
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

75
IJSTR©2015

www.ijstr.org

 Mr. Amit Srivastava(CSED)
amit.prince1983@gmail.com

 Er. Rajesh Tripathi(Associate Prof. - CSED)
rajeshtcsed@mnnit.ac.in,rajesht63@rediffmail.com

 Motilal Nehru National Institute of Technology,
Allahabad.

Test Case Reduction For Regression Testing

Amit Srivastava, Er. Rajesh Tripathi

Abstract :Software testing is one of the most important stages of software development. In any software development, the development teams always
depend on testing to know errors in the program. In the maintenance stage test suite size grow because of integration of new module in the main

program. Addition of new module force to create new test case which increase the size of test suite. Regression testing is a type of testing in which we
test the program after any modification in the program. In regression testing new test case may be added to the test suite during the whole testing
process. The new additions of test cases create possibility of presence of same type of test cases. Due to limitation of time and resource, reduction

techniques should be used to recognize and remove them.

Keywords: Regression testing, Test case, test case minimization.

————————————————————

1. Introduction

Regression testing is a testing method that is applied when
a program is changed.It involves checking the changed
program with some test cases so as to re-establishour
confidence that the program can perform in line with the
specification. In thedevelopment section, regression testing
could begin after the detection and correctionof errors in a
tested program. A tested program may be a program
thathas been tested with a top quality test arrange.
Regression testing may be a majorelement within the
maintenance section wherever the software may be
corrected,adapted to new setting, or increased to enhance
its performance. Modifying a programinvolves making new
logic to correct a mistake or to implement a modificationand
incorporating that logic into an existing program.

1.1 Regression Testing
Regression testing [1,2] that is performed on changed
programs to produce confidencethat modifications are
correct and haven’t adversely affected alternative parts
ofthe program. A crucial distinction between regression
testing and developmenttesting is that in regression testing
we tend to sometimes have a longtime suiteof tests
accessible for use. One regression testing strategy reruns
all such tests;however this retest all approach might
consume immoderate time and resources.Another,
selective retest, chooses the checks from the recent test
suite that aredeemed necessary to check the changed
program. We tend to run these tests, soif necessary
produce new ones, probably to satisfy some coverage
criterion. Thisselective approach is useful given that the
price of choosing the check set is asmaller amount than the
price of running the tests we tend to are able to omit.

1.2 Types of Regression Testing
Two varieties of regression testing is known supported the
modification of the specification.[2]

Progressive Regression Testing:
It involves a changed specification. Whenevernew
enhancements, or new knowledge necessities square
measure incorporatedin an exceedingly system, the
specification are changed to replicate theseadditions. In
most cases, new modules are other to the software with the
consequencethat the regression testing method involves
testing a changed programagainst a changed specification.

Corrective Regression Testing: In corrective

regression testing the specificationdoesn’t modify, just
some directions of the program and probablysome style
choices square measure changed. This has necessary
implications asa result of most test cases within the
previous test arrange square measureseemingly to be valid
within the sense that they properly specify the input-output
relation. However, due to the modifications to the
management and knowledgeflow structures of the software
system, some existing test cases are notany longer testing
the antecedent targeted program constructs. The corrective
regressiontesting is usually done when some corrective
action is performed on thesoftware system
.

1.3 Differences between Testing and Regression
Testing[2]
 Regression testing is not as normal testing we done in the
testing phases. However,it is not always the case. There
are so many difference between them.

Availability of test plan: Testing begins with a

specification, an implementationof the specification and a
test plan with test cases added during the
specification,design and coding phases. All these test
cases are new in the sense that they havenot been used to
exercise the program previously. Regression testing starts
with apossibly modified specification, a modified program
and an old test plan which requiresupdating. All test cases
in the test plan were previously run and were usefulin
testing the program.

Objective of test: The main objective of the testing is to
test the correctness ofthe program, the interconnection of
the modules in the program and it gives the desireresult as
the user wants. Regression testing is concerned with the
modificationpart of the program, we totally focuses on that
part of program which are modify;there is no need to test all
the test cases.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

76
IJSTR©2015

www.ijstr.org

Time allocation: Testing time is normally budgeted before

the development of aproduct. This time can be as high as
half the total product completion time. However,regression
testing time, especially time for corrective regression
testing, isnot normally included in the total product cost and
schedule. Consequently, whenregression testing is done, it
is nearly always performed in a crisis situation. Thetester is
normally urged to complete retesting as soon as possible
and most often isgiven limited time to retest.

Development information: In testing, the testing group
and development groupmay be same, they know all about
software. If the testing groups are different thenthe testers
can usually query the developers about any problem in the
software.But in regression testing, the testers most likely
will not be the developers of theproduct. Since regression
testing may be done at a different time and place,
theoriginal developers may no longer be available. This
situation suggests that anyrelevant development
information should be retained if regression testing is to
besuccessful.

Time duration: The time duration for testing should

normally be more than thatfor regression testing since
testing covers all parts of a program and regressiontesting
covers only part of a program so testing needs more time.

1.4 Similarities between Testing and Regression
Testing[2]
Several aspects of regression testing are almost like that of
testingespecially,the needs and testing techniques used are
virtually a similar.

Purposes: The purposes of testing and regression testing
are quite similar. Theyboth aim to: 1) Increase ones
confidence in the correctness of a program, and 2)Locate
errors in a program.

Testing techniques:
Since test cases in a test set up rely on the chosen testing
technique, the testingtechnique utilized by each testing and
regression testing ought to be constant if theregression
testing method involves the recycle of test cases. If
regression testingwere to involve a unique testing
technique, then it might be tough to recycle theprevailing
check set up one more reason for victimization constant
testing techniqueis that it’s easier to gauge the standard of
two computer code merchandiseif they’re tested by
constant technique. At the present state of the art, it’s tough
tomatch the relative check effectiveness of two totally
different testing techniques.

2 Related Work

2.1 Basics Approach of Proposed Idea
The test case reduction can be achieve by coverage based
method. Using coveragebased method we have a test case
T’ which is a subset of given test case T of aoriginal
program P. T’ can be used in the modified program P’. It
covers all the theaspects of the modified program. Using T’,
one big advantage is that it save timeand resource. The
following are the proposed algorithm for test case reduction:

minimizetestcase(testcase[][])

Step 1: Convert the given test case into binary 2D matrix if
it is not given in binary form.

Step 2: Scan 2D matrix from first column to the last column.

Step 3: During first scan if the value of a particular cell is
one then its relativerow value are added in the another 2D
matrix m.
Step 4: During second to last scan if the cell value is one
then we add that rowvalue to every row of 2D matrix m.

Step 5: Check the 2D matrix m row by row with the values
(the values are testcase no.) using OR operation if the
value is zero then result not found if value isone then we
found the result.

Example: Consider a test suite with number of test cases
and covering total10 faults. The test suites are T1, T2, T3,
T4, T5, T6, T7,T8 and the faults areF1, F2, F3, F4, F5, F6,
F7, F8,F9, F10. The T1 test case finds four faults i.e. F1,F3,
F6,F9. So the binary form of T1 is 1010010010 we
implement all the binarymatrix with the related test cases.

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

T1 Y Y

T2 Y Y Y Y

T3 Y Y Y Y

T4 Y Y Y

T5 Y Y

T6 Y Y Y

T7 Y Y

T8 Y Y Y

Sample data

TestCase Binary Form Fault Cover

T1 0100000100 2

T2 1010010010 4

T3 0001010110 4

T4 0100101000 3

T5 0000100100 2

T6 1000010001 3

T7 0010000001 2

T8 1000001100 3

Table 1: Binary Matrix with fault covers

Step 1:
In the first step we select those test cases which have first
cell valueone, so we get T2, T6, and T8.

Test Case Binary Form Fault Cover

T2 1010010010 4

T6 1000010001 3

T8 1000001100 3

Table 2: Reduced Matrix m

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

77
IJSTR©2015

www.ijstr.org

Step 2:
In the next step we select those test cases which have
second cell valueone,so we get T1 and T4. These test
cases are added one by one in the ReducedMatrix m and
its binary values are ORed with existing values in the
reduced matrixm.

Test Case Binary Form Fault Cover

T2, T1 1110010110 6

T6, T1 1100010101 5

T8, T1 1100001100 4

T2, T4 1110110010 6

T6, T4 1100111001 6

T8, T4 1100101100 5

Table 3: Reduced Matrix m

Step 3:
In the next step we select those test cases which have third
cell valueone, so we get T2, and T7. These test cases are
added one by one in the ReducedMatrix m and its binary
values are ORed with existing values in the reduced matrix
m and also do not add test case on a row which have same
teat case.

Test Case Binary Form Fault Cover

T2, T1 1110010110 6

T2, T4, 1110110010 6

T6, T1, T2 1110010111 7

T8, T1, T2 1110011110 7

T6, T4, T2 1110111011 8

T8, T4, T2 1110111110 8

T2, T1, T7 1110010111 7

T6, T1, T7 1110010101 6

T8, T1, T7 1110001101 6

T2, T4, T7 1110110011 7

T6, T4, T7 1110111001 7

T8, T4, T7 1110101101 7

Table 4: Reduced Matrix m

Step 4:
 In the next step we select those test cases which have
fourth cell valueone, so we get T3. These test cases are
added one by one in the ReducedMatrix m and its binary
values are ORed with existing values in theReduced
matrixm and also do not add test case on a row which have
same teat case. Here inthe following table T6, T4, T2, T3
has fault cover value 10 and also T6, T4, T7, T3has fault
cover value 10 so we select only one from them which we
get first that isT6, T4, T2, T3 the reduced test cases which
covers all the faults.

Test Case
Binary
Form

Fault Cover

T2, T1, T3 1111010110 7

T2, T4, T3 1111110110 8

T6, T1, T2, T3 1111010111 8

T8, T1, T2, T3 1111011110 8

T6, T4, T2, T3 1111111111 10

T8, T4, T2, T3 1111111110 9

T2, T1, T7, T3 1111010111 8

T6, T1, T7, T3 1111010111 8

T8, T1, T7, T3 1111001111 8

T2, T4, T7, T3 1111110111 9

T6, T4, T7, T3 1111111111 10

T8, T4, T7, T3 1111101111 9

Table 5: Reduced Matrix m

2.2 Minimization Coverage Based with Execution
Time
When we include execution time in the table as a priority
the minimized resultshould be different from the above
result. There is no need to select result if morethan one
result found.

Example: Consider a test suite with number of test cases
and covering total10 faults. The test suites are T1, T2, T3,
T4, T5, T6, T7, T8 and the faults are F1,F2, F3, F4, F5, F6,
F7, F8 ,F9, F10 and Execution time. The T1 test case finds
fourfaults i.e. F1, F3, F6, F9. So the binary form of T1 is
1010010010 we implementall the binary matrix with the
related test cases.

Test Case
Binary
Form

Fault
Cover

Execution
Time

T1 0100000100 2 7

T2 1010010010 4 3

T3 0001010110 4 5

T4 0100101000 3 5

T5 0000100100 2 3

T6 1000010001 3 6

T7 0010000001 2 3

T8 1000001100 3 2

Table 6: Binary Matrix with fault covers & Execution Time

Step 1:
In the first step we select those test cases which have first
cell value one,so we get T2, T6, and T8.

Test Case
Binary
Form

Fault
Cover

Execution
Time

T2 1010010010 4 3

T6 1000010001 3 6

T8 1000001100 3 2

Table 7: Reduced Matrix m

Step 2:
In the next step we select those test cases which have
second cell valueone,so we get T1 and T4. These test
cases are added one by one in the ReducedMatrix m and
its binary values are ORed with existing values in the
reduced matrixm. We also add the execution time with
respect to the test cases.

Test Case
Binary
Form

Fault
Cover

Execution
Time

T2, T1 1110010110 6 10

T6, T1 1100010101 5 13

T8, T1 1100001100 4 09

T2, T4 1110110010 6 8

T6, T4 1100111001 6 11

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

78
IJSTR©2015

www.ijstr.org

T8, T4 1100101100 5 07

Table 8: Reduced Matrix m

Step 3:
In the next step we select those test cases which have third
cell valueone, so we get T2, and T7. These test cases are
added one by one in the ReducedMatrix m and its binary
values are ORed with existing values in the Reduced
matrixm and also do not add test case on a row which have
same teat case.

Test Case
Binary
Form

Fault
Cover

Execution
Time

T2, T1 1110010110 6 10

T2, T4, 1110110010 6 08

T6, T1, T2 1110010111 7 15

T8, T1, T2 1110011110 7 12

T6, T4, T2 1110111011 8 14

T8, T4, T2 1110111110 8 10

T2, T1, T7 1110010111 7 08

T6, T1, T7 1110010101 6 15

T8, T1, T7 1110001101 6 12

T2, T4, T7 1110110011 7 14

T6, T4, T7 1110111001 7 10

T8, T4, T7 1110101101 7 08

Table 9: Reduced Matrix m

Step 4:
In the next step we select those test cases which have
fourth cell valueone, so we get T4. These test cases are
added one by one in the ReducedMatrix m and its binary
values are ORed with existing values in the Reduced
matrixm and also do not add test case on a row which have
same test case. Here inthe following table T6, T4, T2, T3
has fault cover value 10 and total execution timeis 19 and
also T6, T4, T7, T3 has fault cover value 10 and execution
time is 15 sowe select T6, T4, T7, T3 as its total execution
time is minimum.

Test Case
Binary
Form

Fault
Cover

Execution
Time

T2, T1, T3 1111010110 7 15

T2, T4, T3 1111110110 8 13

T6, T1, T2, T3 1111010111 8 20

T8, T1, T2, T3 1111011110 8 17

T6, T4, T2, T3 1111111111 10 19

T8, T4, T2, T3 1111111110 9 15

T2, T1, T7, T3 1111010111 8 13

T6, T1, T7, T3 1111010111 8 20

T8, T1, T7, T3 1111001111 8 17

T2, T4, T7, T3 1111110111 9 19

T6, T4, T7, T3 1111111111 10 15

T8, T4, T7, T3 1111101111 9 13

Table 10: Reduced Matrix m

3 Results
The minimization result of the above test cases is T6, T4,
T7, T3 which coversall the faults and total execution time is
15. This minimization technique is simple and get result

faster as compareto the ”Test Suite Reduction using an
Hybrid Technique Based on BCO AndGenetic Algorithm”.

4 Conclusion
The main objective of test case minimization is to save time
and cost. For this we want to create minimization technique
which gives minimized test case. The test case
minimization by coverage based is very simple technique it
only searches combination of test cases which covers all
the faults. There is no need of analyze of modified code
once minimization result found it will used many times
without compare modified program with original program.
The two step test case reduction, there is no need to
choose result when more than one result found, it gives
result on the basis of execution time. There is no need of
details of the code in our approach but it takes argument as
test case suite and gives the reduced code as an output.

6 References
[1] Rothermel, G.; Harrold, M.J., ”A safe, efficient

algorithm for regression testselection,” Software
Maintenance ,1993. CSM-93, Proceedings.,
Conferenceon , vol., no., pp.358,367, 27-30 Sep
1993

[2] Leung, H.K.N.; White, L., ”Insights into regression
testing [software testing],”Software Maintenance,
1989., Proceedings., Conference on , vol.,
no.,pp.60,69, 16-19 Oct 1989.

[3] A test-suite reduction approach to improving fault-
localization effectivenessGong
DandanWangTiantian Su Xiaohong Ma Peijun
School of Computer Scienceand Technology,
Harbin Institute of Technology, Harbin 150001,
ChinaComputer Languages Systems Structures
(Impact Factor: 0.3). 01/2013;39(3):95108. DOI:
10.1016/j.cl.2013.04.001

[4] Mohapatra, S.K.; Prasad, S., ”Minimizing test
cases to reduce the cost of regressiontesting,”
Computing for Sustainable Global Development
(INDIACom),2014 International Conference on ,
vol., no., pp.505,509, 5-7 March2014.

[5] Pan Liu, ”An efficient reduction approach to test
suite,” Software Engineering,Artificial Intelligence,

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015 ISSN 2277-8616

79
IJSTR©2015

www.ijstr.org

Networking and Parallel/Distributed
Computing(SNPD), 2014 15th IEEE/ACIS
International Conference on , vol., no., pp.1,5,June
30 2014-July 2 2014.

[6] P. B. Sharma, Ruchika Malhotra and Mohit Garg
Empirical Validation of anEfficient Test Data
Generation Algorithm Based on Adequacy based
TestingCriteria Software Engineering : An
International Journal (SEIJ), Vol. 2, No. 1,March
2012.

[7] Test Case Prioritization based on Varying Testing
Requirement Priorities andTest Case Costs by
Xiaofang Zhang ChanghaiNieBaowen Xu Bo
Qu.SeventhInternational Conference on Quality
Software (QSIC 2007) 0-7695-3035-4/072007.

[8] DebasisMohapatra,GA based Test Case
Generation Approach for Formationof Efficient Set
of Dynamic Slices, International Journal on
Computer Scienceand Engineering (IJCSE), Vol. 3
No. 8 August 2011.

[9] R. S. Pressman. Software Engineering: A
Practitioners Approach , 3rd Edition,McGraw Hill,
New York (1992), p. 559.

[10] Regression Test Suite Reduction using an Hybrid
Technique Based on BCOAnd Genetic Algorithm,
Bharti Suri, IshaMangal Varun Srivastava,
International

[11] Journal of Computer Science Informatics (IJCSI),
ISSN (PRINT) :22315292, Vol.- II, Issue-1, 2.

