
19

International Journal of Computing Academic Research (IJCAR)
ISSN 2305-9184 Volume 4, Number 1(February 2015), pp. 19-26
© MEACSE Publications
http://www.meacse.org/ijcar

Updates in Knowledge Query Manipulation Language for

Complex Multiagent Systems

Ankit Jagga1, Dimple Juneja2 and Aarti Singh3

1&3 MM Institute of Computer Technology & Business Management, Maharishi Markandeshwar University,

Mullana, India

 2 DIMT, Kurukshetra (Haryana), India

Abstract

Knowledge Query Manipulation Language (KQML) is a language that facilitates communication and

interoperability among coordinating software agents. The existing specifications of KQML focus on

perspective, meaning, syntax, semantics, coverage and context of communication to lead to the final result

derived from the communication. It is desired that the new extension should support the abstract interaction

among software agents coordinating in multi-agent systems. Further, literature reveals that standards that are

implementation independent are also lacking. Therefore, the language which is normative and can make

communication between heterogeneous agents operating cross-platforms compatible has always been the

area of interest to scientific community. In particular, this premise of this work is to extend pragmatic

component of KQML which would shore up the use of language as a protocol. Also, the implementation

prototype of the proposal is being presented.

Keywords: Multiagent Systems, Knowledge Query Manipulation Language, Specifications, Pragmatics,

Semantics, Performative

1. Introduction
 Modern multiagent systems are basically knowledge based systems that involve multiple interacting

agents which are autonomous entities responsible for performing a task within a system and also respond to

messages proactively. Now, since various homogenous and heterogeneous agents are required to coordinate

and cooperate to achieve a desired goal, therefore, these agents must agree to certain rules not only restricted

at the interface levels but also at the end user application level. Primarily, cooperating agents should

minimally agree on rules pertaining to sending and receiving the messages (Transportation); meaning of

individual messages (Semantics); structure of conversations (Syntax) and architecture of systems i.e. rules

related to connecting systems in accordance with constituent protocols. In order to meet the above

mentioned requirements, KQML was developed to support communication amongst autonomous and

asynchronous software agents and but initially it was concerned with the transport and language levels only.

In fact, KQML establishes communication among agents through attributes such as querying, stating,

believing, requiring, achieving, subscribing, and offering [1]. Eminent researcher Finn and his team [2]

argue that “KQML should be defined as more than a language with syntax and semantics but must also

include a protocol that governs the use of language i.e. the pragmatic component”. The current work finds

the motivation from this argument and an in-depth grilling of literature revealed the ample scope of

improvement in existing specifications of KQML and hence an extended KQML is proposed in the

upcoming sections.

The paper is structured as follows: Section 1 provided an overview of need of KQML and motivation behind

the current work. Section 2 presents the background and existing specifications of KQML in detail. Section

3 presents the proposed inclusions of novels pragmatic component including new performatives. Section 4

discusses the modified version of KQML with respect to a case study and section 5 finally concludes.

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 1, February 2015

20

2. Background
 Multiagent Systems (MASs) are complex systems in which various agents are required to communicate

and coordinate in variety of domains including organization decision making. The inter-agent

communication is found to be extremely significant during transfer of high level information as well as

during negotiation in social systems. KQML was developed to establish this inter-agent communication

which is independent of software architectures on which MASs are implemented. It is well suited to agent

based complex systems as such systems are autonomous and also it is both message format and message

handling protocol. Though, MASs are usually complex systems where agents operate at several levels,

KQML interactions are classified to happen at three levels only i.e. Content Level, Message Level and

Communication Level. While the content level depicts the knowledge and expression of the message to be

transferred, the message level adds attributes such as language, ontology and speech act of message itself.

Finally communication level adds few more attributes such as identity of sender and recipient and also the

type of message i.e. synchronous or asynchronous.

 A KQML message is called a performative where the defined performative is required to perform an

action as desired by the sender. In fact, KQML is based on an extendable set of performatives, where

performatives define the possible keywords for instituting interaction amongst KQML agents. It is only

performatives that are responsible for identifying the protocol required to transfer a message and also

provide the permissible speech-acts which sender can use to append with the message. Since, the aim of

current work is to extend KQML by adding new performatives, therefore the scope of this paper is being

limited to addition of few novel parameters to the existing set of performatives in KQML. Next subsection

throws light on the existing performatives.

2.1 Existing Performatives : Before understanding the formal syntax and performative component of

KQML, consider a situation where an agent 1 wants to know about the operating system of other platform

and hence sends a request to agent2 operating in the respective environment and in response receives a reply

as depicted in Fig. 1.

Fig. 1 : A Simple Agent Interaction

Fig. 2 represents the syntactic structure of above simple interaction as a KQML message.

Table 1 delineates the semantics and functionality of query given in Fig. 2. In response to above request

agent 2 sends the reply to agent 1 as given in Fig. 3.

Request

Reply

Agent 1

Agent 2

 (ask-one

:sender agent 1

:content (InfoEnv?info)

:receiver agent 2

:reply-with info-about-env

:language Java

:ontology Operating System

)

Fig. 2: A KQML Request

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 1, February 2015

21

Table 1: Semantics and Functionality of KQML Query given in Fig. 2

Query

Keywords

Semantics and Functionality KQML Level

ask-one A KQML performative indicating the beginning of the request

message

:sender Sender of query asking about the information about environment in

which it may be required to execute (agent 1)

communication

level

 :receiver the receiver of the message required to send reply (agent 2)

:reply-with Reply with desired information (info-about-env)

:content the content i.e. the actual message (Info Env?info) content level

:ontology the ontology assumed to be known by all operating agents

(operating system)

message level

:language the language of query representation

(JAVA)

The above response simply binds the name of operating system and returns the response to message with

identifier info-about-env. It is worth mentioning that keywords shown above are reserved keywords only and

in totality, there exist 36 KQML performatives [3] to facilitate the conversation between sender and receiver

agent. These performatives belongs to three different domains [4,5] as shown in Fig. 4 and table 2 given

below lists all performatives falling into these domains.

Since KQML facilitates interagent communication including negotiation, it incurs significant overhead in

terms of time and bandwidth consumption and also transfer of low level data becomes an issue.

Table 2: List of Existing Performatives in KQML [3]

Sr.

No.

Performative Associated Meaning

1. ask-if S wants to know if the :content is in R’s VKB

2. ask-all S wants all of R’s instantiations of the :content that are true of R

3. ask-one S wants one of R’s instantiations of the :content that is true of R

4. stream-all multiple-response version of ask-all

5. eos the end-of-stream marker to a multiple-response (stream-all)

6. tell the sentence is in S’s VKB

7. untell the sentence is not in S’s VKB

8. deny the negation of the sentence is in S’s VKB

9. insert S asks R to add the :content to its VKB

10. uninsert S wants R to reverse the act of a previous insert

11. delete-one S wants R to remove one matching sentence from its VKB

12. delete-all S wants R to remove all matching sentences from its VKB

13. undelete S wants R to reverse the act of a previous delete

14. achieve S wants R to do make something true of its physical environment

15. unachieve S wants R to reverse the act of a previous achieve

16. advertise S wants R to know that S can and will process a message like the

one in a :content

 (tell

:sender agent 2

:content (Info Env Windows)

:receiver agent 1

:in-reply-to info-about-env

:language Java

:ontology Operating System

)

Figure 3: The KQML Response

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 1, February 2015

22

17. unadvertise S wants R to know that S cancels a previous advertise and will not

process anymore messages like the one in the :content

18. subscribe S wants updates to R’s response to a performative

19. error S considers R’s earlier message to be malformed

20. sorry S understands R’s message but cannot provide a more informative

response

21. standby S wants R to announce its readiness to provide a response to the

message in:content

22. ready S is ready to respond to a message previously received from R

23. next S wants R’s next response to a message previously sent by S

24. rest S wants R’s remaining responses to a message previously sent by S

25. discard S does not want R’s remaining responses to a previous(multi-

response) message.

26. register S announces to R its presence and symbolic name

27. unregister S wants R to reverse the act of a previous register

28. forward S wants R to forward the message to the :to agent (R might beThat

agent)

29. broadcast S wants R to send a message to all agents that R knows of

30. transport-address S associates its symbolic name with a new transport address

31. broker-one S wants R to find one response to a <performative>(some agent

32. broker-all S wants R to find all responses to a <performative>(some agentother

than R is going to provide that response)

33. recommend-one S wants to learn of an agent who may respond to a <performative>

34. recommend-all S wants to learn of all agents who may respond to a <performative>

35. recruit-one S wants R to get one suitable agent to respond to a <performative>

36. recruit-all S wants R to get all suitable agents to respond to a <performative>

Fig. 4: Classification of Performatives Domain

Literature presented in the upcoming section highlights the research done in the ACL domain and also

unfolds the issues to be addressed in future.

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 1, February 2015

23

3. Literature Review
Extensive research has been done in the area of Agent Communication Languages(ACLs). This section

highlights the work of eminent researchers and explores the challenges.

An in depth survey comparing the pros and cons of various ACLs and protocols is given in [6].

Researchers [7] have been continuously putting efforts to improve existing ACL according to FIPA

standards and also carrying out the task cooperatively to achieve the shared goals. Authors in [8,9,10] have

addressed the issue of semantics for KQML, in particular. They described KQML a language and associated

protocol by which intelligent software agents can communicate to share information and knowledge. They

believed that KQML, or something very much like it, will be important in building the distributed agent-

oriented information systems of the future.

Another work by Vaniya et.al. [11] addressed the issuesof KQML in particular. Covington [12]

examined the encoding of speech acts in KQML, contrasts KQML withhuman speech and conventional

EDI; and suggested ways of improving KQML.

As mentioned in the previous section that only limited number of performatives have been defined so far

which lays the foundation of agent communication in a MAS. In fact, very few perforomatives related to

security of messages in KQML exists. Very recently [13] addressing the security need have been proposed

but credibility of the proposed model has not been proved. Further, mechanisms related to finding the state

of agent are also lacking. Hence, there is an ample scope to improve the existing set of KQML. It can be

improved either by adding new performatives, adding new parameters or creating new ontologies. Further, a

mechanism for creating machine-readable performative definitions is also desirable. Since, it is not possible

to address all above mentioned shortcomings, this paper focuses on adding new performatives and rest may

be taken up as future work.

4. Proposed Extensions
It is a well observed fact that the modern multiagent systems are not only complex but also demands a

quick and a timely response. The list of KQML performatives does not offer any such performatives or

parameters that address this issue and hence, we propose to introduce new parameters that would not only

consider timing constraints but also would consider priority and quality of service being offered during that

period.

Considering the above requirement, we analyzed the communication happening in a MAS and it was

observed that primarily the sender and receiver agent desires that the request and reply from one agent to

another shall be delivered well within time. Also, the advertisements about the capabilities of service

providers shall be updated immediately or at least within time constraints. This section proposes few new

parameters to be used in the envelope of existing performatives. These parameters pertain to priority of the

request, timings and quality of response, in particular.

For instance, a user expects that all fluctuations of stock market should be conveyed on high priority and

well within time limits. A KQML query for such a conversation of user_agent with stock_market_server

would be represented as shown in Fig. 4.

Figure 4 Missing

As shown in Fig. 4, a :priority parameter has been added to KQML ask-one performative to express the

priority of request (por) along with quality of response (qor) and constraints pertaining to the time of

 (ask-one

:sender user_agent

:content (Valueof Stock ?value)

:receiver stock_market_server

:reply-with value_of_stock

:language Java

:ontology Stock Market

:priority (por=high, qor=high, exe=now)

 (por=mod, qor=avg/low, exe=whenever)

 (por=low, qor=avg/low, exe=whenever/never)

)

Fig. 5: A KQML Request with NewPriority Parameter

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 1, February 2015

24

execution (exe) of the task. The above example indicates that the stock_market_server now have the option

of responding in three different modes as per the data structures shown in table-3.

Table 4: Data Structures Associated with Priority Parameter

priority of request (por) quality of response (qor) time of execution (exe)

High High Now

Moderate Average/Low Whenever

Low Average/Low Never

Further, capabilities parameter related to advertisement of capabilities can be included in advertise

performative. In a MAS, all service providing agents must advertise their capabilities to all other agents well

within a time limit else the services may get outdated without being utilized. Also, agents can advertise their

potential timings to execute the query and respond. For instance, a search agent (service provider) may be

able to search for english novels in 0.6secs on Google while the same agent takes 0.5secs on Yahoo

compromising on the quality of response. The KQML query for such a response would be written as shown

in Fig. 5.

In this example, the search engine specifies through capabilities parameter that it has two execution

strategies i.e. one can execute in 0.6 secs with high quality of response while the other can execute in 0.5

seconds with low quality of response. The capabilities parameter is used to express the quality of response as

well as timing characteristics of response to be generated.

The proposed additionof priority parameter in the ask-one KQML performative considers the priority of

request, quality of response and time of execution constraints that the user inputs for the particular message.

These constraints can then be taken into account by the scheduling algorithm which is to be unified later.

The scheduler determines the scheduling priority and execution time values for each agent request

depending on the constraint values specified by the user.

The capabilities parameter added to the advertise performative allows an agent communicating with the

service provider to specify the execution time as well as the quality of the result returned by each execution

strategy of that agent.

4.1 Implementation Prototype
 On the basis of above discussed background and literature, it can be stated that the agent communication

is only possible through KQML performative method. Now, in order to implement the parameters added to

performatives, a framework for parsing the performatives is required. The communication between two

agents as seen by a user is an abstract view and is treated as virtual communication path. However; the

actual communication is required to go through a series of steps as depicted in Fig. 6. This implementation

prototype is based on the architecture for Real Time Multiagent Systems (RTMAS) [14] that has the

capability to express and enforce QoS constraints. Although, our architecture is still under development but

it is based on real-time CORBA infrastructure that will relax us from worrying out low-level inter-agent

communication.

 (advertise

:sender search_agent

:content (English Novels?info)

:receiver user_agent

:reply-with info_about_english_novels

:language XML

:ontology Books

:capabilities (timings=0.6 , qor=high)

 (timings=0.5 , qor=low)

)

Fig. 6: A KQML Request with Capabilities Parameter

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 1, February 2015

25

Fig. 7: Implementation Prototype

Following is the sequence of steps executing during actual communication path:

Step 1: Sender agent is required to send a message to receiver agent. The message is converted to

KQML string with performatives based on ASCII.

Step 2: The converted string is submitted to KQML parser for parsing the tokens, parameters and

performatives.

Step 3: The parser checks for received performatives and calls for advertise() routine. The advertise()

routine contains ids of all agents with their capabilities.

Step 4: On the basis of performative, advertise routine decides the agent to be called for executing the

string and dispatch the performative to desired agent.

Step 5: Receiving agent checks all the parameters, executes the message and returns response through

the same path executed.

 On the basis of above prototype, it can be observed that introduction of new parameters do not demand

for new underlying infrastructure and hence the initial design of above given prototype is based on the

implementation of the KCobalt system [15] that maps KQML messages to CORBA IDL.

5. Conclusion
 The paper began with the exploring the feasibility of extending KQML and also presented research

directions towards extending KQML. A brief background of existing specifications of KQML was also

described and later a proposal regarding new parameters added to existing performatives was presented. An

implementation prototype was explained and the implementation is the same is in progress.

References

[1] Unisys, Software User Manual for KQML (Knowledge Query Manipulation Langugae)m revision 3.0,

March 1995, www.csee.umbc.edu/csee/research/kqml/software/kats/kqml-sum.ps

[2] Tim Finin, Richard Fritzson, Don McKay, “ An overview of KQML: A Knowledge Query Manipulation

Language) “, A Technical Report, 1992, http://citeseerx.ist.psu.edu/showciting?cid=1105909

[3] Y.Labrou and T.Finin, A Proposal for a New KQML Specification, Tech.Report TRCs-97-03, computer

Science and Electrical Engineering Dept., Univ. of Maryland,Baltimore County, baltimore, Md., 1997.

[4] Y.Labrou and T.Finin, A Proposal for a New KQML Specification, Tech.Report TRCs-97-03, computer

Science and Electrical Engineering Dept., Univ. of Maryland,

[5] Baltimore County, baltimore, Md., 1997. Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire.

KQML as an Agent Communication Language. In The Proceedings of the Third International

Conference on Information and Knowledge Management (CIKM), ACM Press, November 1994.

http://citeseerx.ist.psu.edu/showciting?cid=1105909

International Journal of Computing Academic Research (IJCAR), Volume 4, Number 1, February 2015

26

[6] Kalaivaini Subramaniam, ”Agent Communication Languages and protocols”, Departmentof Electrical

and Computer Engineering, Universityof Calgary 2002.

[7] Moamin Ahmed, MohdSharifuddin Ahmad, MohdZalimanMohdYusoff, “A Review and Development

of Agent Communication Language”, Published in Electronic Journal of Computer Science &

Information Technology, VOL. 1 No. 1, May 2009 Universiti Tenaga Nasional Kajang , Malaysia.

[8] YannisLabrou, and Tim Finin “Semantics for an Agent Communication Language”Computer Science

and Electrical Engineering Department, University of Maryland Baltimore County Baltimore MD 21250

USA.

[9] Tim Finin, Richard Fritzson, Don McKay and Robin McEntire “KQML as an Agent Communication

Language”, University of Maryland Baltimore County Baltimore MD USA.

[10] YannisLabrou and Tim Finin“History, State of the Art and Challenges for Agent Communication

Languages”, Department of Computer Science and Electrical Engineering University of Maryland,

Baltimore County Baltimore, MD 21250.

[11] SandipVaniya, Bhavesh Lad and ShreyanshBhavsar “A Survey on Agent Communication Languages”,

International Conference on Innovation, Management and Service, IPEDR vol.14(2011) Singapore 2011.

[12] M.A Covington, “Speech Acts, Electronic Commerce, and KQML” Decision Support Systems, 22 (3)

(1998), pp. 203–211.

[13] Dimple Juneja, Aarti Singh, Renu Hooda, “A Three Tier Secure KQML Interface WithNovel

Performatives”, International Science Index, vol. 8, No. 6, Part VI, pp. 788-792.

[14] Lisa Cingiser DiPippo, Victor Fay-Wolfe, Lekshmi Nair, Ethan Hodys, Oleg Uvarov, A Real-Time

Multi-Agent System Architecture for E-Commerce Applications, Proceedings. 5th International

Symposium on Autonomous Decentralized Systems, 2001, pp. 357 – 364

[15] D.Benech, T.Desprats. A KQML-CORBA based Architecture for Intelligent Agents Communication in

Cooperative Service and Network Management. In Proceedings of IFIP/IEEE International Conference

on Management of Multimedia Networks and Systems ’97 July 1997.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7329
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7329

