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AN EFFICIENT ALGORITHM FOR CRASHING 
 

B. R. Kharde, G. J. Vikhe Patil 
 

Abstracts: Time-Cost Trade-off in Projects (TCTP), Least-Cost Schedule (LCS) or crashing technique   is used to find optimum project duration to 
minimize the total cost.   In crashing an activities, the direct cost (DC) increases while indirect cost(IC) reduces. So i t is double beneficiary technique for 
managers to decrease the project duration as well as total cost. The goal in crashing is to find the optimum duration or Leas t Cost Schedule (LCS) 

where the total cost of the project is least. Unit Time Method (UTM) is the powerful procedure for crashing; yields always optimum solution and is used 
widely for CPM networks.  But much iteration (one for crashing one unit of time) are needed to get to LCS. This is a disadvantage of UTM if project is to 
be crashed for double figure or more time. Say project crashing for 30 days – 30 iterations! Other short cuts avoiding UTM are error porn and errors are 

observed in few cases (literature).  We propose new algorithm which works on UCM logic but requires less iteration. In some problems iterations are 
reduced to just number of activities crashed till LCS. Algorithm can be viewed as modified Unit Time Method; would always yield the optimum in very 
less iterations (10 to 30% approximately). 

 
Index Terms- CPM, PERT, Crashing, time-cost trade-off, Least Cost Schedule, Economic Crash Limit, Unit Time Method 

———————————————————— 

  

1. INTRODUCTION 
CPM is for deterministic times while PERT is for stochastic 
times.  In CPM project duration which is Critical path length 
(CPL) need to shorten for various requirements of project. 
Crashing technique is very powerful tool for managers to 
expedite and reduce the project cost.  Smith (1997) shows 
the different algorithms comparison in excursions. Various 
algorithms (Liu (1995), Reda (1989), Senouci (1996) …) 
basically written in the angle of Computer engineering, do 
not take much in account of the users from construction 
industry. Senouci (1996) presents dynamic programming 
approach, but DP is not liked by most of users for its 
questionable simplicity. Reda (1989) developed LPP model 
but its application to construction industries is questionable. 
Gupta (2006) crashes cheapest activity of the network.   
Always crash activity only from critical path; if MCS, TCTP 
or economical duration for the project is the goal Stevens 
(1996) illustrates networks, dummy adding method of 
drawing AOA, and Unit Time Method (UTM) for crashing. 
UTM is the best techniques. In this cheapest activity from 
the critical path is always crashed for unit time 
(day/week/…).  Its optimal solution is at cost of one-iteration 
for one-unit-time crashing. If project requires crashing of 
double figure time (that is what generally required in 
industries); it is challenging. We present algorithm, with 
same logic, yields optimal solution but takes very less 
iterations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
We set bounds/limits for crashing an activity without 
affecting next path to become critical. The basic goal is to 
minimize the total cost of project keeping intact the 
technological constraints. The problem is not solved by 
LPP; but by algorithmic approach to yield the optimal. 

Crashing a Network is as follow: 
1. Compute the network critical path 
2. Establish an objective total duration 
3. Identify the crash time for each activity 
4. Prioritize the activities on the critical path(cost 

slope) 
5. Shorten the highest-priority activity by one time 

period and 
6. compare total duration with objective 
7. Verify critical path 
8. Continue activity reduction (step 4 & 5) until 

economic crash limit is reached 
9. Select next priority activity and continue reduction 

(steps 4 through 6) 
The weakness of crashing unit time is explored such that 
one activity could be crashed for more than unit time in 
most of the situations. 
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2. NOTATION 

i Start event ' i' for an activity 
j End event 'j' for an activity 
A ij Activity having start event ' i' and end event 'j' 
T ij time or duration for A ij 
NT ij Normal time for A ij 
CT ij Crash time    for A ij 

ij NT ij -CT ij 

K NTK -CT K 

NC ij Normal Cost for A ij 
CC ij Crash Cost    for A ij 
CS ij Cost slope for A ij =  

    CC ij - NC ij 
= ----------------------- 
    NT ij - CT ij 

 

CSK Cost slope for Activity K 
TCSij =  CS ij  for least cost slope activities from different CPs = CS ij  for least cost slope activity from 

critical path 
CL ij Crash length for activity ij  = CT ij - CT ij 
NC ij Normal Cost for A ij 
CPK Project path "K" which happens to be critical 
CPLK Length  for critical path 'K,  CPK  =   T ij         for     A ij  K 
NPK the path of the project just shorter(Next) to critical path 'K'  NPK     
NNPK the path of the project just shorter(Next) to NPK  path 'K'  NPK   
NPLK Length (duration) for the path of the project just shorter(Next) to critical path 'K"  CPNK 

=    T ij     for  A ij  N 
NNPLK Length (duration) for the path of the  NNPK 
FK Critical Path(K) Float Limit or Difference between critical path length and length of next to critical 

path  =    CPLK -  NPLK 

NFK Critical Path(K) Float Limit or Difference between critical path length and length of next to next to 
critical path,  = CPLK -  NNPLK 

CTLij  
 

Crash-Time-Limit or maximum limit activity ' i-j ' could be crashed in one stretch,  
= min { FK , (NT ij - CT ij)}  

NCTLij  
 

Crash-Time-Limit or maximum limit activity ' i-j ' could be crashed in one stretch when crash 

activity is common to CP and NP, = min { NFK , (NT ij - CT ij)}  =  min { NFK , ij) 
 

3. NETWORK AND CRITICAL PATH 
We use Activity On Arc (AOA) however AON network could 
be used. Crashing could be done without network 
preparation by path table. 

 
Critical Path Float Limit 
Projects have many paths which are evident from the 
network. These paths are denoted by number, 1, 2, 3…, 
K,… (Table 3.1) Each path has length.  Critical path/s is/are 
the path/s with longest duration. This length is denoted by 
CPLK.  The path which is just shorter than critical path (K) is 
denoted by NPK and its length by NPLK.  
 

Definition:  The difference in these two paths is defined as 

Critical Path Float Limit, FK     =   CPLK - NPLK Activities on 
critical path have no floats.  All floats for critical activities 
are zero (Total Float, Free float, Safety float, Independent 
float, and Interfering float). The new definition is not activity 
float but path float.  
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 

Figure: 3.1 

 
Consider AOA network showing activity durations in Figure 
3.1.  Three different paths are evident as listed in Table 3.1.   

 
Table 3.1 – Path Table 

 

Path Length 

1 1-3-5-6 8+6+9 = 23 

2 1-3-4-6 8+4+3 = 15 

3 1-2-4-6 5+2+3 = 10 
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 The network have three paths namely path 1, 2 and 3. 
Path 1 is longest and hence critical path; CP1 have 
length CPL1 = 23 week. 

 Next path just short to critical path is path 2 and its 
length is 15 weeks. This path is relative to critical path 
1; NP1 have length NPL1 = 15 week. 

 The difference between these paths is 8. So with 
notations, it is Critical Path Float Limit for critical path 1:  
F1   =   CPL1 -  NPL1  =   23 -  15   =   8 week 

When activity on CP is crashed, the length of CP would be 
reduced by crashed time. Its effect on NP is observed: 
 Case 1: No change in NPL  
 Case 2: NPL reduction 

E.g. If activity 3-5 is crashed by 1 week, then 
 CPL1  =   23-1 = 22 week 
 NPL1  =   15 NPL unchanged 
 F1    =   22-15 = 7 week 
Instead of crashing 3-5, if common activity to CP and NP; 1-
3 is crashed by 1 week then: 
 CPL1  = 7+6+9  = 22 week 
 NPL1  = 7+4+3 = 14 week 
 NPL1 is reduced from 15 to 14 week 
 F1    =   22-14 = 8 week 
 
Theorem 1: If activity on CP is crashed by unit time; NPL 

might be unchanged or would also reduce by unit time. 

Theorem 2: If activity on CP is crashed by unit time; 

Critical Path Float Limit might be reduced by unit time or 
unchanged. In Case 2: Critical Path Float Limit is 
unchanged, and have no effect on criticality (CP is CP and 
NP is NP). This would continue till common activity which is 
being crashed; could not be crashed any further. But 
consider case 1; here for crashing one time unit, CPL 
reduces by one unit but NPL unchanged. So the crashing 
could continue for one more time unit, so on. A time would 
come when CPL and NPL are equal or both are CP. The 
situation changes now, crashing can not be done with logic 
of one CP.  This point is when CP is crashed by the 
difference in (CPL – NPL) or Critical Path Float limit (FK). 
This is the worst case situation. This infers:  

Theorem 3: Activity on CP could be crashed by Critical 
Path Float Limit without affecting Criticality of NP (CP is CP 
and NP is NP). 

Please note cost economics is not considered here. 

 
Crash-Time-Limit for an Activity 
Theorem 4: Any activity on CP could be crashed 

maximum to crash period, ij or (NT ij - CT ij). This is 
technological constraint on the activity and could not be 
violated. From theorem 3 and 4 it is evident 
Theorem 5: Any activity on CP could be crashed to Crash-

Time-Limit in one stage such that Crash- Time-Limit; CTLij 

= min {FK; ij} = min {FK; K} Theorem 5 is evident because 
out of two possibilities (bounds) only least bound could be 
explored in one stage and it will not violate criticality. Our 
addition of theorem 3, 4 and 5 are implemented in 
Crashing.   Instead of crashing one unit time, activity could 
be crashed by CTL, without any problem. 
 
Crash-Time-Limit for an Activity when it is common 
on CP and NP 
When activity 'K' is common to CP and NP; both paths 
would be shortened after the crashing. Hence FK does not 
put any constraint on Crash limit.  Under such case NNPK 
should be taken for consideration. for calculation.  NFK     =   
CPLK - NNPLK Crash activity is common to CP, NP and 
NNP; then further path just shorter than NNPLKN should be 
considered. Such cases are rare but can not be neglected. 
NCTL for crashing when activity is common in CP and NP, 

NCTLK = min {NFK; ij} = min {NFK; K} 
 

4. COST SHEET 
In literature no common standards are followed for 
crashing. We use cost sheet format from Stevens (1996).  
 
 
 
 
 
 

Cost Sheet 4.1 

Activity Crash time Cost slope Time shortened 

i-j ij CSij    

      

      

      

Time Cut (crash) ////////    

Project duration     

Incremental Cost ////////    

Direct Cost     

Indirect Cost     

Total Cost     

Where with notation 
Time Cut (crash) = CTL ij 
Project duration = CPLK 

Incremental cost (IncC)  = CTLij  * TCSij 
Direct Cost(DC) =  NCij + InC 
Indirect cost(IC) = CPL * Indirect cost/time 

Total cost(TC) = DC + IC 
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5. ALGORITHM USING CRASH-TIME-LIMIT 
(CTL) FOR CRASHING 

We propose CTL algorithm as follow: 
Step 1: Prepare table showing activity,  
 Immediate Predecessors, Normal time, Crash time, 

Normal cost and Crash cost for each activity Tabulate 
cost slope (CSij) or incremental cost per unit time for 
each activity 
CS ij  = (CC ij - NC ij ) / (NT ij - CT ij) 

Step 2:  Prepare Cost-sheet with CS and CTL, Direct and 
Indirect cost,   
Step 3:  Prepare AON or AOA diagram.  
 Show NT on network. Prepare a Path-table showing 

different paths and find lengths of the each path.  Note 
CP,  NP, CPL, NPL and FK from Path table.(No need to 
run Forward/backward passes) 

Step 4:  Noting CPL, prepare (1st column of  ) Cost-Sheet 
and  Total Direct cost(TNC), Total Indirect cost and Total 
cost of the project 
Step 5:  If no activity from any one CP could not be 
crashed, Then Stop, It is crash limit. 
If more than one critical path(CP), then go to Step 6, Else 
go to step 7 
Step 6:  If any   activity/ies is/are common to all CPs which 
could be crashed 
 Then note the common activity with least cost slope from 

CPs (CSC) 
And  Note one least cost slope activity which could be 
crashed* from each CP 
CSTotal = add cost slope of these activities  
If (CSC < CSTotal)  then go to step 8:  Else 
 

1. Find Crash Time Limit for each such activity 
2. Take minimum CTL 
3. Reduce each least cost slope activity by minimum 

CTL 
4. Reduce CTL in Network Diagram 
5. Update path Table and note CPs, new CPL, new FK 
6. Update Cost sheet for this CPL (Total Incremental 

cost, DC, Indirect Cost and TC) 
7. Go To Step 9 

Step 7:  Note the activity (K) with least cost slope which 
could be crashed* from CP,. 
 If  crash activity(K) is common to CP and NP; Then 

crash it by NCTLK; Else  crash by CTLij   
Step 8:   
 1. Find CTL or NCTL as applicable 

2. Reduce activity to be crashed(K) by CTL or NCTL 
as applicable in network 

3. Update Path table.   
4. Find CP, CPL, FK 
5. Update Cost sheet for CPL (Total incremental cost, 

DC, IC, TC)  
Step 9:  If Total cost of the project is increased Then Stop; 
least total cost is the optimum period;   solution; Else go to 
Step 5: 
 

6. ILLUSTRATION 
Problem data is given in table 6.1 and AOA network 
diagram 6.1 

Table 6.1 

Activity IP Duration (days) Cost ('000 $) 

- event  Normal Crash Normal Crash 

- ' i –j'  NTij CTij NCij CCij 

A 1-2 - 20 14 1600 2170 

B 2-4 A 10 6 140 220 

C 2-3 A 20 12 800 1720 

E 4-5 B, C 40 30 800 1050 

F 3-5 C 10 8 1000 1050 

Indirect cost of the project is $ 100,000 per day 

 
Step 1:  prepare Cost-Slope Table (Table 6.2) 

Table 6.2: Cost-Slope Table 

Activity 
IP 

Duration (days) Cost ('000 $)  time Cost Slope 

- event Normal Crash Normal Crash 
NTij -CTij 

CSij 
('000 $/day) - ' i –j'  NTij CTij NCij CCij 

A 1-2 - 20 14 1600 2170 6 95 

B 2-4 A 10 6 140 220 4 20 

C 2-3 A 20 12 800 1520 8 90 

E 4-5 B, C 40 30 800 1050 10 25 

F 3-5 C 10 8 1000 1050 2 25 

TOTAL   4340    
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Step 2:  prepare Cost sheet (Table 6.3) 
 

Table 6.3 - Cost Sheet 
 

Activity  time CSij Days shortened 

 days '000 $/day       

A 6 95       

B 4 20       

C 8 90       

E 10 25       

F 2 25       

Days cut /////////////////       

Project duration(CPL) 80       

Incremental cost(IncC) /////////////////       

Direct cost(DC) 4340       

Indirect cost(IC) 8000       

Total cost(TC) 12340       

 
 
Step 3: AOA network is prepared (Figure 6.1) 

 

 
 

Figure: 6.1 – AOA Network 

 
 
 
 
 
 
 
 
 
 

 
1. Prepare Path table (table 6.4)  

 

Table 6.4  -  Path Table 

Path 

I A-B-E 20+10+40 = 70     

II A-C-Do-E 20+20+40 = 80 *     

II A-C-F 20+20+10 = 50     

Critical path, CP II     

Critical path duration, CPL  80     

Next to CP length, NPL  70     

Critical path float limit, F  10     

NCP Float limit, NF 20     

Column i     

 
Step 4: update Cost Sheet ( data to be put in Table 6.3) 
 

 
 

Days cut ////////////////// 

Project duration, CPLII  80 days 

Incremental cost (IncC) /////////////////// 

Direct cost (DC)  NCij = 4340;  IncC = 0;  DC = 4340  

Indirect cost (IC) CPL * Indirect cost/time  = 80*100 = 8000  

Total cost(TC) = DC+ IC  = 12340  

 
Step 5:  CP is path II; Only one path; go to Step 7: 

Do 
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Step 7:  Path II is critical path; Critical activities are A, C 
and E (from Path table, path II). From Cost sheet:  CSA = 
95; CSC = 90; and CSE = 25   ***** 

 Least cost slope activity is E from CP;  It is common to 
CP(II)and NP(I) but not common to NNP(III) 
NFII     =   CPLII - NNPLIII =   80 - 50 =   30 days 

NCTLII  =  min { NFII ;  E}  =  min { 30,10 } = 10 days. 
Activity E to be crashed by 10 days 

Step 8:   
 Activity 'E' is reduced by 10 days in network 
 Update Network. 
 Update Path table (column ii; Table 6.5-not shown). CP 

is path II;  CPLII = 70 days;  NP is path I ;  NPLII = 60 
days; FII =  70 - 60 = 10 days 
1. Cost sheet updating( Cost-Sheet 6.4-A): Activity E 

is crashed by 10 days;  E is reduced by 10 days 
from 10 to 0; 

Days cut = CTL = 10 days;   Activity E is crashed by 10 
days @ CSE 
IncC = 10 * CSE = 10 * 25 = 250  
DC = 4340 + 250 = 4590; IC = 100 * 70 = 7000; and TC = 
DC + IC = 4590 + 7000 = 11590. 
Step 9:  TC (previous) = 12340; TC (after crash) = 11590. 
As Total cost is reduced, go to step 5: 
Step 5: Critical path is path II; only one. go to step 7:  

 

 
Step 7:  Path II is critical path; Critical Activities which can 

be crashed; are A and C (from Cost sheet; E have E = 0). 
From Cost sheet: CSA = 95 and CSC = 90** 

Least cost slope activity is C and C = 8 days (From Cost 
sheet) 
So Activity C could be crashed.  Activity C is not common to 
CP and NP. 

For activity C; C = 8 days (cost sheet) and FII =   10 days 
(Path table) 

CTLC = min {C; FII} = min {8, 10} = 8 day Activity 'C' to 
be crashed by 8 days 
Step 8:  Activity 'C' is reduced by 8 days in network 

1. Update Network.   
2. Update Path table (column iii; Table 5.3): CP is 

path II;  CPLII = 62 days;  NP is path I ;   
NPLII = 60 days; FII = 62 - 60 = 2 days 

3. Cost sheet updating: Activity C is crashed by 8 

days; C is reduced by 8 days from 8 to 0;    Days 
cut = CTL = 8 days.  Activity C is crashed by 8 
days@ CSC.  IncC = 8 * CSC = 8 * 90 = 720.   
DC = 4590 + 720 = 5310; IC = 100 * 62 = 6200 and 

TC = DC + IC = 5310 + 6200 = 11510 
Step 9: TC (previous) = 11590 and   TC (after crash) = 
11510. Total cost is reduced, go to Step 5: 
Step 5: Critical path is path II; only one; go to step 7: 
Step 7:  Path II is critical path; 

 Critical Activities are A, C and E (from Path 
table).  

 From Cost sheet: only Activity A could be 
crashed. 

 As E = C = 0;   CSA  =  95 *** 

 Least cost slope activity is A; It is common to 
CP (II), NP(I)  and  NNP(III). It does not 
constraint the FII.  However  finding NCTL: 

NFII     =   CPLII - NNPLIII =   56 – 36 = 20; 

NCTLII  =  min { NFII ;  K}  =  min { 20,6 } = 6 days 
 Activity A to be crashed by 6 days 
Step 8:   
1. Activity 'A' is reduced by 6 days in network 
2. Update the Network: Update the Path table (column iii; 
Table 5.3): 

CP is path II; CPLII = 56 days; NP is path I ;   NPLII = 54 
days;  FII =  56 - 54 = 2 days 

Cost sheet updating:  

Activity C is crashed by 6 days;  A is reduced by 6  
days from 6 to 0; 
Days cut = CTL = 6 days; Activity A is crashed by 6 
days @ CSA 

IncC = 6 * CSA   = 6 * 95 = 570; 
DC = 5310 + 570 = 5880; IC = 100 * 56 = 5600; and TC 
= DC + IC = 5880 + 5600 = 11480 

Step 9: TC (previous) = 11510 and TC (after crash) = 
11480 

 
 
 
 
 

Table 6.3-A: Cost-Sheet (partial) 

Acti-vity  time CSij Days short-ened 

 days   

A 6 95 * 

B 4 20  

C 8 90 * 

E 10, 0 25 10* 

F 2 25  

Days cut ////////// 10 

Project duration (CPL) 80 70 

Incremental cost (IncC) ////////// 250 

Direct cost (DC) 4340 4590 

Indirect cost (ID) 8000 7000 

Total cost (TC) 12340 11590 

Step 5: Critical path is path II; only one hence go to step 7:
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At end Figure 6.1 is as shown below 

Figure: 6.1 – AOA Network (final) 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
At end Path table (Table 6.4) is as shown below 

Table 6.4  -  Path Table (final) 

Path 

I A-B-E 20+10+40 = 70 60 60 54  

II A-C-Do-E 20+20+40 = 80 * 70 * 62 * 56 *  

II A-C-F 20+20+10 = 50 50 42 36  

Critical path, CP II II II II  

Critical path duration, CPL  80 70 62 56  

Next to CP length, NPL  70 60 60 54  

Critical path float limit, F  10 10 2 2  

NCP Float limit, NF 20 20 20 20  

Column i ii iii iv v 

 
At end Cost-Sheet (Table 6.3) is as shown below

Table 6.3 - Cost Sheet (final) 

Activity  time CSij Days shortened 

 days '000 $/day       

A 6 95 * *    *        6 -   

B 4 20       

C 8 90 * *        8 - -   

E 10 25 *     10 - - -   

F 2 25       

Days cut ///////////////// 10 8 6    

Project duration 80 70 62 56    

Incremental cost ///////////////// 250 720 570    

Direct cost 4340 4590 5310 5880    

Indirect cost 8000 7000 6200 5600    

Total cost 12340 11590 11510 11480    

 
Step 7:  Path II is critical path; 
 

 No Critical Activities can be crashed  as  (from Cost sheet) 

 E, C and A have: E = C = A = 0;  

 No activity from critical path could be crashed. Economic Crash limit is obtained 

 Stop. 
 
Solution: Least cost schedule = 56 days and Total minimum cost    = $ 11,480, 000 
Crashing needed: 

 
 
 
 

Activity Crashed by Days Crash Cost ($) 

A 6 570,000 

C 8 720, 000 

E 10 250,000 

*   Critical activities 

-   Activity can not be 

    crashed any further 
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7. CONCLUSION: 

The new algorithm has given the solution for test problem in 
three iterations. This solution by Unit Time Method would  
 
require 10+8+6 = 24 iterations. It requires fewer efforts for 
manual solutions. Definitely this test problem can not be 
solved manually (24 iterations!) while with our algorithm it is 
possible. 
1. New algorithm requires fewer iterations (12% or 3/24 in 

test problem) 
2. It quickly gives the optimum solution  
3. It finds application for almost all problems in CPM  
4. Definitely this is great addition in literature 
5. CTL Algorithm has been framed for more critical paths. 
6. Its application to PERT or stochastic times is still area 

for further research 
7. Its application when more than five or more critical 

paths exits;  is also an area for further  research 
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