On General Product Of Two Finite Cyclic Groups One Being Of Order 5 (Induced By $\pi=$ (1) (2) (3) (4) (5))

N.G. El-Sharkawy, S.F. El-Hadidi

Abstract

In this paper we find the general product induced by the semi special permutation $\pi=(1)(2)(3)(4)(5)$. That is the general products of two finite cyclic groups in which one of order 5 and the other is of order m these general products can be described in terms of numerical parameters.

Index Terms: semi special permutations, general product.

1 INTRODUCTION

If A, B are two subgroups of a group G then we say that G is the general product of A, B if and only if:
(1) $G=A B$
(2) A, B has no elements in common other than the identity i.e. $A \cap B=\{e\}$.

Now if $A=\{a\}$ is a cyclic group of order $m, B=\{b\}$ is a cyclic group of order n then there exist corresponding to G two semi special permutations π, ρ where π on $[n], \rho$ on [m]such that

$$
a^{y} b^{x}=b^{\pi^{y} x} a^{\rho^{x} y}, x \in[n], y \in[m] \ldots \text { (1) }
$$

$\pi^{m} x \equiv x(\bmod n), x \in[n]$
$\rho^{n} y \equiv y(\bmod m), y \in[m] \ldots .(3)$

Where $[c]$ demote to the set of dements $\{1,2,3, \ldots, c\}$
Definition:(Semi special permutation) A permutation π on [c] is said to be semi special on [c] iff $\pi(c)=c$,
$\pi_{z}(x)=\pi(x+z)-\pi z(\bmod c), \mathrm{y} \in[c]$ is a power depending on z of π

N.G. El-Sharkawy, S.F. El-Hadidi

18 El-Krom St., Mohandesin Cairo, Egypt
HelwanUniversity, Cairo, Egypt
Email: sameh2002@yahoo.com
10 TalalBasha St., San Stefano Alex., Egypt
HelwanUniversity , Cairo, Egypt
Email: sameh2002@yahoo.com

Theorem A:

(i) $a^{m} b^{x}=b^{x} a^{m}, x \in[n] \ldots \ldots$ (4)
(ii) $a^{y} b^{n}=b^{n} a^{y}, y \in[m]$ \qquad

Theorem B:

(i) The order of π divides m i.e. if e is the orders of π then m is a multiple of ℓ.
(ii) There exist a number $\lambda,\left(\lambda, \frac{m}{\ell}\right)=1$ thus that
$a^{\ell} b=b a^{\ell \lambda}, \ell \lambda^{\mu} \equiv \ell \bmod m$
Where μ is the g.c.d of all $v-v ; v, v$ are any numbers of the principal cycle of π.
(iii) $a^{\ell} b^{\mu}=b^{\mu} a^{\ell}$.

We know that $\pi=$ (1) (2) (3) (4) (5) is a semi special permutation on[5]

§1- The general product induced by π

Theorem1.1: the defining relation of the general product of G corresponding to

$$
\begin{equation*}
\pi=(1)(2)(3)(4)(5) \text { is } G=\left\{a, b ; a^{m}=b^{5}=e, a b=b a^{r}\right\} \tag{7.1}
\end{equation*}
$$

$r^{5} \equiv 1(\bmod m)$ \qquad

The converse is also true i.e. for any r satisfying (7.2) then any group G generated by a and b satisfying (7.1) is the general product of $\{a\},\{b\}$.

Proof:

Assume that the general product of G exist, from the equation
$a^{y} b^{y}=b^{\pi^{y}} x a^{\rho^{x} y}, x \in[5], y \in[m]$, with $y=1$ we get
$a b^{x}=b^{\pi^{1} x} a^{\rho^{x} 1}, x=1,2,3,4,5$ put $x=1$ then we have
$a b=b^{\pi 1} a^{\rho 1}$
let us write $\rho 1=r$ then $a b=b a^{r}$,

$a b^{2}=b^{2} a^{r^{2}}$ and so by induction we get $a b^{5}=b^{5} a^{5}$
From theorem A with $n=5, y=1$ we have $a b^{5}=b^{5} a \ldots$ (9)
from8, (9) we get $r^{5} \equiv 1(\bmod m)$ and so (7.2) follows.
Also we notice that $\{a\}$ is of order m and $\{b\}$ is of order 5 then 7.1 is the required defining relation of G.

The converse is also true to do this let G be a group generated by a, b with the defining relation (7.1) and satisfying the condition (7.2) and let $x=\{0,1,2,3,4\}, y=\{0$, $1,2, \ldots, m-1\}$ and let H be the set of all ordered pairs (x, y) with $x \in X, y \in Y$ with binary operation $*$ defined on H as follows:
$(x, y) *\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime \prime}, y^{\prime \prime}\right)$ such that $\quad x^{\prime \prime}=x+x^{\prime}(\bmod 5)$
$y^{\prime \prime}=r^{x^{\prime}} y+y^{\prime}(\bmod m)$
Then it is clear that $\langle H, *>$ is a group with $e=(0,0)$ as its identity element. Also if $\alpha=(0,1), \beta=(1,0)$
$\beta^{x} \alpha^{y}=(x, y)$ which implies that each element of H can be determined uniquely in the form $\beta^{x} \alpha^{y}$ which means that H is the general product of $\{\alpha\},\{\beta\}$. since $\{\alpha\}$ is of order m and $\{\beta\}$ is of order 5 so $|H|=5 \mathrm{~m}$, it is evident to see that $\alpha^{m}=\beta^{m}=e \quad, \alpha \beta=\beta \alpha^{r}$ which arecorresponding to the defining relation of G and so the permutation $\pi=(1)(2)(3)(4)(5)$ is induced by α.

Also H can be considered as a homomorphic image of G, since $|G| \leq 5 m$ and hence the two groups are isomorphic hence the theorem is proved.

Remark: It must be noted that two groups G, L with defining relation:
$G=\left\{a, b ; a^{m}=b^{5}=e, a b=b a^{r}, r^{5} \equiv 1(\bmod m)\right\}$
$L=\left\{a, b ; a^{m}=b^{5}=e, a b=b a^{s}, s^{5} \equiv 1(\bmod m)\right\}$

Such that $r \neq S \bmod \mathrm{~m}$, then $G \cong L$ if and only if $r \equiv s^{4}(\bmod m)$

Conclusion:

The general product of two finite cyclic groups one being of order 5 , which is corresponding to $\pi=(1)(2)(3)(4)(5)$ is obtained by theorem 1.1 with defining relation (7.1), (7.2).

References:

[1] K.R.Yacoub, on general products of two finite cyclic groups one being of order 4 prove math \& phys. Soc. ARE, No 21, 1957 PP 119-126.
[2] N.G. El-Sharkawy, S.F.El-Hadidi Parametric Representation of finite groups with-two independent Generators with, one Being of given order, International Jornal of mathematics and computation (IJMC). Vol.6; No. M10, March 2010, PP 27-42.

