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Abstract

This paper considers the problem of designing utility maximization scheduling algorithms
for multi-channel(e.g, OFDM-based) wireless down-link systems. We extend Lyapunov
Optimization to design a throughput-utility maximizing algorithm that uses a queue-based and
delay-based Lyapunov functions, where the delay uses explicit delay information from the
head-of-line packet destined to each user. Our approach provably achieves the maximum utility, and
empirically outperforms the previous solution.
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Introduction

In the OFDM-based wireless down-link systems(e.g., WiMax[1])and LTE[2]), the bandwidth
available at the base-station is partitioned into hundreds or thousands of orthogonal frequency
bands(or channels). In every timeslot, a given frequency band can be allocated to one and only one
user, but a given user can be served by multiple frequency bands simultaneously, and the allocation
can change over every time-slot, depending upon the channel quality and the queue backlogs.

It is well known that the MaxWeight algorithm [3]-[4] is throughput-optimal for this system.
However, the delay performance of this algorithm is well known to be poor, both from an average
and a worst-case delay sense (for instance, see [5]-[6]). The works in [7]-[9] all use queue-based
transmission rules to treat joint stability and utility optimization. However, work in [10] introduces
a delay-based Lyapunov function for proving stability, where the delay of the head-of-line packet is
used as a weight in the max-weight decision. To our knowledge, there are no prior works that
combine these two scheduling rules to address the important issue of joint stability and
throughput-utility optimization in multi-user multi-channel system. This paper fills this gap. We use
a queue-based and delay-based Lyapunov functions to treat this issue via the Lyapunov
Optimization technique from the prior work[11]. We evaluate the performance of our approach
through simulations, and it show that our scheduling algorithm outperforms the previous solution.

1. System Model

A. Model
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Fig.1. System Model
We consider a multi-user multi-channel system with stochastic connectivities as shown in

Figure 1. For simplicity, the number of users is assumed to be equal to the number of channels.
There are n users (queues) and n servers(channels). The system is time-slotted. In a time-slot, a
server can be allocated to only one queue, but a queue can get service from multiple servers. The
connectivity between queues and servers is time-varying, i.e., it can change between “ON” and
“OFF” from time to time.

We let iQ denote the queue(at the BS) associated with the i th user,

where 1( ) ( ( ),..., ( ))nt Q t Q tQ denotes the backlogs(in units of packers) of each queue at the end of

time-slot t . We assume that each queue has infinite buffer capacity so that no packets are ever

dropped. Let jS denote the j th server, where 1( ) ( ( ),..., ( ))nt S t S tS denotes a server condition vector

for slot t , and ( ) { , }jS t ON OFF . We assume that ( )tS is i.i.d. over slots and known to the BS at the

beginning of each slot t . Let 1( ) ( ( ),..., ( ))nt A t A tA be the arrival vector, where ( )iA t denote the number

of packer arrivals to queue iQ in time-slot t . For simplicity, we assume all packets have fixed size,

and that there is at most one packet arrival to each queue per slot, so that ( ) {0,1}iA t  for all

queues i and slots t . We assume that ( )tA are i.i.d. every time slot with 1{ ( )} ( ,..., )nE t    A  . We

let ( )i t represents the amount of packets successfully served on slot t . The queuing dynamics as

follows:
( 1) max[ ( ) ( ),0] ( )i i i iQ t Q t t A t   

(1)
As it clear from the above equation, the queues can store any number of packets in the buffers,

and the system does not drop any packets.
B. Time Varying Allocation Reliability

Let ( )ij t denote the amount of packets in queue i successfully served by serve j on slot t . For

simplicity, we assume that each server can server at most one packet per slot, so that ( ) {0,1}ij t  for

all servers and all slot t . Let 1( ) ( ( ),..., ( ))nt x t x tx denote a transmission vector, where ( ) {0,1}ix t  ,
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and ( ) 1ix t  if queue i attempts transmission on slot t . We assume that ( )tx must be drawn from some

general allowable transmission set  , i.e., ( )t x  for all t . We also assume that each set  is time

invariant and compact. The transmission vector ( )tx and server condition vector ( )tS jointly

determine the probability of successful allocation on each slot. Specifically, given

particular ( )tx and ( )tS vectors, the probability of server j successfully allocated to queue i is given by

a reliability function:

Pr[ allocated to | ( ), ( )] ( ( ), ( ))j i ijS Q t t t t x s x s (2)

The reliability function ( , )ij x s is general for all i and {1,..., }j n and is assumed only to take real

values between 0 and 1 (representing probabilities), and to have the property

that ( , ) 1ij x s whenever 1ix  and ONjS  , and 0 otherwise. In practice, ( )tS represents the result of

a channel estimation that is done every slot. The estimation might be inexact, in which case the

reliability function ( , )ij x s represents the probability that the actual network channels on slot t are

sufficient to support the attempted transmission of queue i . We assume the reliability function is
known.

We assume that ACK/NACK information is given at the end of the slot to inform each queue if
its transmission was successful or not. Packets that are not successful do not leave the queue. With

this model of allocation success, the serve variable ( )ij t is given by:

( ) ( ) ( )ij i ijt x t I t (3)

Where ( )ij t is an indicator variable that is 1 if the transmission of queue i is successfully served,

and 0 otherwise. That is:

1 with probability ( ( ), ( ))( ) 0 with probability 1 ( ( ), ( ))ij
ij t tI t ij t t

 
x s
x s (4)

The successes/failures over each server on slot t are assumed to be independent of past history

given the current ( )tx and ( )tS values.

C. The Optimization Objective
Our goal is to design a network scheduling policy that maximizes a general network utility metric

which is a function of the achieved throughput vector. Specifically, let ( )iy t be the amount

of user i data served in slot t , and define the throughput ( )iy t for user i as follows:

1

0

1lim [ ( )]
t

i i
t

y y
t






  (5)
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Then we seek to solve the following utility maximization problem:

Maximize: ( )g y (6)

Subject to: y  (7)

0 i iy   for all {1,..., }i n (8)

Let  be the network capacity region of the wireless downlink, define as the closure of the set of

all achievable throughput vectors 1( ,..., )ny yy  . Where in the above we denote by ( )g  a generic utility

function that is concave,continuous,non-negative, and non-decreasing.

2. The Optimal Scheduling Algorithm

In this section, we use the framework of Lyapunov Optimization to develop an optimal
scheduling algorithm for our model.
A. Constructing Lyapunov Function

Let ( )i t represent the waiting time of the head-of-line packet in queue i on slot t , and define

( )i t =0 if there are no packets in queue i at this time. A new packet that arrives to an empty queue

on slot t is not placed to the head-of-line until the next slot, and is designated to have a waiting

time of 1 at slot 1t  . Define ( )i t as an indicator variable that is 1 if ( ) 0iQ t  , and is zero if the

queue is empty. Let ( ) 1 ( )i it t   . Similar to [10], we observe that ( )i t satisfies the following

update rule:

( 1) ( )max[ ( ) 1 ( ) ( ),0] ( ) ( )i i i i i i it t H t t T t t A t      (9)

Where ( )i t represents the inter-arrival time between the head-of-line packet and the subsequent

packet(possibly unknown to the BS if the subsequent packet has not yet arrived). Because arrivals

are Bernoulli, ( )i t is a geometric random variable with success probability i , that takes values in

the set {1, 2, 3...}.

The equation (9) can be understood as follows: If ( ) 0i t  , then ( ) 1i t  so that queue i is empty. In

this case, the value of ( 1)i t  is 1 if and only if there is a new arrival on slot t . Alternatively,

if ( ) 1i t  , then ( ) 0i t  . Suppose in this case that the head-of-line packet is not served ( ) 0)i t  ,

then its delay increases by 1, as described by (9). On the other hand, if the head-of-line packet is

served ( ) 1)i t  , then the next packet enters the head-of-line, with a total waiting time equal
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to ( ) 1 ( )i it T t  (where the additional “+1” comes because this operation takes one more slot). The

above dynamics also capture the possibility that the inter-arrival time is greater than or equal

to ( ) 1i t  , in which case the queue is empty on slot 1t  with ( 1) 0i t   .

Define ( ) [ ( ); ( )]t t tQ H , where ( )tQ and ( )tH are vectors of queues in (1) and the head-of-line

values in (9). We use the following non-negative Lyapunov function:
2 2

1 1

1 1( ( )) ( ) ( )
2 2

n n

i i i
i i

L t Q t H t
 

   (10)

B. Minimizing the Drift-Minus-Utility

Define ( ( ))t  as the one-step conditional Lyapunov drift:

( ( )) { ( ( 1)) ( ( )) | ( )}t L t L t t       (11)

Using our Lyapunov Optimization framework in [1], our strategy is to make transmission
decisions to minimize a bound on the following drift-minus-utility expression every slot:

( ( )) { ( ( )) | ( )}t V g y t t   (12)

WhereV is a non-negative control parameter that is chosen as desired, and will affect an explicit
utility-delay trade-off. We have the following preliminary lemmas:

Lemma 1: Every slot t , for any value of ( )t , and under any control policy, the Lyapunov drift

satisfies:

1 1
( ( )) ( ) {( ( ) ( )) | ( )} ( ) {1 ( ) ( ) | ( )}i

n n

i i i i i i
i i

t B Q t A t t t H t t T t t
 

            (13)

Where B is a finite constant.

Proof: The proof follows by squaring (1) and (9), and using ( ) ( ) ( )i i it H t H t  , ( ) ( ) 0i it t   , and is

omitted for brevity.

Lemma 2: Every slot t , for any value of ( )t , and under any control policy for which ( )i t is

independent of ( )i t and ( )t for all queue i , we have:

1

1 1 1

( ( )) { ( ( )) | ( ) { ( ( )) | ( )} ( ) { ( ) | ( )}

( ) { | ( )} ( ( ) ( )) { ( ) ( ( ), ( )) | ( )} (14)

n

i i
i

n n n

i i i i i i
i i i

t V g y t t B V g y t t Q t A t t

H t t Q t H t x t t t t



  

     

  



   x S

   

 

  

 

Proof: Using
1

( ) ( )
n

i ij
j

t t


  , ( ) ( ) ( )ij i ijt x t I t , and define ( ) [ ( ), ( ), ( )]t t t t  S x , then we have

{ ( ) | ( )} ( ( ), ( ))ij ijI t t t t   x s , and let ( ) [ ( ), ( )]it t t    , using the law of iterated expectations, we have:
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1{ ( ) ( ) | ( )} { [ ( ) ( ) | ( )] | ( )} { ( ) [ ( ) | ( )] | ( )} { ( ) | ( )}i i i i i i i
i

t T t t t T t t t t T t t t u t t       


        

Where we have used the fact that ( )i t is independent of ( )t and is a geometric random variable

with { ( )} 1/i iT t   . Lemma 2 follows by plugging these identity into Lemma 1 and subtracting

{ ( ( )) | ( )}V g y t t  from both sides.

C. The Optimal Scheduling Algorithm

Our dynamic scheduling policy below makes control decisions for ( )tx to minimize the right hand

side of the drift-minus-utility bound in Lemma 2. Every slot t , observe ( )tQ , ( )tH , and ( )tS , and

perform the following operations:

1) Transmission Scheduling: Observe ( )t and ( )tS and choose a transmission vector ( )tx to solve

the following :

Maximize:
1 1

{ ( ( )) | ( )} ( ( ) ( )) { ( ) ( ( ), ( )) | ( )}
n n

i i i ij
i j

V g y t t Q t H t x t t t t
 

    x s   (15)

Subject to: ( )t x  (16)

Where
1 1 1 1 1

( ) ( ) ( ) ( ) ( )
n n n n n

i ij i ij
i i j i j

y t t t x t I t
    

      

2) Queue Update: Update the queue using (1) and (9).

3. The Performance Analysis

Theorem 1. Suppose there exists an 0  such that 2   1  , let 1( ) ( ( ),..., ( ))nt t t   , and assume

{ ( (0))}L   , then under the scheduling algorithm we proposed, we have:

(a) If 0  then all queues ( )i t are mean rate stable, {1,..., }i n .

(b) If 0  , then all queues are strongly stable and:
1

0 1

1limsup {| ( ) |}
t n

i
t i

B
t




 

  
 (17)

Where B is same constant from Lemma 1.
Proof: (10) can be written as follows:

2

1

1( ( )) ( )
2

n

i i
i

L t W t


  (18)

Where {1, }i iW   are a collection of positive weights and (13) can be written as :

1
( ( )) | ( ) |

n

i
i

B


       (19)
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Then we first prove part b. Taking expectations of (19) and using the law of iterated expectations
yields:

1
{ ( ( 1))} { ( ( ))} {| ( ) |}

n

i
i

L L B


            (20)

Summing the above over {0,1,..., 1}t  for some slot 0t  and using the law of telescoping sums

yields:
1

0 1
{ ( ( ))} { ( (0))} {| ( ) |}

t n

i
i

L t L Bt


 

         (21)

Now assume that 0  . Dividing by t , rearranging terms, and using the fact that { ( ( ))} 0L t  yields:

1

0 1

1 1{| ( ) |} { ( (0))}
t n

i
i

B L
t t



 

   
    (22)

The above holds for all slots 0t  . Taking a limit as t proves part (b).
To prove part (a), we have from (21) that for all slots 0t  :

{ ( ( ))} { ( (0))}L t L Bt    (23)

Then plugging (18) into (23) yields:
2

1

1 { ( ) } { ( (0))}
2

n

i
i
W i t Bt L



     (24)

Therefore, for all {1,..., }i n , we have:

2 2 2{ ( ) } { ( (0))}i
i i

Btt L
W W

     (25)

However, because | ( ) |i t cannot be negative, we have 2 2{ ( ) } {| ( ) |}i it t    .Thus for all slots 0t  ,

we have:
2 2 { ( (0))}{| ( ) |}i

i i

Bt Lt
W W

  
 (26)

Dividing by t and taking a limit as t proves that:

2

{| ( ) |} 2 2 { ( (0))}lim 0i

t i i

t B L
t tW t W


  

  (27)

Thus, all queues ( )i t are mean rate stable, proving part (a).

Theorem 2. Suppose all queues are initially empty, and let *y be the optimal time average

throughput vector, so that ( *) *g gy , which is the optimal utility, and *( )t is the optimal service

rate, and we assume that { *( )} { ( )} *it A t  y  ,and the control parameter 0V  , then under our

scheduling algorithm we have:

liminf ( ) *
t

Bg g
V

 y (28)
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Where 1( ,..., )ny yy  , and iy is define in (5), and B is same constant from Lemma 1.

Proof: From (14) we have:

1

1

( ( )) { ( ( )) | ( )} { ( ( )) | ( )}

( ) {( ( ) ( )) | ( )}

( ) { ( ) | ( )}

n

i i i
i
n

i i i
i

t V g y t t B V g y t t

Q t A t t t

H t t t





    

 

 





  





 





(29)

Then using ( *) *g gy and { *( )} { ( )} *it A t y    , we have:

1

1

( ( )) { ( ( )) | ( )} { ( *( )) | ( )}

( ) {( ( ) *( )) | ( )}

( ) { *( ) | ( )}

n

i i i
i
n

i i i
i

t V g y t t B V g y t t

Q t A t t t

H t t t





    

 

 





  





 





(30)
Taking expectations of (30) yields:

1

1

{ ( ( 1))} { ( ( ))} { ( ( ))} { ( *( ))}

{ ( )} { ( ) *( )}

{ ( )} { *( )} *

n

i i i
i
n

i i i
i

L t L t V g y t B V g y t

Q t A t t

H t t B Vg





     

 

   





    

 

 

(31)

The above holds for all 0t  . Summing over {0,1,...,t-1} and dividing by t yields:

1

0

1{ { ( ( ))} { ( (0))}} { ( ( ))} *
tVL t L g y B Vg

t t





         (32)

Using the fact that ( ) 0L  and rearranging terms yields:

1

0

1 1{ ( ( ))} * { ( (0))}
t Bg y g L
t V Vt





      (33)

Using Jensen’s inequality in the concave function ( )g  yields:

1( ( )) * { ( (0))}Bg y t g L
V Vt

    (34)

Taking limits of the above as t yields (28), this completes the proof.

4. Simulations

In this section, we present numerical results to evaluate the algorithm performance. We consider a

20 users wireless down-link with ON/OFF channels. The arrivals ( )iA t are independent Bernoulli

processes, i.i.d. over slots with rates {0.1,0.9}i  , {1,2,..., 20}i , and the channel state
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processes ( )jS t are independent and i.i.d. Over slots with Pr[ ( ) ON] 0.5jS t   , {1,2,..., 20}j Every slot,

the network controller observes the channel states 1 20( ) ( ( ),..., ( ))S t S t S t and chooses a single queue to

serve, transmitting exactly one packet over a served channel that is ON, and no packets over a
channel that is not served or that is OFF.

We first fix 1000V  and simulate the queue and delay-based algorithm of Section 2 with t from 0

to 500 time slots, which uses knowledge of the arrival rates 1 20( ,..., )  .The utility function of

achieved throughput 1 20( ,..., )y y y is
1

( ) log(1 )
n

i
i

g y y


  , Where log( ) denotes the natural logarithm. The

numerical results are shown in Figure 2. It shows the average arrival rate and the average achieved
throughput versus time t , we can see the average achieved throughput is almost the same as the
arrival rates.
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0
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0.4

0.5

0.6

0.7

0.8

0.9

1

time(slots)

packet

The average arrival rate
The average achieved throughput

Fig.2.Performance for the queue-based and delay-based algorithm( 1000V  )
We next consider the throughput and delay as a function of V . We fix the average arrival rate to

be 0.5 and vary V from 0 to 1000. The numerical results are shown in Figure 3 and Figure 4.
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The Average Achieved Throughput versus V

The queue based
The queue and delay based

Fig.3. The average achieved throughput versusV
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Fig.4. The average delay versus V
Figure 3 shows the resulting average achieved throughput versusV for the queue and delay based

with known arrival rates and the queue based algorithm. The average achieved throughput for these
two algorithms are very close and converge to the optimal values 0.4 as V is increased. Figure 4
shows the average delay for these two algorithms, the results indicate that the average delays for the
queue based algorithm are significantly larger. Thus, our new queue and delay based approach can
significantly reduces average delay as compared to the queue based approach.

5. Conclusion

We considered the problem of designing scheduling algorithms for OFDM-based wireless
down-link from the point of view of maximizing the throughput-utility of network. We have
established a queue-based and delay-based scheduling policy for joint stability and utility
optimization. The Lyapunov optimization approach for this queue-based and delay-based problem is
significantly different from that of queue-based policies. We believe this policy add significantly to
our understanding of scheduling laws in multi-user multi-channel system.
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