (called Template or Patch) find either the most similar patch to it in the image, or all 

patches p where the distance between p and qis below a certain threshold T according to a 

predefined dissimilarity measure. The basic algorithm for solving this problem is Full Search or 

Exhaustive Search, in which the distance between q and all template-sized sub-windows in the 

image (overlapped) is computed and we return either the patch with the smallest distance or all 

patches with distance below T, according to the instance of the problem we are considering.  

In this work we are interested in the first instance where only the closest patch is required and 

many number of queries is done on the same image, as this is the interest of most of the applications 

that require template matching. This has important implication on our evaluation method of 

algorithms, as the most important property we require is exact fast evaluation of many number of 

queries on the same image, so a relatively slow initialization of an algorithm is acceptable as long 

as the total time (initialization + query processing) is fast compared to the respective times of other 

algorithms. 

Though much work have been done in exhaustive search equivalent matching in the L1 and L2 

only very small, scattered work have been dedicated to the Chebyshev distance [11]. In this paper 

we provide an evaluation of state-of-art algorithms that either directly targets or can be modified to 

target the Chebyshev distance, using the dataset introduced in [12]. 
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Related Work 

There is a huge history of work in accelerating pattern matching process, methods can be 

classified into two broad categories: Exact and Approximate pattern matching. A Complete review 

is beyond the scope of this article, the reader might refer to [13] for extensive reviews. Here we are 

only interested in exact methods and will give a brief overview on them. We here discuss exact 

methods generally and are not tied to those using the Chebyshev distance. 

One of the most simple and powerful trails to accelerate Exact pattern matching is Partial 

Distortion Elimination (PDE)[14] which terminates the evaluation of the current candidate sub-

window as soon as the  current value of norm is guaranteed to exceed the current minimum 

distance. 

Fast-Fourier Transform-based approaches [15] have also been traditionally used for accelerating 

pattern matching in the L2 norm, especially for large pattern sizes. The idea is based on observing 

that the L2 norm between two M pixels-sized sub-windows X, Y can be written as 

‖   ‖ 
   ‖ ‖ 

   ‖ ‖ 
      ∑     

 

   

 

FFT allows fast computation of the third term∑      
 
    in the frequency domain using the 

correlation theorem.‖ ‖ 
 is calculated for the all sub-windows in the image using fast incremental 

techniques like Summed Area Tables [16] or Box-Filtering [17],‖ ‖ 
  is computed once where Y is 

the input query. 

Projection Kernels (PK) based algorithms [18,19,20] are based on the idea that we can get 

approximate value of the distance d(X-Y) (where d is a norm) by projecting both X and Y into a 

number of basis vectors           , generally if U are mutually orthonormal it can be shown 

that: 

       ∑
 

     
              

 

   

 

this provides a lower bound on the actual distance value between X,Y. The algorithm works by 

providing very fast method of projecting all image sub-windows to U, then when examining 

candidates, it keeps summing the values of             (assuming U are unit vectors) and 

rejects the candidate once the sum exceeds the current minimum or the input threshold value. In all 

these methods Ubasis vectors of the Walsh-Hadamard Transform. Though it is claimed that the 

method works for any norm, it is only proven for L2 in [18], for other norms, the authors suggest 

using inter-norm relations to induce bounds on the distance derived from the L2, but this loses the 

algorithm most of its exact rejection capabilities, as it loosens its bounds. 

Low Resolution Pruning (LRP) [21] is based on the idea of transforming sub-windows in the 

image into a lower resolution variants, by summing the pixel values of partitions of the sub-

windows of size M, this is repeated for T levels of resolution, after that an upper bound on the value 

of d(X-Y) (where d is an Lp norm) is established for every resolution level t, assuming min is current 

minimum distance or input threshold value, as follows 

        
       

      

for the Chebyshev distance (L∞), we have 

   
   

 
       

      

so the inequality used by our implementation is             . 

Incremental Dissimilarity Approximations Algorithm (IDA) [22] is based on the idea of 

partitioning each candidate sub-window into a number r of disjoint sets by defining a partition P of 
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set            , using this partitioning it is able to establish a lower bound on the value d(X-Y) 

(where d is an Lp norm), at level k we have 

       ∑ (∑|     |
 

    

)  ∑|‖ ‖    
 ‖ ‖    

|
 

 

   

   

   

 

The right side of the right hand side of the inequality represents the source of the speed-up as it 

is an estimation of the rest of the distance that is not actually calculated (the calculated part is the 

left-side). So a candidate is rejected at the point when right hand side of the inequality exceeds 

current minimum distance or input threshold value min. As IDA is proven correct for Lp norms, we 

here modify its public L2 implementation for the Chebyshev distance, then we compare to it. 

 

Dataset   Image Size    Template Size   

0-0 160x120 8x8 

0-1 160x120 16x16 

0-2 160x120 32x32 

0-3 160x120 64x64 

1-0 320x240 8x8 

1-1 320x240 16x16 

1-2 320x240 32x32 

1-3 320x240 64x64 

1-4 320x240 128x128 

2-0 640x480 8x8 

2-1 640x480 16x16 

2-2 640x480 32x32 

2-3 640x480 64x64 

2-4 640x480 128x128 

3-0 1280x960 8x8 

3-1 1280x960 16x16 

3-2 1280x960 32x32 

3-3 1280x960 64x64 

3-4 1280x960 128x128 

4-0 2560x1920 8x8 

4-1 2560x1920 16x16 

4-2 2560x1920 32x32 

4-3 2560x1920 64x64 

4-4 2560x1920 128x128 
 

Table 1: List of image and template sizes combination used in our experiments 
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Figure 1: Results from images without noise, dataset numbers are those presented in Table 1 
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Figure 2: Results from images with blurring noise, F0-F4 represent five increasing blurring noise 

levels. "I:160x120 , T:8x8" means that the image is 160x120 pixels and template is 8x8 pixels, we 

use the same notation in all diagrams. 

Experimental Results 

In this section, we empirically compare the performance of current state-of-art, exhaustive-

search equivalent pattern matching algorithms. We use the data set introduced here [12]. This 

dataset consists of 150 images divided into 5 different sizes (160x120, 320x240, 640x480, 

1280x960, and 2560x1920) each comprising 30 images, these images are examined first without 

noise and then with 3 different types of noise (Blurring, JPEG compression and Gaussian noise) 

each of which are applied in 5 increasing levels which mean 15 types of noises are applied to 

images. Each image is examined using 5 different template sizes (8x8, 16x16, 32x32, 64x64, and 

128x128). We compared PDE, IDA, and LRP, showing their speed-up over exhaustive search, in 

terms of the number of CPU clock cycles the algorithm spends executing. In order to examine each 

algorithm fairly enough and insure consistent timings, for each image we apply 20 queries using 

randomly choosen image patches. We set the number of partitions NP of IDA to 8 in all our 

experiments. For LRP, we set M = 4 (as suggested in original paper). 
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Images without noise.Figure 1 shows results from images without noise. The figure is split into 

two diagrams with different scales to prevent small speed-ups at small sizes from being diminished 

by large speed-ups at big sizes. We can see that for image sizes less than or equal 1280x960, PDE is 

always the fastest, with a speed-up the generally increases with template size. For bigger images, 

LRP is always the fastest. 

 
Figure 3: Results from images with JPEG compression noise, J0-J4 represent five increasing 

JPEG compression levels. 

    Blurred Images. Figure 2 shows results from images with Blurring noise. Five different 

levels of Gaussian low pass filter are used for blurring each image of the datasets, named F0, 

F1, F2, F3, and F4 in the diagrams, corresponding to Gaussian low pass filter having standard 

deviation σ = 0.2, 0.9, 1.6, 2.3, 3. 

We can see that for noise levels F0-F4, LRP is almost always the fastest. For the F0 noise level, 

for the 1280x960 image size, LRP is always the fastest; otherwise PDE is always the fastest. 

        JPEG compressed images. Figure 3 shows results from images with JPEG noise. Five 

different JPEG compression quality levels are used for encoding the original images. The  

JPEG compression quality levels, named J0, J1, J2, J3, and J4 in the diagrams, correspond to 

quality measure QJPG = 90, 70, 50, 30, 10 respectively. 

We can see that PDE is always the fastest. For most small image sizes 160x120, and 320x240 

 and small template sizes 8x8, and 16x16, LRP is generally the slowest, for bigger images and 
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 template sizes, IDA is the slowest. 

       Images with Gaussian noise.Figure 4 shows results from images with Gaussian noise. Four 

 different levels of i.i.d. zero-mean Gaussian noise are added to each image,  the four Gaussian 

 noise levels having variances 325, 650, 1300 and 2600  referred to as G0, G1, G2 and G3 

 respectively.  

 Unlike other types of noise, the speed up decreases steadily as the noise level increases. For  

 template size smaller than 128x128, PDE is always the fastest. For noise level G4, IDA is 

 always 

 the fastest. 

   Analysis.From previous results we can conclude that under the Chebyshev distance, PDE is 

 always the fastest except for large image sizes or for blurred images. 

 

 
Figure 4: Results from images with Gaussian noise, G0-G4 represent four increasing Gaussian 

noise levels. 

We can see that all algorithms are always faster than exhaustive search. The largest speed-up for 

 images without noise is 36, for the LRP algorithm at 128x128 template size and 2560x1920 

 image sizes. For noisy images, it is 180 for LRP at 128x128 template sizes and 1280x960 image 

 sizes. 
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