
83

International Journal of Computing Academic Research (IJCAR)
ISSN 2305-9184 Volume 4, Number 3(June2015), pp.83-95
© MEACSE Publications
http://www.meacse.org/ijcar

University Course Timetable using Constraint Satisfaction and Optimization

Tarek El-Sakka*, **

*IT Department, Community College, University of Sharjah, Sharjah, UAE

**Central Laboratory for Agricultural Expert Systems (CLAES), Cairo, Egypt

Abstract

Timetable problem is a well-known multidimensional, constraint assignment problem that focuses in the

assignment of courses to faculty members in classrooms within limited time slots. Hence, it is a challenging

time-consuming problem facing universities and it belongs to the NP-hard class of problems. In particular,

universities regularly need an optimal solution for the course timetable problem. However, a manual

solution to this problem by considering all constraints usually requires a long time and hard work to offer

proper, optimized solution. Specifically, timetabling problem scan be modeled as Constraint satisfaction

problems (CSPs), which are combinatorial in nature. Particularly, a variety of approaches are used to

investigate CSPs, such as constraint logic programming (CLP) that combines the declaratively of logic

programming with the efficiency of methods from operations research and artificial intelligence. This paper

introduces a model that applies CLP to the timetabling as a CSP on the use of an Optimization Programming

Language (OPL). The proposed model is tested against real data obtained from the Community College

(CC), at University of Sharjah (UoS) that has a so sophisticated timetable with much interlaced, limited

resources and limited time slots.

Keywords:Timetable, University Timetable, Course Scheduling, Constraint satisfaction problems,
Constraint Programming, Optimization Programming Language, CP Optimizer, IBM ILOG

Introduction

Indeed, timetabling is a multidimensional assignment problem, which needs to be solved regularly at

educational institutions. It is the assignment of courses to faculty members and the assignment of these

courses to classroom and time slots [1] in a way that makes optimal use of the available resources [2]. Such a

timetable must satisfy certain constraints such as no single teacher teaches more than one class at the same

time, no single room is allocated for more than one class at the same time, and so on. Further, it may try to

achieve certain objectives such as maximum utilization of classrooms, assigning teachers to his or her

preferred courses, etc. Practically, a typical university timetabling problem may comprise thousands of

courses, thousands of students, hundreds of instructors, hundreds of classrooms and other resources.

Moreover, timetabling problem has been classified as NP-hard optimization problem (i.e., no polynomial

time algorithm is known to solve the problem) [3], meaning that if all combinations were to be examined, the

time to solution for reasonable problems would rise dramatically. Therefore, in order to find optimal solutions

to such problem, it is necessary to consider all possible solutions to choose the best one that satisfy a wide

range of constraints, preferences, and participants and it must be solved in reasonable time.

Although, the university timetabling (UTT) is a major, regular and complex administrative activity in most

academic institutions [3], only a few organizations possess reliable automated timetable solvers, and fewer

still possess solvers that require no manual intervention. However, most institutions employ the knowledge

and experience of expert personnel with regard to the production of good timetable that satisfy all given

requirements. Categorically, UTT problems can be classified into two main categories: course timetabling

(CTT) problems and examination timetabling (ETT) problems, each with its own sets of constraints and

requirements. The focus of this paper is on the CTT.Therefore, lots of research has been invested in order to

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

84

provide automated support for solving a real-world timetabling problem. Contributions come from the fields

of operations research (e.g., graph coloring, network flow techniques) and artificial intelligence (e.g.,

simulated annealing, tabu search, genetic algorithms and constraint satisfaction [4]). Barták et al. [5] surveyed

the main definitions and techniques of constraint satisfaction, planning and scheduling from the Artificial

Intelligence point of view.

This paper refers to methods from constraint satisfaction and how they were presented and developed

using Constraint Programming (CP)/Constraint Logic Programming (CLP). Concerning CLP (an emerging

Artificial Intelligence field), it is used for solving Constraint satisfaction problems (CSPs) and combinatorial

optimizations [6]. Particularly, CLP combines the declaratively of logic programming with the efficiency of

methods from operations research and artificial intelligence [4]. Its major advantage is its ability to give a

precise declarative description of the problem in terms of constraints [7]. Although, in many cases, the

definition of the problem's constraints is ambiguous, and it generally requires many refinements and

interactions with the user, CLP exploits the constraint satisfaction structure of the problem.

Definitely, CSPs are combinatorial in nature [8]. For many categories of CSPs, an efficient algorithm is

unlikely to exist (these problems are NP-complete). Thus, an algorithm that guarantees to find a solution that

satisfies all constraints is enumerative and hence has an exponential time requirement in the worst case. In

practice, it may be sufficient to find a solution at a reasonable computational expense, which satisfies most of

the constraints. If all or as many constraints as possible are satisfied, the solution is exact; otherwise, it is

approximate.

In reality, CTT problems have been seemed more suitable to be solved with constructive methods

implemented in general-purpose CLP languages. Consequently, applying classical methods from constraint

satisfaction requires modeling the timetabling problem as a CSP, i.e., a set of variables each associated with a

domain of values it can take on, and a set of constraints among the variables [9]. In contrast, the timetabling

problem is modeled as a constraint optimization problem (COP) and addressed with CLP languages.

Considering the timetable problem at CC, it is a very complex timetabling problem with much, interlaced

resources as the college has five branches distributed over five faraway cities. Each branch/campus has two

shifts for students to study in CC, therefore the time slots for timetabling is so limited. In addition, students

are enrolled in many specialized programs with different curricula that need many courses to be set in the

CTT. Most lecturers have to teach courses at different branches. This paper introduces a model using the OPL

that solved by the CP solver. This model is developed with the IBM ILOG CPLEX 12.6 Studio. The model is

tested against real data obtained from the CC.

The next section of this paper provides a review of some relevant work on solving the timetable problem.

Section 3 provides the description of the timetabling problem at CC. Section 4 presents the proposed model to

solve the CC timetabling problem. Section 5 presents the implementation of the CTT model. Section 6

presents a discussion of the results and findings. Finally, section 7 concludes the paper with a summary of the

work was done and possible directions for future work.

RELATED WORK

Regarding timetabling problems, many works have been done to accomplish a good solution to their using

different operation research (OR) and artificial intelligence (AI) approaches since fiftieth. A large number of

problems in AI and other areas of computer science can be viewed as special cases of the CSP [10]. In

addition, many problems in OR fall within the general framework of CSP [8]. The development of effective

solution techniques for CSPs is an important research problem. Timetabling problems are considered as

combinatorial problems in OR, which can be modeled as CSPs. Researchers in AI usually assume constraint

satisfaction approaches as their preferred methods when undertaking such problems [8].A variety of

approaches can be used to process the CSPs. For instance, LP techniques can be applied to find an exact

solution. On the other hand, there are various approaches provide an approximate solution, including local

search methods and neural networks as a special purpose technique used for solving CSPs.

There are many research works provide the usage of constraint-based approaches. In these methods, the

events of a timetabling problem are modeled by a set of variables to which values have to be assigned subject

to a number of constraints[11]. When the propagation of the assigned values leads to an infeasible solution, a

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

85

backtracking process enables the reassignment of value(s) until a solution is found that satisfies all of the

constraints.

To begin with, Abdennadher and Marte [12]showed how to model the timetabling problem as a partial

constraint satisfaction problem and gave a concise finite domain solver implemented with Constraint

Handling Rules that allows for making soft constraints an active part of the problem solving process. They

improved efficiency by reusing parts of the previous year’s timetable. Zhang and Lau [13] developed a CSP

model for a university timetabling problem. They investigated a sample case study problem and implemented

an approach for constraint satisfaction programming using ILOG Scheduler and ILOG Solver. They used

various goals in ILOG to investigate the performance of the CSP approach.

Further, Ojugo et al. [14]build constraint satisfaction models to search the space for the timetable

scheduling state and satisfies all constraints and criteria that guarantee the reasoning process through an

explicit structure that conveys data about the problem. They aimed to find a complete assignment that

satisfies certain constraints to yield a valid schedule. In addition, they provided a study that surveyed NP-

complete task of academic timetabling at the University of Benin, Nigeria and they adopted a rule-based

expert system to yield an initial solution for the models. They showed that their models yielded a valid

schedule for the University of Benin in Nigeria considering student preference, medium constraints of high

priority.

In addition, Gu´eret et al. [15]showed how CP is well suited for solving timetabling problems and they

presented different approaches used for solving timetabling problems of an institute in a university by using

the CLP programming language CHIP. While, Legierski[16]dealt with the effectiveness of CP for timetabling

problem. He used the CP language Mozart-Oz to express complex constraints. He also created complicated,

custom-tailored distribution strategy for solving a real-world timetabling problem.Likewise, Zervoudakis and

Stamatopoulos[17]presented a model for the CTT using theILog Solver, a constraint programming object-

oriented C++ library. They showed how their model might be extended to cover the needs of a specific CTT.

Goltz et al. [18]developed methods, techniques and concepts for a combined interactive and automatic

timetabling system of university courses using used CLP. They developed a timetabling system for the

Charité Medical Faculty at the Humboldt University, Berlin. They showed how their system was flexible

enough to take into account special user requirement to allow constraints to be modified easily. In addition,

they provided an interactive user intervention facility to allowing user alter a timetable if no hard constraints

are violated.Similarly, Fen, Deris and Hashim[19]investigated the constraint-based reasoning algorithm to

solve a complex university course timetabling problems by searching for the best preference value base on

the student capacity for each lecture. They have tested their work using a real world data for two higher

education institutions.

In a like manner, Shue, Lin and Tsai [20]developed a university timetabling decision support system that

considers both hard and soft constraints of the problem. They stated that their system has satisfied all hard

constraints and partially met soft constraints. They modeled the problem as a Constraint Satisfactory Problem

and adapted lexicographic optimization approach to implementing the solution procedure where each soft

constraint is treated as an objective with a priority.Moreover, Gavanelli[21]modeled a university timetabling

problem as a COP and addressed his model with the CLP language, ECLiPSe. His paper showed how the

data was represented in ECLiPSe and what the phases to build a timetable were.

Additionally, Rudová and Murray [22]described and applied the development of an automated timetabling

system for Purdue University by using an extension of constraint logic programming that allows for the

weighted partial satisfaction of soft constraints. They implemented a soft constraint solver for the proposed

solution approach that allows constraint propagation for hard constraints together with preference propagation

for soft constraints. They presented and discussed the model and search methods applied to the solution of the

large lecture room component.

In addition, Yeung et al. [23]reported their experience to automate the timetable scheduling process in

their college by applying constraint logic programming. They built a system that consists of a core for

scheduling as well as an X-window user interface. Their system was implemented in CHIP, which was able

to produce a timetable for the whole faculty in just a few seconds. They showed that applying constraint logic

programming is a practically viable means for timetable scheduling in a university.

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

86

At the same time, there are various approaches applied to the CTT problem including Linear Programming

(LP). LP is widely used for the solution of timetabling problems, like Bakir and Cihan[24], Ribi and

Konjicija[25], Wattanamano, Thongsanit and Hongsuwan[1] and Czibula et al. [26]. Other approaches have

been recently applied to solve the CTT problem including heuristics and meta-heuristic, graph coloring,

network flows, genetic algorithms and other OR and/or AI methods [27].

Problem Description

In fact, CTT is a tedious task for university administration that aims to arrange periods, modules, rooms

and lecturers to all courses in an academic term. Such a CTT must satisfy the required constraints and certain

objectives of optimally using the university resources, which is limited and valuable. A typical CTT may

comprise thousands of courses, thousands of students, hundreds of instructors, hundreds of classrooms and

other resources. CTT should place these courses that share resources, such as lecturers or classrooms, in a

weekly calendar.

Indeed, in our real case study, CC has six different departments. Each department has different active

programs with different, specialized curricula. All CC programs are sharing some courses called general

education (GE) courses that are taught by different departments. Those GE courses are categorized as

university requirements and college requirements categories. In particular, each course is the main module in

CTT problem that defined as a class. Each class shares the available resources in the CC, e.g. teachers, rooms,

or time slots. In addition, courses are composed of theory and/or practical sessions. To clarify, theory sessions

are usually set as three credit hours lectures per week and they are held in classrooms. On the other hand,

practical sessions are usually set as four credit hours per week. They are composed of two hours lecture in a

classroom and two hours practical in a lab.

CC has five different branches geographically distributed over five faraway cities. Furthermore, each

branch has two shifts. The first shit in the morning (from 8am to 14pm). While the other shift in the afternoon

(from 15pm to 21pm) – for students who cannot study in the morning (e.g. employees). In addition, most

lecturers of departments may teach classes at different branches at same working day. Hence, CC has a very

complex timetabling problem because resources are interlaced, e.g. time slots, rooms and lecturers.Similarly,

to the higher education institutes, CC regularly tries to build its optimal timetable every academic semester.

CC departments should define some courses from their specialized programs to be set in a new CTT as

classes. This CTT should allow each student enrolled in a CC program to set his/her timetable. At the same

time, several constraints have to be considered during development of the CTT. Those constraints are set to

use the available resources optimally at CC, e.g. no two lectures can take place at the same room at the same

time, and no lecturer can teach more than one class at the same time. In addition, no lecturer can teach classes

in more than one branch at the same day or the capacity of a room must not be less than the number of

students attending a lecture. Furthermore, classes should be distributed on weekdays as one of the two days

patterns. The first pattern is a three days in a week, Sunday-Tuesday-Thursday. The other pattern is two days

per week, Sunday-Tuesday or Monday-Wednesday. There are many other constraints to be satisfied in the

CTT at the CC.

Thus, we propose a model for CTT problem at the CC that is modeled with the IBM ILOG CP Optimizer,

which provides a scheduling language supported by a robust and efficient automatic search [28]. This CP

Optimizer uses the OPL as a scheduling language. IBM ILOG CP Optimizer is a component of the ILOG

OPL-CPLEX Development System, which is a rapid development system for optimization models. It

streamlines modeling with high-level data types and an algebraic language specifically designed for building

optimization models [29].

In detail, the ILOG OPL-CPLEX Development System consists of the different components. The first is

the OPL for developing optimization models. The second is an Integrated Development Environment (IDE)

to execute and test optimization models. The third is a command line tool (oplrun) to execute models from

the command line. The fourth is an application Programming Interfaces (APIs) to embed models into

standalone applications. The last is the CPLEX engine that can solve the OPL model as CP model or MP

model.

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

87

Therefore, the OPL is a modeling language that allows to state CP, LP, Mixed Integer Programming

(MIP), and CSPs, as well as combinations of all of them [30]. In addition to the constraints of the model, a

search heuristic is stated that is then executed by the CP Solver, which offers CP algorithms. OPL Studio is

built on top of CP Solver allowing solving CSPs modeled in OPL. The CSP model is addressed with the CP

language. Consequently, we define our model as a CP model that solved by the CPLEX engine. Practically, a

CP model uses only discrete decision variables for which you must define a domain. Therefore, the product

of all domain variables makes up the search space. Hence, the CP models are further characterized by specific

constraints, expressions, and search.

Actually, there are many approaches to satisfaction problems. These algorithms seek solutions of a CSP or

try to prove that no solution exists. Those approaches vary from consistency techniques to systematic search

or combination of tree search algorithms and consistency techniques. The consistency techniques try to

remove values that cannot be part of a solution. The systematic search methods explore systematically the

whole search space. While the combination of both applies the consistency techniques, which prune some

parts of the search tree and hence improve the efficiency of the tree search algorithm [31].

Similarly, the CP optimizer uses constructive search to build a solution by fixing decision variables to

values. In addition, the CP optimizer uses other heuristics to improve search. In that case, there are three

types of search available in CP Optimizer: “restart”, “depth-first” and “multipoint”. Particularly, we use the

depth-first search type with the CP optimizer to get an optimal solution to the CTT problem. The depth-first

search is a tree search algorithm such that each fixing, or instantiation, of a decision variable, can be thought

of as a branch in a search tree [8]. Actually, the CP optimizer works on the subtree of one branch until it has

found a solution or has proven that there is no solution.

Concerning CSP, it is defined (in [10, 8, 32, 33]) by a finite set of variables, each of which has a finite

domain of values, and a set of constraints. Each constraint is defined over some subset of the original set of

variables and restricts the values these variables can simultaneously take. We develop our model with the

most common definition and syntax of CSP. A CSP is defined as three sets: X, D, and C, where:

 X = {x1, … ,xn} is the set of variables called domain variables;

 D = {D1, … ,Dn} is the set of domains(the possible values for the corresponding variable);

 C = {C1, … ,Cc} is the set of constraints (relations defined on a subset of all variables).

Proposed Model of CTT

We have built our model for the CTT with the OPL model using the CSP definitions to be solved by the

CP solver. Moreover, the OPL model uses an algebraic modeling system, which consists of several parts

including the definition of the model data, the declaration of the decision variables, and the statement of

constraints and objective. Initially, the model data in our CCT model are listed in Table 1.

TABLE 1. THE DOMAIN VARIABLES FOR THE MODEL DATA

Variable Meaning

NumberOfDaysPerPeriod Number of working days per week

DayDuration Number of time slots per day

BreakUnitTime The break duration for class

ClassRequirementSet The educational program:{"class", "discipline", "courseType", hours, repetition}

TeacherDisciplineSet Pair Set of preferred disciplines for a teacher

Room Set of rooms in which courses are held

DedicatedRoomSet Pair Set of dedicated rooms for a discipline. The other rooms support all disciplines.

MorningClass Set of morning classes in a campus

EveningClass Set of evening classes in a campus

PossibleDays Set of possible day names

MorningStartHour Starting time for morning classes

As an illustration, an example fora model data is shown below.
ClassRequirementSet = {

<"Law-80","Introduction to law", 3, 2>,
<"Law-80","Sources of Obligation", 3, 2>,
<"Law-80","Islamic", 3, 2>,

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

88

<"Law-80","Arabic", 3, 2>,
<"Law-80","Principles of Management", 3, 2>,
<"Law-80","IT", 4, 2>, . . . }

Secondly, our model set the values of thedomain variables from the model data. Thesedomain variables

are listed in Table 2.

TABLE 2. THE DOMAIN VARIABLES

Class Set of classes extracted from the educational program

Teacher Set of teachers extracted from TeacherDisciplineSet

Discipline Set of disciplines extracted from the educational program

MaxTime Number of time slots in working days

Time A time counter

PossibleTeacherDiscipline[x] Array of teacher x teaches preferred disciplines

PossibleTeacherIds[d] Array of teachers’ Ids who teach a discipline d

PossibleRoom[d, x] Array of discipline d held in a room x

PossibleRoomIds[d] Array of room Ids that hold a discipline d
Section For a given class, it is one course occurrence. {Class, discipline, Duration, repetition, id, SectionId}

Specifically, an example for a domain variable is shown below.
discipline: {"Introduction to law", "Sources of Obligation", "Islamic", "Principles of Management", "IT" "Penal Law 1",

"Rules of Obligation", "Comm. law and companies", "Administrative law", "Arabic", "CS", "Prog 1", "CG",
"BCO", "ESP for IT 1", "IWD", "Net 1", "AWD", "Video", "Introduction to Psychology", "Principals of
Statistics"}

Thirdly, our model contains a set of constraintsthatthe CP solver verifies(to solve the CTT problem) over

the set of variables. These constraints are illustrated below:
C1: A teacher is required once at any time point
C2: A room in a campus is required once at any time
C3: A class follows one course at a time, so for a specific class a student can only attend one section at a time
C4: A teacher can teach the discipline
C5: A teacher is always the same, for given class and discipline
C6: A course is taught in the same room for given class and discipline
C7: A room in a campus can support the discipline
C8: A course ends after it starts
C9: A course is taught at same time - every two days if the course repetition is two times per week
C10: A course is taught at same time - every three days if the course repetition is three times per week
C11: A course starts and end the same half day
C12: Avoid having the same discipline taught twice a day for the same class
C13: A morning class ends in the morning(from 8 am to 14 pm)
C14: An evening class ends in the evening(from 15 pm to 21 pm)
C15:A morning discipline ends in the morning
C16: An evening discipline ends in the evening
C17: Insert break between specified disciplines
C18: Instances of sections are chronological for a class
C19: Help proving optimality by minimizing the maximum used time slots (makespan)
C20: Students must have a pause time between classes according to lecture’s length.
C21:Some specified disciplines have break between them.
C22: Classes may have a break every day between lectures for activities or non-faculty lectures.

Certainly, the CTT problem requires a number of soft and hard constraints to be satisfied [34]. Hence, our

OPL model uses constraints that are classified as soft and hard constraints. In the first side, soft constraints

are considered while generating the required timetable for the CTT problem [35]. For example the soft

constraints in our model such as: avoid scheduling classes in the last timeslot of the day or in the early

morning; avoid scheduling more than two classes in a row for a student; and avoid scheduling one class in a

day for a student, etc. On the other hand, hard constraints such as: the students can only be scheduled to one

event in a time slot; event rooms meet all required features and their capacity is respected; no more than one

event is allowed per room and per timeslot, etc.

Implementation

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

89

The main task of the OPL CP solver is to find an assignment of each value for each decision variable such

that the assignment satisfies all the soft and hard constraints in order to solve our model. For instance, the

constraintthat ensures that each course has to be taught in the same room for every session of a course, is

represented in our OPL model as follow:

∀i,j∈InstanceSection𝑟𝑜𝑜𝑚[𝑖] = 𝑟𝑜𝑜𝑚[𝑗]
where i.id < j.id&&i.SectionId == j.SectionId

 // ensure course is taught in the same room for every section
 forall(i, j in InstanceSection
 : i.id < j.id &&i.SectionId == j.SectionId) room[i] == room[j];

After all, we set the CP optimizer to use heuristics algorithm, Depth-first, as the search algorithm.

Particularly, in the Depth-first algorithm, the decision variable is assigned a value from its domain. This

assignment is then checked against the current partial solution; if any of the constraints between this variable

and the past variables is violated, the assignment is abandoned and another value for the current variable is

chosen. If all values for the current variable have been tried, the algorithm backtracks to the previous variable

and assigns it a new value. If a complete solution is found, i.e. a value has been assigned to every decision

variable, the algorithm continues to find new solutions and terminates if no more solution is found. If there

are no solutions, the algorithm terminates when all possibilities have been considered.

Precisely, the decision variable is an unknown in an optimization problem and has a domain, which is a

compact representation of the set of all possible values for the variable [36]. The task is to find an assignment

of a value for each decision variable such that the assignments satisfy all the constraints and optimize a

specific objective function. Therefore, the feasible solution to a CSP is satisfiable if there is an assignment of

a value to every decision variable [8]. We want to find an optimal and/or a good solution for our CTT

problem. There are six decision variables used in our OPL to be verified by all constraints and objective

functions. The decision variables are listed in the Table 3.

TABLE 3. THE DECISION VARIABLES WITH MEANING

Start[InstanceSection] Array of starting points for courses from InstanceSet in a Time

End[InstanceSection] Array of ending points for courses from InstanceSet in a Time

classTeacher[Class,Discipline] Array of teachers working once per time point to teach a class’sdiscipline

teacher Set of teachers

room Set of rooms in which courses are held

makespan ending date of last course

Finally, the objective function used in our OPL model is theminimizefunction, which minimizes the value

of decision variable makespan – the maximum time slots used in the timetable. The function minimize is

satisfied by the following two constraints:

makespan = 𝑚𝑎𝑥𝑟 ∈ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐸𝑛𝑑[𝑟]
makespan >= 𝑚𝑎𝑥𝑐 ∈ 𝐶𝑙𝑎𝑠𝑠 𝑟.𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑟 ∈ 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑒𝑐𝑡𝑖𝑜𝑛

Where r.Class == c

Particularly, we use real data from the CC to implement our OPL model. The selected data comes for

different classes related to different academic programs in the CC. Each class data defines the educational

program for a set of students at a different level. Hence, the resulting timetable could allow students to

register in their timetable without conflict as well as follow the constraints of the CC timetable.

Alternatively, the totalnumber of teachers is forty-two teachers from different departments. Given that,

those teachers have to teach at different five distant campuses at the same time. In addition, teachers should

teach during the whole day in two scheduling shifts. The first shift is in the morning (from 8:00 am to 14:00

pm) while the other shift is in the afternoon/evening (from 15:00 pm to 21:00 pm). Furthermore, the students

from all different programs share the same GE courses at each branch and in each time shift. Those GE

courses are the university and college requirement courses that all academic programs have to share. The GE

courses are taught by different departments. Additionally, the limitation of the available rooms to hold

sessions have to be satisfied in the results of our model. Consequently, the resulting CTT satisfies all

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

90

constraints and minimizes the usage of limited resources available at the CC. So, it is considered as an

optimal timetable for both students and teachers.

Actually, we build the model data for different nine classes. Each class has five different courses. Each

course has a number of sessions (repetitions) per week that could be two or three, according to the setting of

the educational program for each class. These sessions could be theoretical only or theoretical and practical.

Indeed, theoretical sessions are held in classrooms while practical sessions in labs.

In addition, we have implemented (using the OPL language) in our CTT model the calculation and

accumulation of the teaching load for teachers. Consequently, the resulting timetable contains the total

teaching load assigned for each teacher from the different department. Finally, we define the session time as

some time blocks. Each time block is a fixed thirty minutes. Then, we have defined the break time unit for

each time slot as applied in the UoS timetable.

Results

Actually, running the proposed CTT OPL model,using the IBM ILOG OPL-CPLEX Development Studio

Systemis reasonably simple.This OPL Studio provides the solution for our CTT OPLmodel by finding the

assignments of all decision variables that satisfiesall constraints and the optimization instruction with the

objective function minimize. An example for the solution of a decision variable, is shown below for the

classTeacher array – the assignment of teachers to sections of each class. The classTeacher array contains

rows for the sections’ instances of a class.Whilethe value for each element in that instances are the teachers

ID.
classTeacher = [[0 0 5 7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 1 2 2 4 0 0 0 0 0 0 0 0 0 0 0]

[0 0 5 0 0 0 0 0 0 0 9 10 14 12 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 10 12 13 11 0 0]

[0 0 0 7 9 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0]

[0 0 0 0 0 1 1 2 2 0 0 0 0 0 0 0 0 0 0 6 0]
[0 0 4 0 0 0 0 0 0 0 9 12 11 13 0 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 13 13 10 0 0 5]]

The solution for a feasible timetable forthe OPL CTT model, is the assignment of the two-dimensional

array, timetable. The array values are collected from the decision variables in our OPL model. Specifically,

we built the timetable array using the type course, which is a tuple (record) used to represent section instances

for CTT. The course tuple contains the following data elements: teacher, discipline, campus, room, id,

repetition, startingPoint and endingPoint. The two dimensions of the array are time and class. The time is

ranged from zero to MaxTime-1 while the class is the set of classes for the educational program at CC.

Consequently, when running of our model, the resulting timetable with full contents will display the

solution for the CTT problem at the CC. We have formatted the resulting timetable to be compatible with the

current timetables used in the CC by all faculties, students or staff.The result shows the timetable for nine

different classes. Each class has five courses. Each course has specific information such asDays, Time,

Campus, Room, and Instructoras shown in Fig. 1. Therefore, the resulting timetable shows the teaching load

assigned for each teacher. In addition, the figure shows the breaks between each course session.
// solution with objective 94

Class Course Days Time Campus Room Instructor

Law-80 Introduction to law Sunday-Tuesday 08:30 - 09:45 SHW Common Room Law Lecturer 1

Law-80 Islamic Sunday-Tuesday 11:00 - 12:15 SHW CR A2 BS Lecturer 2

Law-80 IT Monday-Wednesday 08:00 - 09:40 SHW Lab A3 IT Lecturer 1

Law-80 Sources of Obligation Monday-Wednesday 10:00 - 11:15 SHW Common Room Law Lecturer 1

Law-80 Principles of Management Monday-Wednesday 11:30 - 12:45 SHW CR A2 AFS Lecturer 1
__

Law-81 Arabic Sunday-Tuesday 09:00 - 10:15 SHW CR B1 BS Lecturer 3

Law-81 Administrative law Sunday-Tuesday 10:30 - 11:45 SHW Common Room Law Lecturer 3

Law-81 Comm. law and companies Sunday-Tuesday 12:00 - 13:15 SHW Common Room Law Lecturer 3

Law-81 Rules of Obligation Monday-Wednesday 08:30 - 09:45 SHW Common Room Law Lecturer 2

Law-81 Penal Law 1 Monday-Wednesday 11:30 - 12:45 SHW Common Room Law Lecturer 2
__

IT-80 CG Sunday-Tuesday 09:30 - 11:10 SHW Lab B1 IT Lecturer 3

IT-80 BCO Sunday-Tuesday 12:00 - 13:40 SHW Lab A1 IT Lecturer 4

IT-80 Prog 1 Monday-Wednesday 08:00 - 09:40 SHW Lab A2 IT Lecturer 4

IT-80 CS Monday-Wednesday 10:30 - 12:10 SHW Lab A2 IT Lecturer 1

IT-80 Islamic Monday-Wednesday 12:30 - 13:45 SHW CR A1 BS Lecturer 3

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

91

__

IT-82 AWD Sunday-Tuesday 08:30 - 10:10 SHW Lab A3 IT Lecturer 2

IT-82 Net 1 Sunday-Tuesday 11:30 - 13:10 SHW Workshop 2 IT Lecturer 1

IT-82 ESP for IT 1 Monday-Wednesday 08:00 - 09:15 SHW CR A1 BS Lecturer 1

IT-82 IWD Monday-Wednesday 09:30 - 11:10 SHW Lab B2 IT Lecturer 2

IT-82 Video Monday-Wednesday 11:30 - 13:10 SHW Lab B1 IT Lecturer 3
__

IT-83 ESP for IT 2 Sunday-Tuesday 08:00 - 09:15 SHW CR A1 BS Lecturer 1

IT-83 CM Sunday-Tuesday 09:30 - 11:10 SHW Workshop 1 IT Lecturer 1

IT-83 SAD Sunday-Tuesday 12:30 - 13:45 SHW Lab A2 IT Lecturer 2

IT-83 Self Development Monday-Wednesday 09:30 - 10:45 SHW CR B1 AFS Lecturer 1

IT-83 IR Monday-Wednesday 11:00 - 12:40 SHW Lab A3 IT Lecturer 4
__

Law-30 IT Sunday-Tuesday 16:00 - 17:40 SHM Lab A2 IT Lecturer 3

Law-30 Introduction to law Sunday-Tuesday 19:00 - 20:15 SHM Common Room Law Lecturer 1

Law-30 Sources of Obligation Monday-Wednesday 15:00 - 16:15 SHM Common Room Law Lecturer 1

Law-30 Arabic Monday-Wednesday 16:30 - 17:45 SHM CR A1 BS Lecturer 3

Law-30 Principles of Management Monday-Wednesday 18:00 - 19:15 SHM CR B2 AFS Lecturer 2
__

Law-31 Penal Law 1 Sunday-Tuesday 16:00 - 17:15 SHM Common Room Law Lecturer 2

Law-31 Rules of Obligation Sunday-Tuesday 17:30 - 18:45 SHM Common Room Law Lecturer 2

Law-31 Introduction to Psychology Sunday-Tuesday 19:30 - 20:45 SHM CR A1 BS Lecturer 4

Law-31 Comm. law and companies Monday-Wednesday 17:00 - 18:15 SHM Common Room Law Lecturer 3

Law-31 Administrative law Monday-Wednesday 18:30 - 19:45 SHM Common Room Law Lecturer 3
__

IT-30 BCO Sunday-Tuesday 15:00 - 16:40 SHM Lab A1 IT Lecturer 4

IT-30 Prog 1 Sunday-Tuesday 17:00 - 18:40 SHM Lab A3 IT Lecturer 2

IT-30 CG Sunday-Tuesday 19:00 - 20:40 SHM Lab B1 IT Lecturer 3

IT-30 Islamic Monday-Wednesday 15:00 - 16:15 SHM CR B2 BS Lecturer 3

IT-30 CS Monday-Wednesday 17:30 - 19:10 SHM Lab A1 IT Lecturer 1
__

IT-32 ESP for IT 1 Sunday-Tuesday 15:00 - 16:15 SHM CR B2 BS Lecturer 1

IT-32 Principals of Statistics Sunday-Tuesday 16:30 - 17:45 SHM CR B1 BS Lecturer 3

IT-32 Net 1 Sunday-Tuesday 19:00 - 20:40 SHM Workshop 1 IT Lecturer 2

IT-32 IWD Monday-Wednesday 16:00 - 17:40 SHM Lab B1 IT Lecturer 4

IT-32 AWD Monday-Wednesday 18:00 - 19:40 SHM Lab A3 IT Lecturer 3
__

Teacher Load

Law Lecturer 1: 12

Law Lecturer 2: 12

Law Lecturer 3: 12

BS Lecturer 1: 9

BS Lecturer 2: 3

BS Lecturer 3: 15

BS Lecturer 4: 3

AFS Lecturer 1: 6

AFS Lecturer 2: 3

IT Lecturer 1: 20

IT Lecturer 3: 20

IT Lecturer 4: 20

IT Lecturer 2: 19

Fig 1: The Solution for the CTT problem at the CC

Further, we convert the timetable produced in Fig 1 into graphical representation as shown in Fig. 2 and

Fig. 3, in which each student group belongs to a specific class (educational program) could register their

courses easily. Altogether, those figures show that there is no conflict for students, teachers, and rooms as the

required solution for the CTT problem at the CC. In addition, these figures show that each group of students

has a break time during the day for extra-curriculum activities.

Sunday-Tuesday Monday-Wednesday

Section/Time Law-80 Law-81 IT-80 IT-82 IT-83 Law-80 Law-81 IT-80 IT-82 IT-83

8:00
 ESP for IT 2 ->

08:00 - 09:15
-> SHW -> CR

A1 -> BS
Lecturer 1

IT -> 08:00 -
09:40 -> SHW ->

Lab A3 -> IT
Lecturer 1

Prog 1 ->
08:00 - 09:40

-> SHW ->
Lab A2 -> IT
Lecturer 4

ESP for IT 1 ->
08:00 - 09:15
-> SHW -> CR

A1 -> BS
Lecturer 1

8:30 Introduction
to law ->

08:30 - 09:45
-> SHW ->
Common

Room -> Law
Lecturer 1

AWD -> 08:30 -
10:10 -> SHW ->

Lab A3 -> IT
Lecturer 2

Rules of
Obligation ->
08:30 - 09:45

-> SHW ->
Common

Room -> Law
Lecturer 2

9:00 Arabic -> 09:00 -
10:15 -> SHW ->

CR B1 -> BS
Lecturer 3

9:30
CG -> 09:30 -
11:10 -> SHW
-> Lab B1 ->

CM -> 09:30 -
11:10 -> SHW
-> Workshop

IWD -> 09:30
- 11:10 ->

SHW -> Lab

Self
Development

-> 09:30 -

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

92

10:00

IT Lecturer 3 1 -> IT
Lecturer 1

Sources of
Obligation ->

10:00 - 11:15 ->
SHW ->

Common Room -
> Law Lecturer 1

B2 -> IT
Lecturer 2

10:45 -> SHW
-> CR B1 ->

AFS Lecturer 1

10:30
 Administrative

law -> 10:30 -
11:45 -> SHW ->
Common Room -
> Law Lecturer 3

CS -> 10:30 -
12:10 -> SHW
-> Lab A2 ->
IT Lecturer 1

11:00
Islamic ->

11:00 - 12:15
-> SHW -> CR

A2 -> BS
Lecturer 2

IR -> 11:00 -
12:40 -> SHW
-> Lab A3 -> IT

Lecturer 4

11:30

Net 1 -> 11:30 -
13:10 -> SHW ->
Workshop 2 ->
IT Lecturer 1

 Principles of
Management ->
11:30 - 12:45 ->
SHW -> CR A2 ->
AFS Lecturer 1

Penal Law 1 -
> 11:30 -

12:45 -> SHW
-> Common

Room -> Law
Lecturer 2

12:00 Comm. law and
companies ->

12:00 - 13:15 ->
SHW ->

Common Room -
> Law Lecturer 3

BCO -> 12:00
- 13:40 ->

SHW -> Lab
A1 -> IT

Lecturer 4

Video ->

11:30 - 13:10
-> SHW ->

Lab B1 -> IT
Lecturer 3

12:30
 SAD -> 12:30

- 13:45 ->
SHW -> Lab

A2 -> IT
Lecturer 2

Islamic ->
12:30 - 13:45
-> SHW -> CR

A1 -> BS
Lecturer 3

13:00

13:30

Fig 2: Graphic Representation for the Morning Shiftof CTT

Sunday-Tuesday Monday-Wednesday

Section/Tim
e

Law-30 Law-31 IT-30 IT-32 Law-30 Law-31 IT-30 IT-32

15:00

BCO -> 15:00 -
16:40 -> SHM ->

Lab A1 -> IT
Lecturer 4

ESP for IT 1 ->
15:00 - 16:15 ->
SHM -> CR B2 ->

BS Lecturer 1

Sources of
Obligation ->

15:00 - 16:15 ->
SHM -> Common

Room -> Law
Lecturer 1

 Islamic -> 15:00 -
16:15 -> SHM ->

CR B2 -> BS
Lecturer 3

15:30

16:00

IT -> 16:00 -
17:40 -> SHM ->

Lab A2 -> IT
Lecturer 3

Penal Law 1 ->
16:00 - 17:15 ->

SHM ->
Common Room
-> Law Lecturer

2

IWD -> 16:00 -
17:40 -> SHM -
> Lab B1 -> IT

Lecturer 4

16:30 Principals of
Statistics ->

16:30 - 17:45 ->
SHM -> CR B1 ->

BS Lecturer 3

Arabic -> 16:30 -
17:45 -> SHM ->

CR A1 -> BS
Lecturer 3

17:00

Prog 1 -> 17:00
- 18:40 -> SHM
-> Lab A3 -> IT

Lecturer 2

Comm. law and
companies ->

17:00 - 18:15 ->
SHM -> Common

Room -> Law
Lecturer 3

17:30
Rules of

Obligation ->
17:30 - 18:45 ->

SHM ->
Common Room
-> Law Lecturer

2

CS -> 17:30 -
19:10 -> SHM ->

Lab A1 -> IT
Lecturer 1

18:00

Principles of
Management ->
18:00 - 19:15 ->
SHM -> CR B2 ->
AFS Lecturer 2

AWD -> 18:00 -
19:40 -> SHM -
> Lab A3 -> IT

Lecturer 3

18:30

Administrative
law -> 18:30 -

19:45 -> SHM ->
Common Room -
> Law Lecturer 3

19:00 Introduction to
law -> 19:00 -

20:15 -> SHM ->
Common Room
-> Law Lecturer

1

CG -> 19:00 -
20:40 -> SHM ->

Lab B1 -> IT
Lecturer 3

Net 1 -> 19:00 -
20:40 -> SHM ->
Workshop 1 -> IT

Lecturer 2

19:30 Introduction to
Psychology ->

19:30 - 20:45 ->
SHM -> CR A1 ->

BS Lecturer 4

20:00

20:30

Fig 3: Graphic Representation for the Evening Shift of CTT

The IBM Development Studio provides the solution for our OPL model in few seconds. The IBM

Development Studio has been run on i7 CPU at 2.10 GHz with 6.00 GB RAM and 64-bit Operating system.

Conversely, currently the manual solution of the CC timetabling problem requires several workdays.

Conclusion

We reported a model for the university timetable that based on finite domain technique for CSP. Our

system solves the problem efficiently. The development time for the program is much shorter than time

spending on the manual approach. Our experience shows that applying constraint logic programming with the

optimization language is a practically viable means for timetable scheduling in a university.

The results from running our model of the CTT problem at the CC conclude and prove that all the required

constraints are successfully verified. We found that the resulting timetable could be used easily by students to

register their courses with conflict-free. Moreover, an important issue is appeared in the result timetable, our

model balance the teaching load for teachers that the college faculties For further work, we are able to enrich

this model with concepts and data of the other colleges at the UoS to build the university CTT. The further

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

93

development of timetabling model includes timetabling for any college in the UoS, dedicating courses for

specific times, adding breaks for specific courses, dedicating rooms to be free in a specific times, dedicating

teachers to be free in a specific times, improvements of problem modeling, and using the APIs of the IBM

IDE solver to build a standalone system. The study of adding or combining different modeling techniques and

heuristics techniques will be the main parts of the further research.

Finally, the applying of a comparable model for the ETT with the required methods, concepts and data

from the CC will be also the scope of further research.

References

[1] R. Wattanamano, K. Thongsanit and P. Hongsuwan, "The Development of Mathematical Model for a

University Course Timetabling Problem," Silpakorn University Science and Technology Journal, vol. 5,

no. 2, pp. 46-52, 2011.

[2] K. Kumar, Sikander, R. Sharma and Kaushal, "Genetic Algorithm Approach to Automate University

Timetable," International Journal of Technical Research(IJTR), vol. 1, no. 1, 2012.

[3] A. O. Adewumi, B. A. Sawyerr and M. M. Ali, "A heuristic solution to the university timetabling

problem," Engineering Computations: International Journal for Computer-Aided Engineering and

Software, vol. 26, no. 8, pp. 972-984, 2009.

[4] S. Abdennadher and M. Marte, "University Course Timetabling using Constraint Handling Rules,"

Journal of Applied Artificial Intelligence, vol. 14, no. 4, pp. 311-325, 2000.

[5] R. Barták, M. A. Salido and F. Rossi, "Constraint satisfaction techniques in planning and scheduling,"

Intelligent Manufacturing, vol. 21, no. 1, pp. 5-15, 2010.

[6] F. Rossi, P. van Beek and T. Walsh, Handbook of Constraint Programming, 1 ed., Elsevier Science,

2006, p. 978.

[7] A. Schaerf, "A Survey of Automated Timetabling," Artificial Intelligence Review, vol. 13, no. 2, pp.

87-127, 1999.

[8] S. C. Brailsford, C. N. Potts and B. M. Smith, "Constraint satisfaction problems: Algorithms and

applications," European Journal of Operational Research, vol. 119, pp. 557-581, 1999.

[9] S. Abdennadher and M. Marte, "University Course Timetabling using Constraint Handling Rules,"

Journal of Applied Artificial Intelligence, vol. 14, no. 4, pp. 311-325, 2000.

[10] V. Kumar, "Algorithms for Constraint-Satisfaction Problems: A Survey," AI Magazine, vol. 13, no. 1,

pp. 32-44, 1992.

[11] S. Petrovic and E. Burke, "University timetabling," in Handbook of scheduling: algorithms, models,

and performance analysis, Chapman and Hall/CRC, 2004, pp. 1-23.

[12] S. Abdennadher and M. Marte, "University timetabling using constraint handling rules," JFPLC, pp. 39-

50, 1998.

[13] L. Zhang and S. K. Lau, "onstructing university timetable using constraint satisfaction programming

approach," Computational Intelligence for Modelling, Control and Automation, vol. 2, pp. 55-60, 2005.

[14] A. Ojugo, I. Iyawa., F. Aghware., M. Yerokun and E. Ugboh, "Comparative Study of the Timetable

Constraint Satisfaction Problem," in 5th International Conference on Cir-cuits, Systems, Control,

Signals (CSCS '14), Salerno, Italy, 2014.

[15] C. Gu´eret, N. Jussien, P. Boiz and C. Prins, "Building university timetables using constraint logic

programming," in Practice and Theory of Automated Timetabling, Springer-Verlag LNCS 1153, 1996,

p. 130–145.

[16] W. Legierski, "Constraint-based reasoning for timetabling," in Artificial Intelligence Method, Gliwice,

Poland, 2002.

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

94

[17] K. Zervoudakis and P. Stamatopoulos, "A generic object-oriented constraint-based model for university

course timetabling," Lecture Notes in Computer Science, vol. 2079, pp. 28-47, 05 Sep 2001.

[18] H.-J. Goltz, G. Küchler and D. Matzke, "Constraint-based timetabling for universities," in INAP'98,

11th International Conference on Applications of Prolog, 1998.

[19] H. S. Fen, S. Deris and S. Hashim, "Investigating Constraint-Based Reasoning for University

Timetabling Problem," in Ho Sheau Fen, Safaai-Deris, Siti Zaiton-Mohd Hashim, "Investigating

Constraint-Based Reasoning for University Timetabling Problem", Proceedings of the International

Multi Conference of Engineers and Computer Scientists, 2009.

[20] L.-Y. Shue, P.-C. Lin and C.-Y. Tsai, "Constraint Programming Approach for a University Timetabling

Decision Support System with Hard and Soft Constraints," in Opportunities and Challenges for Next-

Generation Applied Intelligence Studies in Computational Intelligence, vol. 214, 2009, pp. 93-98.

[21] M. Gavanelli, "University Timetabling in ECLiPSe," Association for Logic Programming, vol. 19, no.

3, 2006.

[22] H. Rudová and K. Murray, "University course timetabling with soft constraints," in Practice and theory

of automated timetabling IV, Gent, Belgium, 2003.

[23] C.-m. Yeung, S.-M. Leung and H.-F. Leung, "Applying constraint satisfaction technique in university

timetable scheduling," Evolutionary Computing, vol. 3, pp. 683-695, 1995.

[24] M. A. Bakir and A. Cihan, "A 0-1 integer programming approach to a university timetabling problem,"

Hacettepe Journal of Mathematics and Statistics, vol. 37, no. 1, p. 41 – 55, 2008.

[25] S. Ribi and S. Konjicija, "A Two Phase Integer Linear Programming Approach to Solving the School

Timetable Problem," in 32nd International Conference on Information Technology Interfaces, Cavtat,

Croatia, June 21-24, 2010.

[26] O. Czibula, H. Gu, A. Russell and Y. Zinder, "A Multi-Stage IP-Based Heuristic for Class Timetabling

and Trainer Rostering," in 10th International Conference of the Practice and Theory of Automated

Timetabling, York, United Kingdom, 2014.

[27] K. Zervoudakis and P. Stamatopoulos, "A Generic Object-Oriented Constraint-Based Model for

University Course Timetabling," in Practice and Theory of Automated Timetabling III, vol. 2079,

Springer Berlin Heidelberg, 2001, pp. 28-47.

[28] P. Laborie, "IBM ILOG CP Optimizer for detailed scheduling illustrated on three problem," in

Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems, Springer Berlin Heidelberg, 2009.

[29] P. Van Hentenryck, "A Preview of OPL," Department of Computing Science and Engineering, UCL,

Belgium, 2000.

[30] M. SCHULZ and A. EISENBLÄTTER, Solving Frequency Assignment Problems with Constraint

Programming, Technische Universität Berlin, Institut für Mathematik, 2003.

[31] K. Vermirovsky, Algorithms for constraint satisfaction problems, Diss. Master Thesis of Purdue

University, 2003.

[32] Z. Liu, Algorithms for Constraint Satisfaction Problems (CSPs), M.S. thesis, Department of Computer

Science, University of Waterloo, Waterloo, Canada, 1998.

[33] M. Abril, M. A. Salido, F. Barber, L. Ingolotti, P. Tormos and A. Lova, "Distributed Constraint

Satisfaction Problems to Model Railway Scheduling Problems," in the Sixteenth International

Conference on Automated Planning and Scheduling (ICAPS 2006), Ambleside, 2006.

[34] B. McCollum and N. Ireland, "University Timetabling: Bridging the Gap between Research and

Practice," in 5th International Conference on the Practice and Theory of Automated Timetabling

(PATAT), 2006.

[35] S. M. S. Shatnawi, . F. Albalooshi and K. Rababa'h, "Generating Timetable and Students schedule

based on data mining techniques," International Journal of Engineering Research and Applications

(IJERA), vol. 2, no. 4, pp. 1638-1644, 2012.

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 3, June 2015

95

[36] P. Van Hentenryck, L. Michel, L. Perron and J. C. Régin, "Constraint programming in OPL," in

Principles and Practice of Declarative Programming, Berlin, Heidelberg, 1999.

