
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 11, NOVEMBER 2016 ISSN 2277-8616

217
IJSTR©2016
www.ijstr.org

Simulation Of Networking Protocols On Software
Emulated Network Stack

Hrushikesh Nimkar, Bhavesh Munot, Saish Sali, Vipul Rathore

Abstract: With the increasing number and complexity of network based applications, the need to easy configuration, development and integration of
network applications has taken a high precedence. Trivial activities such as configuration can be carried out efficiently if network services are software
based rather than hardware based. Project aims at enabling the network engineers to easily include network functionalities into his/her configuration and
define his/her own network stack without using the kernel network stack. Having thought of this, we have implemented two functionalities UPNP and
MDNS. The multicast Domain Name System (MDNS) resolves host names to IP addresses within small ad-hoc networks and without having need of
special DNS server and its configuration. MDNS application provides every host with functionality to register itself to the router, make a multicast DNS
request and its resolution. To make adding network devices and networked programs to a network as easy as it is to plug in a piece of hardware into a
PC, we make use of UPnP. The devices and programs find out about the network setup and other networked devices and programs through discovery
and advertisements of services and configure themselves accordingly. UPNP application provides every host with functionality of discovering services of
other hosts and serving requests on demand. To implement these applications we have used snabbswitch framework which an open source virtualized
ethernet networking stack.

Keywords: Software Defined Network, Network Virtualization, Network Protocols, UPnP, mDNS.

————————————————————

INTRODUCTION
In this project, we are going to simulate some network
protocols on software emulated network stack which is nothing
but Snabbswitch. Snabbswitch is a network stack which runs
completely in user space and provides the basic functionalities
required for networking. Snabbswitch has its own device driver
for fetching the network packet from NIC card to Snabbswitch
Framework and hence it completely bypasses the Kernel
which is the significant part. The motivations behind using
software emulated network stack are, first, user space
applications always outperform the Kernel space applications.
Second thing is implementing any protocol or application is
always easier in user space than in kernel space. Also packet
processing is faster in user space than in kernel space. Here,
in this project, we have simulated following protocols in this
network stack:-

1. Universal Plug and Play (UPnP)
2. Multicast Domain Name System
3. Basic Firewall
4. Packet Content
5. Port Forwarding

SNABBSWITCH
Snabbswitch framework, as stated earlier, runs in user space
and bypasses the kernel leading to improved performance.
Lua is the language used to implement this framework.

Why Lua?
Snabbswitch framework, entirely, is written in Lua language.
Lua is dynamical typed language with the performance as
good as as system level languages like C and C++. Lua use
the LuaJIT tool i.e. Lua Just-In-Time compiler. Lua has a FFI
library which enables us to call C language functions too.
Snabbswitch has the 4 main components in it.

1. Apps
2. Links
3. Config
4. Engine

1. App: App is basically a name given to any functionality.
These apps act as nodes - which takes packet as input
processes them and outputs the processed packet – in the

system view. Also, these apps can be used as building block
of some new functionality i.e. small basic apps can be used to
develop some larger functionality. An app is the
implementation of some specific networking function. For
example, a switch, a router, or a packet filter etc. Apps receive
packets on input ports, perform some processing, and transmit
packets on output ports. Each app has zero or more input and
output ports. For example, a packet filter may have one input
and one output port, while a packet recorder may have only an
input port.

2. Links: Links are nothing but ring buffers containing packets.
Links can be treated either like arrays -- accessing their
internal structure directly -- or as streams of packets via API
functions. Links act as the connection between two apps.

3. Config: A config is a description of a packet-processing
network. The network is a directed graph. Nodes in the graph
are "apps" that each process packets in a specific way --
switch, route, filter, police, capture, etc. Each app has a set of
named input and output "ports" -- for example called rx and tx.
Edges in the graph are unidirectional "links" that carry packets
from an output port to an input port. The config is a purely
passive data structure. Creating and manipulating a config
object does not immediately affect operation. The config has to
be activated using ‘engine. configure(c)’.

4. Engine: The engine executes a configuration by initializing
apps, creating links, and driving the flow of execution. The
engine also performs profiling and reporting functions. It can
be reconfigured on-the-fly.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 11, NOVEMBER 2016 ISSN 2277-8616

218
IJSTR©2016
www.ijstr.org

BLOCK DIAGRAM OF FRAMEWORK

Fig.1: Block Diagram of Snabbswitch Framework

1. App:
'myapp:new(arg)' Create an instance of the app with a given
argument. `myapp.input` and `myapp.output` Tables of named
input and output links. These tables are initialized by the
engine for use in processing. `myapp:pull()` Pull new work into
the system. (Optional.) For example: input packets from the
network and transmit them to output ports. `myapp:push()`
Push existing work through the system. (Optional.) For
example: move packets from input ports to output ports or
onto an external network. `myapp:relink()` React to a change
in input/output links. Called after a link reconfiguration and
before the next packets are processed. `myapp:reconfig(arg)`
Reconfigure with a new arg. (Optional.): recreation of the app
is used as a fallback.) `myapp:report()` Print a report of the
current status. `myapp.zone` Name of the LuaJIT profiling
zone for this app (a descriptive string). (Optional: module
name used as a default.)

2. Links:
`link.empty(l)` Return true if the link is empty. `link.full(l)`
Return true if the link is full. `link.receive(l)` Return the next
available packet (and advance the read cursor). If the link is
empty then an error is signaled. `link.transmit(l, p)` Transmit a
packet onto the link. If the link is full then the packet is
dropped and the drop counter increased). `link.stats(l)` Return
a structure holding ring statistics:`txbytes` and `rxbytes` count
of transferred bytes.`txpackets` and `rxpackets` count of
transferred packets. `txdrop` count of packes dropped due to
ring overflow.

3. Config:
`config.new() => <config>` Create a new empty configuration.
`config.app(c, name, class, arg)` Add an app to the config.
Example: `config.app(c, "nic", Intel82599, {pciaddr =
"0000:00:00.0"})` `config.link(c, linkspec)` Add a link from an
output port to an input port. The linkspec is a string with syntax
is `from_app.from_port->to_app.to_port`. Example:
`config.link(c, "nic1.tx -> nic2.rx")`.

4. Engine:
`engine.configure(c)` Configure the engine to use a new
configuration. `engine.main(options)` Execute the engine.

`duration`: number of seconds to execute (a floating point
number). ’engine.report()` Print a report on current operational
state.

WHAT HAVE WE DONE?
In this project we are going to simulate the working of - UPnP,
mDNS, Port Forwarding, Firewall, Packet content – these
applications. The original aim was to write these applications
and port them for Raspberry Pi. But the problem which we
faced is that snabbswitch framework has device driver written
for Intel10g card and Raspberry Pi has a Broadcom chip. Thus
we reduced the scope of our project a little and simulated the
working of these protocols.

Universal Plug and Play (UPnP)
Universal Plug and Play (UPnP) is a set of networking
protocols that permits networked devices, such as personal
computers, printers, Internet gateways, Wi-Fi access points
and mobile devices to seamlessly discover each other's
presence on the network and establish functional network
services for data sharing, communications, and entertainment.
UPnP is intended primarily for residential networks without
enterprise-class devices. The concept of UPnP is an extension
of plug-and-play, a technology for dynamically attaching
devices directly to a computer, although UPnP is not directly
related to the earlier plug-and-play technology. UPnP devices
are "plug-and-play" in that when connected to a network they
automatically establish working configurations with other
devices.

Protocol:
UPnP uses common Internet technologies. It assumes the
network must run Internet Protocol (IP) and then leverages
HTTP, SOAP and XML on top of IP, in order to provide
device/service description, actions, data transfer and eventing.

1. Addressing:
The foundation for UPnP networking is IP addressing. Each
device must implement a DHCP client and search for a DHCP
server when the device is first connected to the network. If no
DHCP server is available, the device must assign itself an
address.

2. Discovery:
Once a device has established an IP address, the next step in
UPnP networking is discovery. The UPnP discovery protocol is
known as the Simple Service Discovery Protocol (SSDP).
When a device is added to the network, SSDP allows that
device to advertise its services to control points on the
network.

3. Description:
After a control point has discovered a device, the control point
still knows very little about the device. For the control point to
learn more about the device and its capabilities, or to interact
with the device, the control point must retrieve the device's
description from the location (URL) provided by the device in
the discovery message.

4. Control:
Having retrieved a description of the device, the control point
can send actions to a device's service. To do this, a control
point sends a suitable control message to the control URL for

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 11, NOVEMBER 2016 ISSN 2277-8616

219
IJSTR©2016
www.ijstr.org

the service (provided in the device description).

Multicast Domain Name System (mDNS)
The multicast Domain Name System (mDNS) resolves host
names to IP addresses within small networks that do not
include a local name server. It is a zero configuration service,
using essentially the same programming interfaces, packet
formats and operating semantics as the unicast Domain Name
System (DNS). While it is designed to be stand-alone capable,
it can work in concert with unicast DNS servers.

Protocol:
When an mDNS client needs to resolve a host name, it sends
an IP multicast query message that asks the host having that
name to identify itself. That target machine then multicasts a
message that includes its IP address. All machines in that
subnet can then use that information to update their mDNS
caches.

Port Forwarding
In computer networking, port forwarding or port mapping is an
application of network address translation (NAT) that redirects
a communication request from one address and port number
combination to another while the packets are traversing a
network gateway, such as a router or firewall. This technique is
most commonly used to make services on a host residing on a
protected or masqueraded (internal) network available to hosts
on the opposite side of the gateway (external network), by
remapping the destination IP address and port number of the
communication to an internal host. Port forwarding allows
remote computers (for example, computers on the Internet) to
connect to a specific computer or service within a private local-
area network (LAN).

Packet Content
Packet content app is used to display the different fields in
packet structure. By parsing the content of packet by using the
offsets of field – from packet structure – we display the content
of packet like source IP address, destination IP address etc.

Firewall
In computing, a firewall is a network security system that
controls the incoming and outgoing network traffic based on an
applied rule set. A firewall establishes a barrier between a
trusted, secure internal network and another network (e.g., the
Internet) that is assumed not to be secure and trusted.
Firewalls exist both as software to run on general purpose
hardware and as a hardware appliance. Many hardware-
based firewalls also offer other functionality to the internal
network they protect, such as acting as a DHCP server for that
network. Many personal computer operating systems include
software-based firewalls to protect against threats from the
public Internet. Many routers that pass data between networks
contain firewall components and, conversely, many firewalls
can perform basic routing functions.

MATHEMATICAL MODEL
Let S be the system such that-
S = {VNS, NIC, DD | Φ}
Where,
VNS is Virtual Network Stack.
VNS consists of different applications which are
connected using links to form a stack.

VNS = {UPnP, mDNS, Firewall, Packet Content,
Port Forwarding}

Firewall = {I, O, F, SUCCESS, FAILURE}
F2 = Reading packets from the input links.
F3 = Reaching to the required offsets and ten reading the
relevant information from packets

SUCCESS = {Correct Information is Displayed}

FAILURE = {Required information is not present or is corrupt}

mDNS = {Host, Router}
where,
Host = {I, O, F, SUCCESS, FAILURE}
where,
I = {R1, R2…Rn, RS1, RS2...RS3}
[Host receives packets which are request from other hosts or
response to its own request]

O = {R1, R2…Rn, RS1, RS2..RS3, RG1…RGn}

[Host is capable of sending requests and responses to
requests and send registration packets to the router]

F = {F1, F2, F3...Fn}
[Functions of Host]
Where,
F1 = Register itself to the router. F2 = Make a request packet
to get the IP address of particular host.
F3 = Respond to a request sent by other host.

SUCCESS = {Registration is successfully done, Request is
sent and response is received}

FAILURE = {The Response is not received if the host name is
not present}

Router = {I, O, F, SUCCESS, FAILURE}

Where,
I = {P1, P2, P3...Pn, RG1...RGn}
[Router receives packets which help the host register itself to
the router and other packets are request/response which it
simply forwards.]

O = {P1, P2, P3,..Pn}

Where,
I = {Rules of filtering, IP0, IP1, IP2...IPn}
[Rules for filtration and IP Packets from different sources]

O = {IP0, IP1, IP2...IPn}
[Processed IP Packets]

F = {F1, F2, F3…Fn}
[Functions of Firewall Application]
Where,
F1 = Keep Reading packets from the input link.
F2 = Compare the packet received with the rules stated.
F3 = If it satisfies the rules then forward it on correct output
link.
F4 = If the packet doesn’t satisfy the rules then drop it.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 11, NOVEMBER 2016 ISSN 2277-8616

220
IJSTR©2016
www.ijstr.org

SUCCESS = {All the packets that are passed satisfy the rules}

FAILURE = {Packets are forwarded even though they don’t
satisfy the rules}

Packet Content = {I, O, F, SUCCESS, FAILURE}
Where,
I = {E0, E1, E2…En}
[Ethernet Packets from the given interface]

O = {D0, D1, D2…Dn}
[Data related each packet]

F = {F1, F2, F3...Fn}
[Functions of Packet Content Application]

Where,
F1 = Defining offsets different fields in headers.

UPnP = {Host, Router} where,
Host = {I, O, F, SUCCESS, FAILURE}
Where,

I = {R1, R2...Rn, RS1, RS2...RS3}
[Host receives packets which are request from other hosts or
response to its own request]

O = {R1, R2...Rn, RS1, RS2,.. RS3, RG1… RGn}

[Host is capable of sending requests and responses to
requests and send registration packets to the router]

F = {F1, F2, F3....Fn} [Functions Of Host] Where,

F1 = Register itself to the router. F2 = Make a request packet
to get the IP address of particular host.
F3 = Respond to a request sent by other host. F4 = Sending
discovery packet F5 = Sending advertising packet

SUCCESS = {Registration is successfully done, Request is
sent and response is received}

FAILURE = {The Response is not received even after sending
the discovery packet}

Router = {I, O, F, SUCCESS, FAILURE}
Where,
I = {P1, P2, P3…Pn, RG1…RGn}
[Router receives packets which help the host register itself to
the router and other packets are request/response which it
simply forwards]

O = {P1, P2, P3...Pn} [Router forwards multicast
request/response packets to other hosts]

F = {F1, F2, F3....Fn} [Functions of Router] Where,

F1 = Register the ip address of new host connected.

F2 = Forward the response to particular IP.

F3 = Multicast the request packet to other hosts on the
network.

SUCCESS = {Registration is successfully done, Request is
sent and response is received}

FAILURE = {The Response is not forwarded if the correct IP
address is not present}

Port Forwarding = {I, O, F, SUCCESS, FAILURE}
where,
I = {P1, P2…Pn}
[Pi is an ethernet packet received with global IP address of
router]

O = {O1, O2…On}
[Oi is an Ethernet packet with destination IP address of device
within the network]

F = {F1, F2…Fn}
where,
F1 = Reading the destination port number and forwarding the
packet to corresponding host on internal network.

SUCCESS = {All the packets received are forwarded
successfully depending destination on the port numbers}

FAILURE = {Destination Host on internal not found
corresponding to destination port number in the packet}

NIC (Network Interface Card)
A network interface controller (NIC, also known as a network
interface card, network adapter, LAN adapter, and by similar
terms) is a computer hardware component that connects a
computer to a computer network (Ethernet type).

DD (Device Driver)
User space device driver which enables communication
between NIC and virtual network stack.

Φ = {ATM, Token ring, Frame Relay incompatibility}

CONCLUSION
The framework is used to solve novel problems in networking.
It provides different functionalities and interfaces to develop
different networking functionalities and use them as
applications. The framework provides mechanisms to use
these different applications together to form a chain of
applications. The interfaces provided by the framework are
implemented to simulate the working of UPnP and mDNS
protocols. The implementation simulates actual devices in the
network by use of objects and uses links provided by the
framework to transfer packets. The basic packet content
application displays all the contents of the packet just like
tcpdump command in linux. The basic firewall application
filters packets based on the arguments passed to it. These are
the four applications implemented using the Snabbswitch
framework. Thus we conclude that development of network
based applications has become flexible and easy task using
Snabbswitch framework.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 11, NOVEMBER 2016 ISSN 2277-8616

221
IJSTR©2016
www.ijstr.org

REFERENCES
[1] IEEE Paper:- TCP/IP protocol accelaration published

in Computer Communication and Informatics (ICCCI),
2012 International Conference.
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?tp&
arnumber=6158829&url=http%3A%2F%2Fieeexplore.
ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D61
58829

[2] Virtual Network Stack:- Computer Science

Department, University of Basel Switzerland
http://conferences.sigcomm.org/sigcomm/2008/works
hops/presto/papers/p45.pdf

[3] Snabbswitch Development http://www.snabb.co/

[4] Luke Gorrie – Snabbswitch Devoeloper

http://lukego.github.io/

[5] Network Virtualization
http://bradhedlund.com/2013/05/28/what-is-network-
virtualization/

[6] Snabbswitch development Google group (forum)

https://groups.google.com/forum/#!forum/snabb-devel

