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Abstract: Strong dominating - color number of a graph G is defined as the maximum number of color classes which are strong dominating sets of G, 

and is denoted by sd G . Similarly, weak dominating - color number of a graph G is defined as the maximum number of color classes which are weak 

dominating sets of G, and is denoted by wd G . In both the cases, the maximum is taken over all -coloring of G. In this paper, some bounds for sd G  

and wd G  are obtained and characterized the graphs for which strong dominating - color number and strong dominating - color number exist. Finally, 

Nordhaus-Gaddum inequalities for sd G  and wd G  is derived. 

 

Index Terms: Dominating--color number, Strong dominating -color number, Weak dominating -color number. 

———————————————————— 

 

1 INTRODUCTION  
In this paper, we consider finite, connected, undirected and 

simple graph G =  (V(G), E(G)) with vertex set V = V G  and 
edge set E = E (G)). The number of vertices  V G   of a graph 

G is called the order of G and the number of edges  E G   of a 
graph G is called the size of G. The order and size is denoted 
by n and m respectively. In graph theory, coloring and 
dominating are two important areas which have been 
extensively studied. The fundamental parameter in the theory 

of graph coloring is the chromatic number (G) of a graph G 
which is defined to be the minimum number of colors required 

to color the vertices of G in such a way that no two adjacent 
vertices receive the same color. If (G)  =  k, we say that G is 

k − chromatic [1]. For any vertex vV(G), the open 
neighborhood of v is the set N(v)  =  {u| uv E (G)} and the 
closed neighborhood is the set N v =  N v ∪ {v}. Similarly, for 

any set S V(G), N(S) = vsN (v) − S and N[S]  =  N(S)S. A 
set S is a dominating set if N[S] = V(G). The minimum 

cardinality of a dominating set of G is denoted by (G)[4]. A set 
D V is a dominating set of G, if for every vertex xV − D there 

is a vertex y D with xyE and D is said to be strong 
dominating set of G, if it satisfies the additional condition 
deg(x)  ≤ deg(y) [2]. The strong domination number 

st
(G) is 

defined as the minimum cardinality of a strong dominating set. 

A set S V is called weak dominating set of G if for every vertex 
uV − S, there exists vertex vS such that uvE and deg(u) ≥
deg(v). The weak domination number 

w
(G) is defined as the 

minimum cardinality of a weak dominating set and was 

introduced by Sampathkumar and PushpaLatha [3]. The 

number of maximum degree vertices of G is denoted by n∆ G  
and the number of minimum degree vertices of G is denoted 

by nδ G . 
 

2 TERMINOLOGY  
We start with more formal definition of dominating -color 
number of G [5]. Let G be a graph with (G)  =  k. Let C = 
V1,V2,...,Vkbe a k-coloring of G. Let dC denotes the number of 

color classes in C which are dominating sets of G. Then d(G) 
= maxCdC where the maximum is taken over all the k-colorings 

of G, is called the dominating -color number of G. Instead of 

dominating set in the definition of dominating-color number, if 
we consider strong dominating set, then it is called strong 

dominating-color number sd G  and, if we consider weak 

dominating set, then it is called weak dominating--color 

numberwd G [6]. Though substantial work has been carried 

out on domination and coloring parameters and related topics 
in graphs, there are only a few results concerning strong and 
weak domination in graphs. The new parameter, strong 

dominating -- color number and weak dominating − color 
number defined by us in [7]. The following are some perceived 
propositions,  
Proposition 1 : For any graphG, 0 ≤ sd G ≤ d G . 

Proposition 2 : For any graphG, 0 ≤ wd G ≤ d G . 

Proposition 3 : For any cycleCn ; sdχ Cn =  
3, if n ≡ 3 mod6 

2,       otherwise
  

Proposition 4 : If Wn, is any wheel with n > 4, then sd (Wn )  =

 1. 
 

3 STRONG (WEAK) DOMINATING - COLOR NUMBER 

EQUALS TO ZERO 
Arumugam et al. [8] observed that ―Every graph contains a 
 −coloring with the property that at least one color class is a 

dominating set in G.‖ Strong dominating −color number and 
weak dominating  −color number may not exist for all the 

graphs, even though every graph has dominating  −color set 
and independent strong dominating set and weak dominating 

set. Because, in the definition of strong dominating −color 
number and weak dominating  −color number, first priority 
goes to −coloring of a graph. To examine the necessary 

condition for sd G  and wd G  equals zero, we proved the 

following theorem. 
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Theorem 1: If there exist a pair of non-adjacent vertices (𝑢, 𝑣) 
such that for all 𝑥 ∈ 𝑁(𝑢), 𝑑 𝑢 > 𝑑(𝑥), and for all 𝑦 ∈ N(𝑣), 
𝑑 𝑣 > 𝑑(𝑦), has distinct color in all possible −coloring of a 
graph G, then sd G = 0. 

 
Proof:  

Let D be a color class with vertex 𝑢of G. Let there exist a pair 
of non-adjacent vertices (𝑢, 𝑣) such that for all 𝑥 ∈ N(𝑢), 

𝑑 𝑢 > 𝑑(𝑥), and for all 𝑦 ∈ N(𝑣), 𝑑 𝑣 > 𝑑(𝑦), has distinct 
color in all possible  −coloring of a graph G. Since the vertex 
u can not be strongly dominated by any vertices of G, the only 

one color class D may be a strong dominating  −color set of 
G. But there is vertex 𝑣 ∉ 𝐷, that also cannot be strongly 

dominated by any other vertices. Therefore, sd G = 0.The 

following theorem is immediate for weak dominating −color 
number. 
 

Theorem 2: If there exist a pair of non-adjacent vertices (𝑢, 𝑣) 
such that for all 𝑥 ∈ 𝑁(𝑢), 𝑑 𝑢 < 𝑑(𝑥), and for all 𝑦 ∈ 𝑁(𝑣), 
𝑑 𝑣 < 𝑑(𝑦), has distinct color in all possible − coloring of a 

graph G, then wd G = 0. 

 

4 STRONG (WEAK) DOMINATING - COLOR NUMBER 

EQUALS TO ONE 

Negation of theorem 6, gives the following theorem 3 that 

characterize the graphs for which sd G ≥ 1and wd G ≥ 1.  

 
Theorem 3: If there is no pair of non-adjacent vertices (u,v) 
has distinct color in −coloring of a graph G,then sd G ≥ 1 

and wd G ≥ 1.  

 

Theorem 4: If there is no pair of non-adjacent vertices (𝑢, 𝑣) 
such that for all 𝑥 ∈ 𝑁(𝑢), 𝑑 𝑢 > 𝑑(𝑥), and for all 𝑦 ∈ 𝑁(𝑣), 
𝑑 𝑣 > 𝑑(𝑦), has distinct color in all possible −coloring of a 
graph G, then sd G ≥ 1. 

 
Theorem 5: If there is no pair of non-adjacent vertices (𝑢, 𝑣) 
such that for all 𝑥 ∈ 𝑁(𝑢), 𝑑 𝑢 < 𝑑(𝑥), and for all 𝑦 ∈ 𝑁(𝑣), 
𝑑 𝑣 < 𝑑(𝑦), has distinct color in all possible − coloring of a 
graph G, then wd G ≥ 1. 

 
Theorem 6: For any regular graph G, sdχ G = wdχ G =

dχ G . 
 
Proof : Since all the degree of the regular graph is same, all 
the dominating color classes are strong as well weak. 

Consequently, sdχ G = wdχ G = dχ G . 
 

Corollary 1: For any complete graph Kn ;  sd Kn =

wd (Kn)  =  n . 

 
Theorem 7: For any bi-regular graph G, 

(a) If ∆ G ≠ δ G , then sdχ G = wdχ G = 1 . 

(b) If ∆ G = δ G , then sdχ G = wdχ G = 2. 

 
Proof: 

(a) Since ∆ G ≠ δ G , there are two partitions with 
different degree. If the maximum degree vertex 
partition and minimum degree vertex partition 
associated with color class C1 and C2 respectively, 

then C1 is strong dominating color set and C2 is weak 
dominating color set. Therefore, sdχ G = wdχ G = 1. 

(b) Since ∆ G = δ G , all the degree of the biregular 
graph is same, both the partitions are dominating 
color classes as well as strong and weak. 

Consequently,  sdχ G = wdχ G = 2. 

 

Corollary 2: For any star graph, K1,n , sd K1,n = wd (K1,n) =

 1 . 
 
Theorem 8: Let G be a path Pn , then 

 sd Pn =  
1 if n = 1 or 3
2 otherwise

  

 
Proof:  
For 𝑛 = 1or 3, it is clear that  sd Pn = 1. 

For 𝑛 = 2, the path P2 = K2.  sd Pn = 2.  

Now our claim is  sd Pn = 2, if 𝑛 > 3. Since Pn is a bipartite 

graph,  d Pn = 𝜒 Pn = 2, let A and B be two dominating 

𝜒 −color sets of Pn. Let u and v be the pendent vertices of Pn. 

If n is odd, then u, v ∈ A. In that case, all the vertices outside A 
can be strongly dominated by A-{u,v}. So, A strongly 
dominates B. All the vertices outside B can be strongly 
dominated by B, because the dominating set B has only 

vertices with maximum degree. If n is even, then u ∈ Aand 
v ∈ B. In that case, all the vertices outside A can be strongly 
dominated by A-{u}. So, A strongly dominates B. All the 
vertices outside B can be strongly dominated by B-{v}, So, B 
strongly dominates A. Consequently both A and B strong 

dominating 𝜒 −color sets of Pn. Thus, sd Pn = 2. 

 

For 𝑛 = 2, the path P2 = K2.  wd Pn = 2. The next theorem 

gives the weak dominating 𝜒 −color sets of Pnfor 𝑛 ≠ 2. 
 
Theorem 9: Let G be a path Pn , 𝑛 ≠ 2, then 

wd(Pn) =  
1 if n is odd
0 if n is even

  

Proof:  

Since Pn is a bipartite graph,  d Pn = 𝜒 Pn = 2, let A and B 

be two dominating 𝜒 −color sets of Pn. Let u and v be the 

pendent vertices of Pn. If n is odd, then u, v ∈ A. In that case, 
all the vertices outside A can be weakly dominated by A-{u,v}. 
So, A weakly dominates B. But the pendent vertices u,v are 
outside B, they cannot be weakly dominated by any vertex of 

B. Even though B is a dominating 𝜒 −color set, it is not a weak 
dominating 𝜒 −color set. Consequently, wd(Pn) = 1. If n is 

even, then u ∈ Aand v ∈ B. In that case, both A and B are not 
weak dominating 𝜒 −color sets. Because, the pendent vertices 
u and v is only dominated by its support vertices , which has 
degree two. Thus  wd Pn = 0. 

 
Theorem 10 : For any graphs G and H,  

sd G ∪ H = min sd G ,sd H  . 
Proof:  

Let D1, D2, … , Dsd H  be the strong dominating 𝜒 −color sets of 

H and let C1, C2, … , Csd G  be the strong dominating 𝜒 −color 

sets of G. Without loss of generality, let us assume that 

sd G > sd H .  

Now combine the vertices of Diand Ci, for all 1 ≤ 𝑖 ≤
sd H .Then 

D1 ∪ C1, D2 ∪ C2, … , Dsd H ∪ Csd H ,Csd H +1,…,Csd G  are the 
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color classes of G ∪ H. By definition of G ∪ H, no vertices of G 
dominates the vertices of H and vice versa. Therefore, only 

D1 ∪ C1, D2 ∪ C2, … , Dsd H ∪ Csd H  are the strong dominating 

𝜒 −color sets of G ∪ H. Hence 

sd G ∪ H = min sd G ,sd H  . 

 

5 EXISTENCE OF GRAPHS WITH 𝐬𝐝 𝐆 = 𝟏 AND 

𝐰𝐝 𝐆 = 𝟏 
Arumugam et al. [8] showed that ―For every integer k ≥ 0, 
there exists a connected graph G with δ G = k and d G =

1.‖ In the proof, they begin with the statement ―For k = 0, take 

G = K n.‖ But K n is not connected graph for 𝑛 > 1, which 
contradicts the statement ―there exists a connected graph‖. 

So, we need to start the proof as: For k = 0, take G = K1. 
Similarly, we next show that even if the minimum degree of G 
is arbitrarily large, the strong dominating  −color and weak 

dominating −color number number may be 1. 
 

Theorem 11 : For every integer k ≥ 0, there exists a graph G 
with δ G = k and sd G = 1 and wd G = 1. 

Proof : 
 

For k = 0, take G = K1. Hence we may assume that k > 0. Let 
Gk be obtained from a complete bipartite graph with partite set 

V1 and V2 each of cardinality k by adding a new vertex v and 
adding all the edges between vertex v and vertices of V1. By 
construction, δ Gk = k. Since Gk is a bipartite graph and 
 V1 ≠  V2 , sd G = 1 and wd G = 1 

 

Theorem 12 : For all integers a ≥ b ≥ 0, there exists a graph 
G with  G = a and  sd G = b. 

 
Proof:  

For a = b, take G = Ka. Hence we may assume that a > 𝑏.  
Suppose that a > 1and b = 1.Let G be obtained from a 

complete graph Ka by adding a new vertex v and adding an 
edge between vertex v and any vertices of Ka. By construction, 
 G = aand sd G = 1. Thus  G = aand sd G = b. 

Suppose that a > 1and b > 1. Let G be obtained from 
complete graphsKawith vertex set {v1 , v2 , … , va} and Kb with 

vertex set {u1 , u2 , … , ub} by adding b non-adjacent edges 

 v1u
1

, v2u2, … , vbub  between them. 

If G is colored by the coloring function c(vi) = iand c uj = j +

1, then  G = a. Since the coloring of G has b color classes 

that are strong dominating sets in G, say the color classes 
associated with the colors 2, … , b + 1, we have sd G ≥ b.  

The color classes  u1 , v2 ,  u2, v3 , … ,  ub , vb+1  are strong 
dominating sets of G. The remaining  𝑎 − 𝑏 color classes 
 v1 ,  vb+2 ,  vb+3 ,… ,  va  are not dominating sets of G. 

Consequently,  G = aand sd G = b. Correspondingly, we 

can show the following theorem for weak dominating −color 
number.  
 

Theorem 13: For all integers a ≥ b ≥ 0, there exists a graph G 
with  G = a and  wd G = b. 

 

6 NORDHAUS-GADDUM INEQUALITIES 
For any graph G with parameter ψ, sharp upper and lower 

bounds for both ψ G + ψ(G ) and ψ G ∙ ψ(G ) are referred as 
Nordhaus-Gaddum inequalities. In this section, some bounds 

and these inequalities are derived for sd G and wd G . 

 
Observation 1: For all graphsG, 
sd G ≤ δ + 1and wd G ≤ δ + 1. 

 

Theorem 14: If any graph G is a non-regular graph with n 

vertices and it has a connected complement, denoted by G , 
then 

(a) sd G ≤ n∆(G)and wd G  ≤ n∆(G). 

(b) sd G  ≤ nδ(G)and wd G ≤ nδ(G). 

(c) sd G + sd G  ≤ n. 

(d) wd G + wd G  ≤ n. 

(e) sd G + wd G ≤ n. 

(f) sd G  + wd G  ≤ n. 

 
Proof: 
It is necessary to have a maximum degree and minimum 

degree vertices of G in strong dominating 𝜒 − color set of G 
respectively. And number of maximum degree n∆(G) and 

minimum degree nδ(G) vertices of G equal to the number of 

minimum degree and maximum degree vertices of G  
respectively. Due to this fact, (a) and (b) can be easily proved.  

From (a) and (b), sd G + sd G  ≤ n∆ G + nδ G . Since G 

is not a regular graph, sd G < 𝑛 ,wd G < 𝑛 and n∆ G +

nδ G = n. The following are immediate from (a) and (b). 

(c) sd G + sd G  = n∆ G + nδ G ≤ n. 

(d) wd G + wd G  = n∆ G + nδ G ≤ n. 

(e) sd G + wd G = n∆ G + nδ G ≤ n. 

(f) sd G  + wd G  = nδ G + n∆ G ≤ n. 

 
Further, we can sharpen the bounds of sd G  and wd G  in 

the succeeding theorems. Let V∆ and Vδ be the set of all 
vertices which has maximum and minimum degree of a graph 

G respectively. 
 

Theorem 15: Let G be any graph, then sd G ≤ ( V∆ )and 

wd G ≤ ( Vδ ) . 

 
Proof:  

Let G be any graph. The maximum degree vertices of G occur 
minimum   V∆   number of color classes of G. If all the 
maximum degree vertices occur in   V∆   number of color 

classes, then sd G ≤ ( V∆ ). If not, there are maximum 

n∆ G −   V∆   vertices occur in  G −   V∆   number of 
color classes which are not strong dominating sets of G. 
Because such maximum degree vertices are non adjacent and 

has different color with   V∆   number of maximum degree 
vertices. Also, those vertices cannot be strongly dominated by 

any other vertices of G. In that case, sd G = 0. 

Consequently, sd G ≤ ( V∆ ) . Similarly, we can prove that 

wd G ≤ ( Vδ ). 

 

Theorem 16: Let G be any graph, then sd G ≤ ω( V∆ )and 

wd G ≤ ω( Vδ ).  

 
Proof:  

Let G be any graph. The maximum degree vertices of G occur 
minimum   V∆   number of color classes of G. It is clear that, 

out of this   V∆   number of color classes of G, ω  V∆   



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 4, ISSUE 10, OCTOBER 2015   ISSN 2277-8616 

285 
IJSTR©2015 

www.ijstr.org 

number of color classes of G can be a strong dominating set 
of G. Even though the remaining color classes of G has 
maximum degree vertices, they not dominate atleast one 
maximum degree vertex of G. So, they are not strong 

dominating sets of G. Therefore, sd G ≤ ω( V∆ ). Similarly 

we can prove that wd G ≤ ω( V∆ ). 

 
Corollary 3: If  V∆  is a null graph, then sd G ≤ 1 

 
Corollary 4: If  Vδ  is a null graph, then wd G ≤ 1. 

 
Theorem 17: Let G be any graph with n vertices. Then  

(a) 0 ≤ sd G + sd G  ≤ n∆ + nδ and 0 ≤ sd G ∙

sd G  ≤ n∆ ∙ nδ 

(b) 0 ≤ wd G + wd G  ≤ n∆ + nδ and 0 ≤ wd G ∙

wd G  ≤ n∆ ∙ nδ 

Proof: Since 0 ≤ sd G ≤ n∆and 0 ≤ sd G  ≤ nδ, we can 

easily derive a  and (b). 
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