Characterization Of Strong And Weak Dominating χ - Color Number In A Graph

T.Ramachandran, D.Udayakumar, A.Naseer Ahmed

Abstract: Strong dominating χ - color number of a graph G is defined as the maximum number of color classes which are strong dominating sets of G, and is denoted by $sd_{\chi}(G)$. Similarly, weak dominating χ - color number of a graph G is defined as the maximum number of color classes which are weak dominating sets of G, and is denoted by $wd_{\chi}(G)$. In both the cases, the maximum is taken over all χ -coloring of G. In this paper, some bounds for $sd_{\chi}(G)$ and $wd_{\chi}(G)$ are obtained and characterized the graphs for which strong dominating χ - color number and strong dominating χ - color number exist. Finally, Nordhaus-Gaddum inequalities for $sd_{\chi}(G)$ and $wd_{\chi}(G)$ is derived.

Index Terms: Dominating- χ -color number, Strong dominating χ -color number, Weak dominating χ -color number.

1 INTRODUCTION

In this paper, we consider finite, connected, undirected and simple graph G = (V(G), E(G)) with vertex set V = V(G) and edge set E = E(G)). The number of vertices |V(G)| of a graph G is called the order of G and the number of edges |E(G)| of a graph G is called the size of G. The order and size is denoted by n and m respectively. In graph theory, coloring and dominating are two important areas which have been extensively studied. The fundamental parameter in the theory of graph coloring is the chromatic number $\chi(G)$ of a graph G which is defined to be the minimum number of colors required to color the vertices of G in such a way that no two adjacent vertices receive the same color. If $\chi(G) = k$, we say that G is k-chromatic [1]. For any vertex $v \in V(G)$, the open neighborhood of v is the set $N(v) = \{u | uv \in E(G)\}$ and the closed neighborhood is the set $N[v] = N(v) \cup \{v\}$. Similarly, for any set $S \subseteq V(G)$, $N(S) = \cup_{v \in S} N(v) - S$ and $N[S] = N(S) \cup S$. A set S is a dominating set if N[S] = V(G). The minimum cardinality of a dominating set of G is denoted by $\gamma(G)$ [4]. A set $D \subseteq V$ is a dominating set of G, if for every vertex $x \in V - D$ there is a vertex $y \in D$ with $xy \in E$ and D is said to be strong dominating set of G, if it satisfies the additional condition $deg(x) \leq deg(y)$ [2]. The strong domination number $\gamma_{st}(G)$ is defined as the minimum cardinality of a strong dominating set. A set $S \subset V$ is called weak dominating set of G if for every vertex $u \in V - S$, there exists vertex $v \in S$ such that $uv \in E$ and $deg(u) \ge V$ deg(v). The weak domination number $\gamma_w(G)$ is defined as the minimum cardinality of a weak dominating set and was

- Dr.T.Ramachandran working as Head and Asst. Professor in Department of Mathematics, M.V.M Government Arts College for Women, Dindigul, India. Email : yasrams@gmail.com
- Dr. D.Udayakumar working as Asst. Professor in Department of Mathematics, Government Arts College, Karur, India. Email :Drduk80@gmail.com
- A.Naseer Ahmed working as Asst. Professor in Department of Mathematics, K.S.R College of Arts and Science, Thiruchengode, India. Email : sunaseer@gmail.com

introduced by Sampathkumar and PushpaLatha [3]. The number of maximum degree vertices of G is denoted by $n_{\Delta}(G)$ and the number of minimum degree vertices of G is denoted by $n_{\delta}(G)$.

2 TERMINOLOGY

We start with more formal definition of dominating χ -color number of G [5]. Let G be a graph with $\chi(G) = k$. Let C = $V_1, V_2, ..., V_k$ be a k-coloring of G. Let d_C denotes the number of color classes in C which are dominating sets of G. Then $d_{y}(G)$ = max_cd_c where the maximum is taken over all the k-colorings of G, is called the dominating χ -color number of G. Instead of dominating set in the definition of dominating χ -color number, if we consider strong dominating set, then it is called strong dominating χ -color number sd_{χ}(G) and, if we consider weak dominating set, then it is called weak dominating- χ -color numberwd_{γ}(G)[6]. Though substantial work has been carried out on domination and coloring parameters and related topics in graphs, there are only a few results concerning strong and weak domination in graphs. The new parameter, strong dominating - χ - color number and weak dominating χ - color number defined by us in [7]. The following are some perceived propositions.

 $\begin{array}{l} \mbox{Proposition 1 : For any graphG, } 0 \leq sd_{\chi}(G) \leq d_{\chi}(G). \\ \mbox{Proposition 2 : For any graphG, } 0 \leq wd_{\chi}(G) \leq d_{\chi}(G). \\ \mbox{Proposition 3 : For any cycleC}_n; \ sd_{\chi}(C_n) = \begin{cases} 3, \ if \ n \equiv 3(mod6) \\ 2, \ otherwise \end{cases} \\ \mbox{Proposition 4 : If } W_n, \ is any \ wheel \ with \ n > 4, \ then \ sd_{\chi}(W_n) = 1. \end{cases}$

3 STRONG (WEAK) DOMINATING χ- COLOR NUMBER EQUALS TO ZERO

Arumugam et al. [8] observed that "Every graph contains a χ -coloring with the property that at least one color class is a dominating set in G." Strong dominating χ -color number and weak dominating χ -color number may not exist for all the graphs, even though every graph has dominating χ -color set and independent strong dominating set and weak dominating set. Because, in the definition of strong dominating χ -color number and weak dominating χ -color number for all the graphs, even though every graph has dominating χ -color set and independent strong dominating set and weak dominating set. Because, in the definition of strong dominating χ -color number and weak dominating χ -color number, first priority goes to χ -coloring of a graph. To examine the necessary condition for sd_{χ}(G) and wd_{χ}(G) equals zero, we proved the following theorem.

Theorem 1: If there exist a pair of non-adjacent vertices (u, v) such that for all $x \in N(u)$, d(u) > d(x), and for all $y \in N(v)$, d(v) > d(y), has distinct color in all possible χ –coloring of a graph G, then $sd_{\chi}(G) = 0$.

Proof:

Let D be a color class with vertex *u*of G. Let there exist a pair of non-adjacent vertices (u, v) such that for all $x \in N(u)$, d(u) > d(x), and for all $y \in N(v)$, d(v) > d(y), has distinct color in all possible χ –coloring of a graph G. Since the vertex u can not be strongly dominated by any vertices of G, the only one color class D may be a strong dominating χ –color set of G. But there is vertex $v \notin D$, that also cannot be strongly dominated by any other vertices. Therefore, $sd_{\chi}(G) = 0$.The following theorem is immediate for weak dominating χ –color number.

Theorem 2: If there exist a pair of non-adjacent vertices (u, v) such that for all $x \in N(u)$, d(u) < d(x), and for all $y \in N(v)$, d(v) < d(y), has distinct color in all possible χ – coloring of a graph G, then wd_{χ}(G) = 0.

4 STRONG (WEAK) DOMINATING χ - COLOR NUMBER EQUALS TO ONE

Negation of theorem 6, gives the following theorem 3 that characterize the graphs for which $sd_{\gamma}(G) \ge 1$ and $wd_{\gamma}(G) \ge 1$.

Theorem 3: If there is no pair of non-adjacent vertices (u,v) has distinct color in χ -coloring of a graph G,then $sd_{\chi}(G) \ge 1$ and $wd_{\chi}(G) \ge 1$.

Theorem 4: If there is no pair of non-adjacent vertices (u, v) such that for all $x \in N(u)$, d(u) > d(x), and for all $y \in N(v)$, d(v) > d(y), has distinct color in all possible χ –coloring of a graph G, then $sd_{\chi}(G) \ge 1$.

Theorem 5: If there is no pair of non-adjacent vertices (u, v) such that for all $x \in N(u)$, d(u) < d(x), and for all $y \in N(v)$, d(v) < d(y), has distinct color in all possible χ – coloring of a graph G, then wd_{χ}(G) \ge 1.

Theorem 6: For any regular graph G, $sd_{\chi}(G) = wd_{\chi}(G) = d_{\chi}(G)$.

Proof: Since all the degree of the regular graph is same, all the dominating color classes are strong as well weak. Consequently, $sd_x(G) = wd_x(G) = d_x(G)$.

Corollary 1: For any complete graph K_n ; $sd_{\chi}(K_n) = wd_{\gamma}(K_n) = n$.

Theorem 7: For any bi-regular graph G,

(a) If $\Delta(G) \neq \delta(G)$, then $sd_{\chi}(G) = wd_{\chi}(G) = 1$.

(b) If
$$\Delta(G) = \delta(G)$$
, then $sd_{\chi}(G) = wd_{\chi}(G) = 2$.

Proof:

(a) Since $\Delta(G) \neq \delta(G)$, there are two partitions with different degree. If the maximum degree vertex partition and minimum degree vertex partition associated with color class C_1 and C_2 respectively,

then C_1 is strong dominating color set and C_2 is weak dominating color set. Therefore, $sd_x(G) = wd_x(G) = 1$.

(b) Since $\Delta(G) = \overline{\delta}(G)$, all the degree of the biregular graph is same, both the partitions are dominating color classes as well as strong and weak. Consequently, $sd_{\chi}(G) = wd_{\chi}(G) = 2$.

Corollary 2: For any star graph, $K_{1,n}, sd_{\chi}\big(K_{1,n}\big) = wd_{\chi}\left(K_{1,n}\right) = 1$.

Theorem 8: Let G be a path P_n , then $sd_{\chi}(P_n) = \begin{cases} 1 & \text{if } n = 1 \text{ or } 3 \\ 2 & \text{otherwise} \end{cases}$

Proof:

For n = 1 or 3, it is clear that $sd_{\chi}(P_n) = 1$.

For n = 2, the path $P_2 = K_2$. $sd_{\chi}(P_n) = 2$.

Now our claim is $sd_{\chi}(P_n) = 2$, if n > 3. Since P_n is a bipartite graph, $d_{\chi}(P_n) = \chi(P_n) = 2$, let A and B be two dominating χ –color sets of P_n . Let u and v be the pendent vertices of P_n . If n is odd, then u, v \in A. In that case, all the vertices outside A can be strongly dominated by A-{u,v}. So, A strongly dominated by B, because the dominating set B has only vertices with maximum degree. If n is even, then u \in Aand v \in B. In that case, all the vertices outside A can be strongly dominated by A-{u,v}. So, A strongly dominated by A-{u}. So, A strongly dominated by A-{u}. So, A strongly dominates B. All the vertices outside A can be strongly dominated by A-{u}. So, A strongly dominates B. All the vertices outside A can be strongly dominated by A-{u}. So, A strongly dominated by B-{v}, So, B strongly dominates A. Consequently both A and B strong dominating χ –color sets of P_n. Thus, $sd_{\chi}(P_n) = 2$.

For n = 2, the path $P_2 = K_2$. $wd_{\chi}(P_n) = 2$. The next theorem gives the weak dominating χ –color sets of P_n for $n \neq 2$.

Theorem 9: Let G be a path $P_n, n \neq 2$, then $wd_{\chi}(P_n) = \begin{cases} 1 & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$

Proof:

Since P_n is a bipartite graph, $d_\chi(\mathsf{P}_n)=\chi(\mathsf{P}_n)=2,$ let A and B be two dominating χ -color sets of P_n . Let u and v be the pendent vertices of P_n . If n is odd, then u, v \in A. In that case, all the vertices outside A can be weakly dominated by A-{u,v}. So, A weakly dominates B. But the pendent vertices u,v are outside B, they cannot be weakly dominated by any vertex of B. Even though B is a dominating χ -color set, it is not a weak dominating χ -color set. Consequently, wd_{\chi}(\mathsf{P}_n)=1. If n is even, then u \in Aand v \in B. In that case, both A and B are not weak dominating χ -color sets. Because, the pendent vertices u and v is only dominated by its support vertices , which has degree two. Thus wd_{\chi}(\mathsf{P}_n)=0.

Theorem 10 : For any graphs G and H,

 $\operatorname{sd}_{\chi}(\mathsf{G} \cup \mathsf{H}) = \min\{\operatorname{sd}_{\chi}(\mathsf{G}), \operatorname{sd}_{\chi}(\mathsf{H})\}.$

Proof:

Let $D_1, D_2, ..., D_{sd_{\chi}(H)}$ be the strong dominating χ -color sets of H and let $C_1, C_2, ..., C_{sd_{\chi}(G)}$ be the strong dominating χ -color sets of G. Without loss of generality, let us assume that $sd_{\chi}(G) > sd_{\chi}(H)$.

Now combine the vertices of D_i and C_i , for all $1 \le i \le sd_v(H)$. Then

 $D_1^{'}\cup C_1, D_2\cup C_2, ..., D_{sd_{\gamma}(H)}\cup C_{sd_{\gamma}(H)}, C_{sd_{\gamma}(H)+1}, ..., C_{sd_{\gamma}(G)}$ are the

color classes of $G \cup H$. By definition of $G \cup H$, no vertices of G dominates the vertices of H and vice versa. Therefore, only $D_1 \cup C_1, D_2 \cup C_2, ..., D_{sd_{\chi}(H)} \cup C_{sd_{\chi}(H)}$ are the strong dominating χ -color sets of $G \cup H$. Hence $sd_{\chi}(G \cup H) = min\{sd_{\chi}(G), sd_{\chi}(H)\}.$

5 EXISTENCE OF GRAPHS WITH $sd_{\chi}(G) = 1$ and $wd_{\chi}(G) = 1$

Arumugam et al. [8] showed that "For every integer $k \geq 0$, there exists a connected graph G with $\delta(G) = k$ and $d_{\chi}(G) =$ 1." In the proof, they begin with the statement "For k = 0, take $G = \overline{K}_n$." But \overline{K}_n is not connected graph for n > 1, which contradicts the statement "there exists a connected graph". So, we need to start the proof as: For k = 0, take $G = K_1$. Similarly, we next show that even if the minimum degree of G is arbitrarily large, the strong dominating χ -color and weak dominating χ -color number number may be 1.

Theorem 11 : For every integer $k \ge 0$, there exists a graph G with $\delta(G) = k$ and $sd_{\chi}(G) = 1$ and $wd_{\chi}(G) = 1$. **Proof :**

For k = 0, take G = K₁. Hence we may assume that k > 0. Let G_k be obtained from a complete bipartite graph with partite set V₁ and V₂ each of cardinality k by adding a new vertex v and adding all the edges between vertex v and vertices of V₁. By construction, $\delta(G_k) = k$. Since G_k is a bipartite graph and $|V_1| \neq |V_2|$, sd_{χ}(G) = 1 and wd_{χ}(G) = 1

Theorem 12 : For all integers $a \ge b \ge 0$, there exists a graph G with $\chi(G) = a$ and $sd_{\chi}(G) = b$.

Proof:

For a = b, take G = K_a. Hence we may assume that a > b. Suppose that a > 1 and b = 1.Let G be obtained from a complete graph K_a by adding a new vertex v and adding an edge between vertex v and any vertices of K_a. By construction, $\chi(G)$ = aand sd_{χ}(G) = 1. Thus $\chi(G)$ = aand sd_{χ}(G) = b.

Suppose that a > 1 and b > 1. Let G be obtained from complete graphsK_awith vertex set {v₁, v₂, ..., v_a} and K_b with vertex set {u₁, u₂, ..., u_b} by adding b non-adjacent edges {v₁u₁, v₂u₂, ..., v_bu_b} between them.

If G is colored by the coloring function $c(v_i) = iand c(u_j) = j + 1$, then $\chi(G) = a$. Since the coloring of G has b color classes that are strong dominating sets in G, say the color classes associated with the colors 2, ..., b + 1, we have $sd_{\chi}(G) \ge b$.

The color classes {u₁, v₂}, {u₂, v₃}, ..., {u_b, v_{b+1}} are strong dominating sets of G. The remaining (a - b)color classes {v₁}, {v_{b+2}}, {v_{b+3}}, ..., {v_a} are not dominating sets of G. Consequently, $\chi(G)$ = aand sd_{χ}(G) = b. Correspondingly, we can show the following theorem for weak dominating χ –color number.

Theorem 13: For all integers $a \ge b \ge 0$, there exists a graph G with $\chi(G) = a$ and $wd_{\chi}(G) = b$.

6 NORDHAUS-GADDUM INEQUALITIES

For any graph G with parameter ψ , sharp upper and lower bounds for both $\psi(G) + \psi(\overline{G})$ and $\psi(G) \cdot \psi(\overline{G})$ are referred as Nordhaus-Gaddum inequalities. In this section, some bounds and these inequalities are derived for $sd_{\chi}(G)$ and $wd_{\chi}(G)$.

Observation 1: For all graphsG, $sd_{\gamma}(G) \le \delta + 1$ and $wd_{\gamma}(G) \le \delta + 1$.

Theorem 14: If any graph G is a non-regular graph with n vertices and it has a connected complement, denoted by \overline{G} , then

 $\begin{array}{ll} (a) & sd_{\chi}(G) \leq n_{\Delta}(G) \text{and } wd_{\chi}(\overline{G}) \leq n_{\Delta}(G). \\ (b) & sd_{\chi}(\overline{G}) \leq n_{\delta}(G) \text{and } wd_{\chi}(G) \leq n_{\delta}(G). \\ (c) & sd_{\chi}(G) + sd_{\chi}(\overline{G}) \leq n. \\ (d) & wd_{\chi}(G) + wd_{\chi}(\overline{G}) \leq n. \\ (e) & sd_{\chi}(G) + wd_{\chi}(G) \leq n. \\ (f) & sd_{\chi}(\overline{G}) + wd_{\chi}(\overline{G}) \leq n. \end{array}$

Proof:

It is necessary to have a maximum degree and minimum degree vertices of G in strong dominating χ – color set of G respectively. And number of maximum degree $n_{\Delta}(G)$ and minimum degree $n_{\delta}(G)$ vertices of G equal to the number of minimum degree and maximum degree vertices of \overline{G} respectively. Due to this fact, (a) and (b) can be easily proved. From (a) and (b), $sd_{\chi}(G) + sd_{\chi}(\overline{G}) \leq n_{\Delta}(G) + n_{\delta}(G)$. Since G is not a regular graph, $sd_{\chi}(G) < n$,wd_{$\chi}(G) < n$ and $n_{\Delta}(G) + n_{\delta}(G) = n$. The following are immediate from (a) and (b).</sub>

(c) $\operatorname{sd}_{v}(G) + \operatorname{sd}_{v}(\overline{G}) = n_{\Lambda}(G) + n_{\overline{\Lambda}}(G) \leq n.$

(d)
$$\operatorname{wd}_{\gamma}(G) + \operatorname{wd}_{\gamma}(\overline{G}) = \operatorname{n}_{\Delta}(G) + \operatorname{n}_{\delta}(G) \leq n.$$

(e)
$$\operatorname{sd}_{\gamma}(G) + \operatorname{wd}_{\gamma}(G) = \operatorname{n}_{\Delta}(G) + \operatorname{n}_{\delta}(G) \leq n.$$

$$(f) \qquad sd_{\chi}^{-}(\overline{G}) + wd_{\chi}^{-}(\overline{G}) = n_{\delta}(G) + n_{\Delta}(G) \leq n.$$

Further, we can sharpen the bounds of sd_{χ}(G) and wd_{χ}(G) in the succeeding theorems. Let V_{Δ} and V_{δ} be the set of all vertices which has maximum and minimum degree of a graph G respectively.

Theorem 15: Let G be any graph, then $sd_{\chi}(G) \leq \chi(\langle V_{\Delta} \rangle)$ and $wd_{\gamma}(G) \leq \chi(\langle V_{\delta} \rangle)$.

Proof:

Let G be any graph. The maximum degree vertices of G occur minimum $\chi(\langle V_{\Delta} \rangle)$ number of color classes of G. If all the maximum degree vertices occur in $\chi(\langle V_{\Delta} \rangle)$ number of color classes, then $sd_{\chi}(G) \leq \chi(\langle V_{\Delta} \rangle)$. If not, there are maximum $n_{\Delta}(G) - \chi(\langle V_{\Delta} \rangle)$ vertices occur in $\chi(G) - \chi(\langle V_{\Delta} \rangle)$ number of color classes which are not strong dominating sets of G. Because such maximum degree vertices are non adjacent and has different color with $\chi(\langle V_{\Delta} \rangle)$ number of maximum degree vertices. Also, those vertices cannot be strongly dominated by any other vertices of G. In that case, $sd_{\chi}(G) = 0$. Consequently, $sd_{\chi}(G) \leq \chi(\langle V_{\Delta} \rangle)$.

Theorem 16: Let G be any graph, then $sd_{\chi}(G) \leq \omega(\langle V_{\Delta} \rangle)$ and $wd_{\chi}(G) \leq \omega(\langle V_{\delta} \rangle)$.

Proof:

Let G be any graph. The maximum degree vertices of G occur minimum $\chi(\langle V_{\Delta} \rangle)$ number of color classes of G. It is clear that, out of this $\chi(\langle V_{\Delta} \rangle)$ number of color classes of G, $\omega(\langle V_{\Delta} \rangle)$

number of color classes of G can be a strong dominating set of G. Even though the remaining color classes of G has maximum degree vertices, they not dominate atleast one maximum degree vertex of G. So, they are not strong dominating sets of G. Therefore, $sd_{\chi}(G) \leq \omega(\langle V_{\Delta} \rangle)$. Similarly we can prove that $wd_{\chi}(G) \leq \omega(\langle V_{\Delta} \rangle)$.

Corollary 3: If $\langle V_{\Delta} \rangle$ is a null graph, then $sd_{\gamma}(G) \leq 1$

Corollary 4: If $\langle V_{\delta} \rangle$ is a null graph, then $wd_{\gamma}(G) \leq 1$.

Theorem 17: Let G be any graph with n vertices. Then

- (a) $0 \le \operatorname{sd}_{\chi}(G) + \operatorname{sd}_{\chi}(\overline{G}) \le n_{\Delta} + n_{\delta} \text{ and } 0 \le \operatorname{sd}_{\chi}(G) \cdot \operatorname{sd}_{\chi}(\overline{G}) \le n_{\Delta} \cdot n_{\delta}$
- $\begin{array}{ll} \text{(b)} & 0 \leq wd_{\chi}(G) + wd_{\chi}\left(\overline{G}\right) \leq n_{\Delta} + n_{\delta} \text{ and } 0 \leq wd_{\chi}(G) \cdot \\ & wd_{\chi}\left(\overline{G}\right) \leq n_{\Delta} \cdot n_{\delta} \end{array}$

Proof: Since $0 \le sd_{\chi}(G) \le n_{\Delta}$ and $0 \le sd_{\chi}(\overline{G}) \le n_{\delta}$, we can easily derive(a) and (b).

REFERENCES

- [1] Douglas B. West, Introduction to Graph Theory, 2nd Edition (Prentice Hall, Inc, Mass, 2001).
- [2] Dieter Rautenbach, Bounds on the strong domination number, Discrete Mathematics, 215, 2000, 201-212.
- [3] E. Sampathkumar and L. PushpaLatha, Strong, Weak Domination and Domination Balance in a Graph, Discrete Math., 161, 1996, 235-242.
- [4] Harary, E., Graph Theory (Addison Wesley, Reading, Mass, 1972).
- [5] S. Arumugam, I. Sahul Hamid and A. Muthukamatchi, Independent Domination and Graph Colorings, In: Proceedings of International Conference on Discrete Mathematics. Lecture Note series in Mathematics, Ramanujan Mathematical Society, India, 2008, 224-232.
- [6] T.Ramachandran, A.Naseer Ahmed, Strong and Weak Dominating χ- Color Number of K -Partite Graph, International Journal of Advanced Technology in Engineering and Science, ISSN (online): 2348 – 7550.
- [7] T.Ramachandran and A.Naseer Ahmed, Strong dominating χ color number of some graph, Math. Sci. Int. Res. Journal, Vol 2, Iss 2, 2013.
- [8] S. Arumugam, Teresa W.Haynes, Michael A. Henning, YaredNigussie, Maximal independent sets in minimum colorings, Discrete Mathematics, 311, pp1158-1163, 2011

