Reliability Comparsion of Inverters in Hybrid Electrical Vehicles Under Different Switching Pattern

Anil Kumar Chaudhary, Sanjaya Kumar Singh

Abstract— This paper will describe the reliability of switching component of inverter used in the electrical vehicles. Inverters are made up of semiconductors and capacitors, so it is important to assure the reliability of these components. The use of power electronic components in automobile applications is increasing day-by-day. Due to this it becomes important to determine the reliability of power electronic components used in automotive applications. Paper will compare reliability of IGBT and diode under different switching condition.

Index Terms— Reliability, Inverter; IGBT; Diode; Electrical, Switching Temperature Vehicles,

1 INTRODUCTION

Due to the increasing importance of power electronic components in automobiles, it becomes necessary to consider their reliability. This applies especially to hybrid electrical vehicles (HEV) where a malfunction of the power electronics may prevent [1]. The numerous advantages of Insulated Gate Bipolar Transistor (IGBT) power modules and their ongoing development for higher voltage and current ratings make them interesting for traction applications. These applications imply high reliability requirements. One important requirement is the ability to withstand power cycles. Power semiconductor devices, especially IGBTs are widely used in many fields, such as motor drivers, switching supplies and other power conversion systems. The estimation of the power loss and junction temperature of semiconductor devices has become a major issue with the increase of the capacity of devices [2]. Reliability of electronic equipment should be considered in all design phases. In the conceptual design phase, where the specific stress cannot be determined exactly, the parts-count method can be applied. This method only considers the component quality and environmental conditions to determine the reliability of all components. The number of components has to be determined and multiplied by a generic failure rate of each component [3]. D. Hirschmann, D.Tissen, S. Schroder, and R. De Doncker[1] presented the development of an advanced simulation tool which is capable of determining the component temperature of a three-phase converter over long mission profiles. A novel algorithm, detecting all relevant temperature cycles within the computed temperature curve is developed.

The applicability and significance of the presented reliability prediction methods is assessed. The losses in the semiconductors and in the dc-link capacitors of a simple threephase bridge are determined. The necessary simplifications and their impacts on the results are explained in detail [1]. The rise of the converter frequency in power electronics requires fast semiconductor switches with low losses during the turn-on and off switching transients. By increasing the switching speed, it is possible to reduce the power dissipation of a power device in an application. Today, IGBTs present interesting characteristics combining both MOS and Bipolar structures to achieve a voltage driven device with low on-state losses, low switching losses and high current density. These devices are increasingly used in many applications, but their optimum performances are often restricted by other elements (diode reverse recovery, parasitic capacitance, and stray inductance [4].

2. LITERATURE REVIEW

In power electronics, simulations become more and more important since they save both time and cost. Fast system simulation programs use look-up tables in order to determine switching and conduction losses of power semiconductor devices during converter operation. Current and voltage before and after a switching event are recorded, and so is the temperature. When a switching transition occurs, the energy belonging to the detected operating point is read from the three-dimensional table [5]. Increase in power conversion efficiency and reduction of power loss in power conversion systems are the most important mission of power electronics and power device societies to contribute to the reduction of carbon dioxide emission [6]. Power electronic converters are required to control electrical power. They are necessary for motor drive controllers in electrically powered actuators, and can be used to convert variable frequency (360-800 Hz) in the next generation of civil aircraft to a constant frequency supply bus for various loads. As converter drives play an ever increasing role in safety critical aircraft systems, there is a clear need to predict and compare their reliability. The reliability of five different converter topologies has been

Anil Kumar is currently pursuing masters degree program in Electronics Design and Technology In GBTU, India, PH-05542-276361. E-mail: <u>anil.viet@yahoo.com</u>

[•] S.K Singh is currently Scientist-C and HOD of Dept. Electronics Design and Technology in NIELIT Gorakhpur India PH-01123456789. E-mail: sksingh@doeaccgkp.edu.in

analyzed using the military handbook for reliability prediction of electronic equipment MIL-HDBK-217F [3].

3. BASICS OF RELIABILITY CALCULATION OF INVERTER

The losses in IGBT i.e. conduction loss and switching loss is calculated and fed to the thermal model. Here it should be noted that switching losses in an IGBT can be found by using datasheets. The thermal model gives the junction temperature as an output, which is later used in calculating reliability of the devices. Fig.1 will give basic mode of calculation of reliability of inverter in Vehicles under different switching pattern. In power electronics, the component temperature and temperature variations influence significantly reliability due to thermally induced stress, caused by differential thermal expansion of materials. Therefore, a program was developed, which computes the component temperature over a whole driving cycle. The simulation procedure will be explained briefly explanation can be found in [1]. Now the paper is not revised and new components like IGBTs are not considered here the values are too conservative for available devices. Some manufacturers gives information of finding reliability through information that only continue to finding switching losses and total power losses, very few of them gives the thermal model of the devices. The information of calculating the power losses and thermal modeling is presented in the proposed model.

Fig.1Block Diagram Representation of Proposed Mode

The reliability () of a component is the probability that this component will perform its intended function after a time t in a given working condition. The Global reliability of the system is the product of all reliabilities

R (t) =
$$\Pi$$
 R (t).....(1)

Here *n* is the no. of components and $0 \leq () \leq 1$. It means adding component reduces reliability [1]. Reliability involves four elements, namely: (1) probability,(2) intended functions,(3) operation time, and(4) operating environment. In other words, reliability is the probability of a device performing its intended function for a specified period of time under the specified operating environment. This concept of reliability as a probability, typically quantified by assessing the mean time to failure (MTTF), implies that field failures are inevitable. In today's very competitive electronic products market, a commitment to product reliability is a necessity [7]. The starting point in reliability analysis is the evaluation of reliability of a device or a component. This is generally done from the available failure data. That is, a large number of identical components are subjected to identical operating conditions and the frequency of their failures is tabulated.

4. CALCULATION OF LIFETIME

Lifetime prediction is based on physical models and makes the assumption that a component will withstand a certain amount of stress and then fail. Therefore, all identical components will fail at the exactly same time. As a result, the weakest component in a system will determine the lifetime of the whole system. The Arrhenius equation gives the dependence of the rate of a chemical reaction on the temperature T. Normally rate of a chemical reaction can be accelerated by increasing the temperature. The relation between the system temperature and the reaction rate is described quantitatively by the Arrhenius equation. A rule of thumb says that increasing the ambient temperature for about 10 °C will halve the lifetime. The lifespan is calculated by [1].

Here L is lifetime to be estimated is base lifetime B<1temperature acceleration factor Maximum rated temperature Ambient temperature

The power loss of the device depends on the junction temperature. Therefore, electro-thermal coupling simulation techniques, where the estimation of power loss and the calculation of the junction temperature should be combined, become important for predicting the dynamic power loss and Junction temperature.[8].

Fig.2 life time estimation

In the fig.2 it will describe of life of switching element used in the inverter. This shows that when we increase the junction temperature life of switching device will goes decrease in same manner. when the life of switching element will lesser then system will less reliable. Above estimation will based on the equetion2.

5. COMPONENT FAILURE RATE

1. FOR IGBT

The component failure rate is computed by multiplying a component base failure rate with application specific - factors.

= Failures/10 h (3)

Here is Base Failure Rate

- is Temperature Factor
- is Application Factor
- is Quality Factor
- is Environmental Factor

However no-factor exist which takes temperature cycles into consideration. Failure rate of IGBT will shown in figur.3. When loss factor will goes increase then result failure will also goes increase. To increase the reliability of an inverter it will necessary that we will decrease the loss. This will calculated on equation3 using matlab. when losses are minimum that will offer 9.5 switching component.

2. FOR DIODE

Failure rate of will shown in above (fig.4) this will also result same as IGBT except that the loss factor in the diode will higher that will shown in above.

IJSTR©2012 www.ijstr.org

6 .RELIABILITY COMPARISON BETWEEN IGBT AND DIODE

We are calculation the reliability of switching component based on their failure rate and life time of switch element .The reliability comparison of between IGBT & DIODE will shown in figure 5.

Fig.5 reliability comparison between IGBT & DIODE

When the loss factor goes increase failure rate of diode will higher than the IGBT that will result reliability of IGBT will higher than the diode. So that IGBT based inverter will more reliable than diode based. Life time of IGBT will also higher than diode. Above result will be calculated based Matlab programming.

7. CONCLUSIONS

For calculate reliability of power semiconductors failure-rate catalogs, temperature cycles are importance. Different switching device have been compared to calculate the system reliability based on the generated data. The devices considered here were the IGBT and the diode, the procedure is easily calculated to most other power electronic components like MOSFETs, GTOs etc. This information is then used in conjunction with detailed device switching models, to describe the heat-source terms for a thermal solver, this allows electro-thermal performance of the inverter to be predicted over long periods of real time. The developed result is implemented in MATLAB programming.

8. Acknowledgment

The authors would like to thank Mr. Abhay Mukherjee, Mr. Akhilesh Kumar & Mr. H.S Rai from the Dept. Of Electronics Design & Technology of National Institute Of Electronics & Information Technology Gorakhpur for his insightful feedback and commentary about their full support in research work.

IX. REFERENCES

[1] D. Hirschmann, D. Tissen, S. Schroder, and R. De Doncker, — Reliability Prediction for Inverters in Hybrid Electrical Vehicles□, IEEE transactions on power electronics,vol.22,n0.6,nov 2007

[2] A. Morozumi, K. Yamada, T. Miyasaka, S. Sumi, and Y. Seki, —Reliability of power cycling for IGBT power semiconductor modules,□ IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 665–671, May. 2003.

[3] —Military Handbook (MIL-HDBK-217F),□ Dept.Defense, Dec. 1991, Ed.

[4] M. T. Rahimo, and D. J. Chamund 'ANALYSIS OF THE IGBT / FREEWHEELING DIODE SWITCHING BEHAVIOUR DURING TURN-ON IN HARD SWITCHING APPLICATIONS' *Power Electronics and Variable Speed Drives*, 21-23 *September 1998, Conference Publication No. 456 0 IEE 1998.*[5] Munk- Nielsen, S.; Tutelea, L.N.; Jæger, U.: Simulation with Ideal Switch Models Combined with Measured Loss Data Provides a Good Estimate of Power Loss Industry Applications Conference IEEE, 2000.

[6] Ambo, T. *et al,* "Power Electronics for Large Scale Wind PowerGeneration," *IEEJ Journal,* Vol. 129, No.5 (2009), pp. 291-294

[7] Anuj Goel,& Robert J. Graves- lectronic System Reliability:Collating Prediction Models' IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, VOL. 6, NO. 2, JUNE 2006

[8] T. Kojima, Y. Nishibe, Y. Yamada, T. Ueta, K. Torii, S. Sasaki, and K. Hamada, "Novel electro-thermal coupling simulation technique for dynamic analysis of HV (hybrid vehicle) inverter," in *Proc. 37th IEEE Power Electron. Specialists Conf., 2006, PESC '06, Jun. 2006, pp. 1*