
International Journal of Scientific & Technology Research Volume 1, Issue 2, March 2012                                ISSN 2277-8616 

72 
IJSTR©2012 
www.ijstr.org  

A new Method for Optimizing Energy Efficiency of 
Embedded Systems 

 
Akbar Bemana 

 
Abstract� Several studies have shown that about 40% or more of the energy consumption on embedded systems that are based on microprocessor 
relates to cache. In technology with micrometer scaling, dynamic power was the primary contributor to total power dissipation of a CMOS design, but in 
technology with nanometer scaling, the share of leakage power in total Power consumption of energy continues to grow. 
In this paper we concentrate on the selection of optimal cache size for low energy consumption embedded systems. Our study is based on three 
different technologies on embedded systems. Results show that cache size should change for minimizing energy consumption in different technologies 
due to the increase of leakage power and decrease of dynamic energy as technology is shrinking. Our studies reveal that cache size changes depend 
on the rate at which cache miss increases when reducing the cache size. Our experiments show that through technology-aware cache configuration 
selection, we can reduce the energy consumption by 54% in average and maximum 75%. 
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1.   INTRODUCTION 
 
As the Technology is becoming finer, leakage power is 
becoming the dominant contributor to the power consumption 
of CMOS integrated circuits. Unlike dynamic power, which 
depends on the activity in the circuit, leakage power exists as 
long as power supply is applied to the circuit even if there is 
no activity. Consequently, in general, bigger circuits dissipate 
higher leakage. Figures 1 and 2 show leakage power and 
consumption of dynamic energy in three different  
technologies (90nm, 65nm and 32nm) for cache memories 
with different sizes. The data were obtained using CACTI tool 
[1] for estimating the power of caches. The diagrams 
obviously specify that leakage and dynamic powers are 
changing their roles, since that dynamic power reduces in 
new technologies while leakage power is increasing. 
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Figure 1.   Dynamic energy for different cache sizes 
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Figure 2.   Leakage power for different cache sizes 

 
For instance, dynamic energy in 90 nanometer technology 
consumes 1.3 times more than the 65 nanometer technology 
and 1.7 (times more than) 32 nanometer technology. 
However, static energy in 32 nanometer technology 
consumes about 12 times more than 90 nanometer 
technology and 3 times more than 65 nanometer technology. 
Energy consumption is an important issue for battery powered 
embedded systems. On-chip cache consumes almost half of 
a microprocessor�s total energy [2], [3]. Energy efficient cache 
architecture design is thus a critical issue in the design of 
processor-based embedded systems. The impact of cache 
parameter such as cache size, ways, line size on energy and 
cache performance has been shown in [2], [4], [5]. Since off-
chip memory access is costly in terms of power consumption 
as well as performance, a taken-for-granted remedy is to use 
a larger cache; this may reduce off-chip access for some 
programs, but comes at the expense of an increasingly higher 
power to hold the data (static power) in nanometer 
technologies. Performance-critical applications may not care 
this additional power, but energy-critical applications 
(especially battery-powered ones) need a cache size 
balancing the energy savings from higher hit ratio with the 
energy increase from more leakage. We show in this paper 
that larger cache is no longer reducing total system energy. 
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The impact of cache parameters such as cache size, number 
of ways and line size on energy and performance has been 
shown in [2], [4], [5]. Also appropriate cache size selection for 
reliability of optimal energy consumption and improved 
performance has been investigated [6]. The focus of this 
paper is mainly to study the effects of technology changes on 
the cache size selection for minimal energy consumption. We 
show that when the technology changes, a new cache size 
may need to be selected due to the increase of leakage 
current and the reduction of dynamic energy, if minimum 
energy consumption is a must. This paper  includes the follow 
sections: In the second section we discuss our energy 
evaluation model and calculating dynamic and static energy. 
Experiment results are studied in third section and ultimately 
we will have conclusion. 
 
2. PROBLEM FORMULATIONS 
 
At first the energy evaluation model (formulation) will be 
explained and then define the problem. 
 
A.   Energy evaluation 
The power consumption of CMOS circuits includes dynamic, 
static, and short circuit power. The short circuit power 
consumption is much smaller than dynamic and static power, 
and is negligible. Dynamic power consumes during the time, 
transistors are activating and signal transition changes from 
zero to one and conversely, while static energy is due to the 
total amount of leakage current through inactive or OFF 
transistors. Energy equals power times time. The dynamic 
energy consumed per access is a sum of the energy spent on 
searching within the cache, an extra energy required for 
handling the writes and energy consumed by block 
replacement on cache miss. Dynamic energy has the most 
energy consumption in micrometer scale technologies, but 
static energy dissipation will contribute an increasingly larger 
portion of total energy dissipation in nanometer scale 
technologies. We consider both types of energies. Another 
important factor in measuring the energy consumption  is 
accessing  the off-chip memory. Fetching instructions and 
data from off-chip memory is energy expensive because of 
the high off-chip capacitance and large off-chip memory 
storage. Additionally, when accessing the off-chip memory, 
the processor may stall while waiting for the instruction and/or 
data, and such waiting still consumes some energy. Thus, we 
calculate the total energy due to memory accesses using 
Equation 1. In our evaluation the energy is a function of size 
of cache (S) and technology (T). Other parameters assumed 
to be constant [8]. 

energy_memory (S,T) = energy_dynamic (S,T) 
+ energy_static (S,T) 

(1) 

energy_dynamic (S,T) = cache_access (S) * 
energy_cache_access (S,T) + cache_ misses 
(S) * energy_miss (S,T) 

(2) 

energy_miss (S,T) = energy_off_chip_access + 
energy_uP_stall (T) + energy_cache_block_refill 
(S,T) 

(3) 

energy_static (S,T) = executed_clock_cycles (S) 
* clock_period * leakage_power (S,T) 

(4) 

  

 In this paper, cache_access, cache_misses and 
executed_clock_cycles are computed by running 
SimpleScalar[9] for applications with desired cache 
configuration. 
Energy_cache_access, energy_cache_block_refill, and 
leakage_power  are energy for accessing the cache, cache 
block refilling after a cache miss and leakage power of a given 
cache, respectively, which are computed using CACTI. 
The energy_off_chip_access is the energy of accessing off-
chip memory when there is a miss, and the energy_uP_stall is 
the energy consumed when the processor is stalled waiting 
for the memory system that should be taken from main 
memory (off-chip memory). According to the explanations and 
experiments done in [2], we assumed: 

B.   Problem Definition 
In  our study, we assume that the cache organization (for both 
instruction and data cache), the embedded application in our 
experiment [10] and the processor used are all constant 
(invariant) and only the target technology and total size of 
cache is changing. This reflects a scenario where a processor 
with different technology is used for embedded systems. So in 
our experiments, the optimization problem is defined as 
follows: 
�Find the cache size that result in minimum energy 
consumption (Equation 3 for a given technology) over the 
entire application run for a given application, processor 
architecture, technology.� 
 
3. EXPERIMENTAL RESULTS 
 
We use applications from Mibench [10] benchmark suite. As 
mentioned, SimpleScalar [9] and CACTI are used as our 
simulation tool and power modeling tool, respectively. The 
cache hit is assumed to take one clock cycle and cache miss 
100 cycles. The clock frequency of the single-issue base 
processor is assumed to be 200 MHz. Our experiments are 
done for 90nm, 65nm, 32nm technologies. 
 
A.  The Effects of technology on the Instruction Cache 
Fig. 3 shows the number of execution clock cycles for Lame 
for different instruction cache sizes when the size of data 
cache is fixed. 
(The instruction cache have line size=16 and set 
associativity=2.) 

 Energy_off_chip_access + energy_up_stall (T) = 20nJ 
 
(5) 
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Figure 3.   Clock cycles for Instruction cache (Lame)  

 
When the cache becomes smaller the execution time 
increases, due to increased misses. Fig 4, 5 and 6 shows the 
dynamic energy and static energy for three different 
technologies for lame application. According to these three 
diagrams and Fig. 3 as the number of misses increase the 
dynamic energy grows up. However, as the technology is 
becoming finer the static energy is increasing. As the cache 
size decreases we expect the reduction of the static energy 
similar to what happens for 32KB, 16KB, 8KB and 4KB. 
However, for 2KB we see an increase in static energy. The 
reason can be understood by looking at Fig. 3. From this 
figure we learn that for 2KB the number of misses increases 
sharply and consequently the execution time increases 
(Equation 4). A big increase in execution time causes a big 
increase in static energy. These figures depict that for each 
technology there are different points for optimal cache sizes 
(minimal point) which are 16KB for 90nm technology, 8KB for 
65nm technology and 4KB for 32nm technology. For 90 nm 
technology, dynamic energy has an important role in total 
energy, due to the smaller effect of static energy than 
dynamic energy. 
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Figure 4.   Total energy � 90nm � Lame - Instruction cache 
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Figure 5.   Total energy � 65nm � Lame - Instruction cache 
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Figure 6.   Total energy � 32nm � Lame - Instruction cache 

 
In 32nm and 65nm technology due to the larger impact 
(increase) of static energy, it causes an increase for total 
energy of big caches such as 32KB, 16KB and 8KB. As in 
Figure 4 the 16 KB cache has lower total energy consumption 
in 90 nm technology. By moving from 90nm technology to 
65nm technology and resizing the cache to 8KB we will see, 
total energy consumption decreases by 11%. Also by 
changing the technology from 90nm to 32nm and using 4KB 
instead of 16KB the energy consumption is saved by around t 
34%. Although, decreasing the cache size improves energy 
consumption, it reduces performance. By changing 
technology from 90nm into 65nm and using 8KB cache 
instead of 16KB, performance penalty will be 18% and for 
changing technology from 90nm to 32nm with using 4KB 
cache, it will be 57%. We did our experiments and 
calculations on Lame application and explained their 
diagrams in detail. We selected several applications of 
Mibench, and repeated the experiments (Table 1). These 
results respectively from left to right are the name of 
application program, cache size with minimal energy 
consumption for each technology, the percentage of 
improvement in energy consumption (Energy Saving) and 
decreases in performance (Performance Penalty) in the case 
of changing technology from 90nm to 65nm and using the 
best cache with minimum energy consumption which 
distinguished in 65nm technology. The other two columns are 
energy saving and performance penalty for 32nm technology. 
In table 1 the cache size with minimum energy for 90nm, 
65nm and 32nm are given (the cache configuration is direct 
mapped with 16 bytes for the cache line size). The energy 
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saving illustrates the percentage of saved energy obtained by 
resizing the cache to the new optimal size at new technology 
(65nm or 32nm) compared to the energy of the cache with 
minimum energy at 90nm now operating at new technology 
(65nm or 32nm). The energy saving is calculated using 
Equation 6 below. In this equation, the 
energy_cache90_NTech is the energy consumption of the 
cache configuration with minimum energy consumption for 
90nm when the technology is 65nm or 32nm; the 
energy_cacheNTech is the energy of the cache configuration 
with minimum energy for technology 65nm or 32nm. 
 

Energy Saving = 

NTechcacheenergy

cacheNTechenergyNTechcacheenergy

_90_

__90_   * 100 

(6) 

The performance penalty is the percentage of increase in 
execution time when the cache is resized for the lowest 
energy. The performance penalty is calculated using the 
following equation (Equation 7): 
 
Performance Penalty = 
 

90__
90____

cachetimeexec

cachetimeexeccacheNTechtimeexec   * 100 
(7) 

 

where the exec_time_cache90 is the  execution time of cache 
with minimum energy for 90nm and exec_time_cacheNTech 
is the execution time of cache with minimum energy for 65nm 
or 32nm. 

The minimum-energy caches for 65nm (16KB) and 32nm 
(8KB) technologies respectively consume 5.45% and 13.25% 
less energy compared to the minimum-energy cache of 90nm 
process (i.e. 32KB). The corresponding performance penalty 
is only 6.84% and 17.43% respectively.  

Table 1 illustrates that the most improvement in energy 
saving in 65nm technology equals 28.86% while in 32nm 
technology it is 49%. 

 
B.   The effects of technology on the data cache 
 
We examined the Lame application for the 2-way set-
associative with 16 bytes line size data. It is assumed that 
instruction cache size is fixed. Fig.7 depicts number of 
execution clock cycles for data cache with different (various) 
sizes. 
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Figure 7.   Clock cycles for Data cache (Lame)  

 
Also Fig.8, 9 and 10 show the total energy consumption for 
the different data cache in three different technologies. 
As in Fig.4, 5 and 6 in which the curves of dynamic energy 
are similar to the curve in Fig.3 (number of executed clock 
cycles), the curve of dynamic energy in Fig.8, 9 and 10 are 
also similar to the curve of Fig.7. However, we do not see 
similar changes in static energy of data cache as we see for 
instruction cache. Comparing Fig.3 and Fig.7 shows that 
changes in instruction cache size affects execution time (clock 
cycles) in Lame application much more than changes in data 
cache size. The execution time varies from 2.7 milliard to 12.5 
milliard clock cycles (4.5 times increase) for different 
instruction cache size while for different data cache size it 
ranges from 2.3 milliard to 7.1 milliard cycles (3 times 
increase). These big differences in execution time for different 
instruction cache sizes highly impact the static energy, unlike 
data cache. (Equation 4) According to the results 32K, 16K 
and 8K are minimum-energy data cache sizes for 90nm, 
65nm and 32nm, respectively. In 32nm, the total energy for 
big caches is dominated by static energy and for small caches 
the contribution of dynamic energy becomes more. In 32nm 
technology with larger caches, static energy is dominating 
however, for small caches, dynamic energy has more 
influence. 
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Figure 8.   Total energy � 90nm � Lame - Data cache 
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Figure 9.   Total energy � 65nm � Lame - Data cache 
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Figure 10.   Total energy � 32nm � Lame - Data cache 

 
(The curve of total energy for large caches is similar to curve 
of static energy and for small caches it is getting similar to the 
curve of dynamic energy.) By changing technology from 90nm 
into 65nm and using 16KB cache instead of 32KB the energy 
consumption decreases by 21%. Also by moving from 90nm 
technology to 32nm and using 8KB cache instead of 32KB the 
energy consumption degrades by about 44%. Naturally, 
performance penalty respectively in technology changes from 
90nm into 65nm is equal to 13% and while technology 
changes from 90nm into 32nm will be 53%. As what we did 
for instruction cache, we select some of programs on Mibench 
and repeat experiments on them (Table 2). According to 
Table2 we conclude that for data cache with 65nm technology 
compared in regard to 90nm, and using technology-aware 
cache size selection with the lowest energy consumption, in 
average we have 30.88% improvement in total energy 
consumption and about 15.88% performance penalty. Also 
when technology changes from 90nm to 32nm, we see 
53.83% reduction on energy consumption and 17.5% 
performance reduction. Table 2 reveals most improvement in 
the decrease of energy consumption for 65nm technology 
compared to 90nm, equals 50.14% while the energy 
consumption reduction is 74.48% for 32nm technology 
compared to 90nm. The results of table 1 and 2 and the 
results of running the Lame application illustrates that 
improvement on energy consumption in data cache is more 
than instruction cache because accessing to instruction cache 
is more than data cache. 
 

CONCLUSION 
In this paper we studied the effects of different nanometer 
technologies as yet another factor affecting cache size for 
different applications targeting low energy embedded 
computing systems. The results show that the need of optimal 
cache size selection for embedded system with new 
technology that is because of the increase in static power. 
In all cases the optimal cache size reduces in lower 
technology, although it increases misses and clock cycle time. 
the results of our experiments show that with assuming 
technology (in our experiment we studied 90nm, 65nm, 32nm 
technologies) with minimum energy consumption, we can 
reduce power consumption for data cache in average 54% 
and maximally 75% and for instruction cache averagely 18% 
and maximally 70%. The results of our study showed the 
need to either reanalyze the embedded systems for tuning the 
cache size or employ a configurable cache to be tunable 
based on the process technology requirements in addition to 
other factors affecting optimal cache size. 
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Table 1.  The results of other applications for instruction cache with Line Size=16 & Set Associative=2 
 

 
Cache Size 65nm 32nm 

90nm 65nm 32nm Energy 
saving 

Performance 
penalty 

Energy 
saving 

Performance 
penalty 

Basicmath 32K 16K 16K 8.75% 32.47% 25.97% 32.47% 

Sha 2K 2K 2K 0.0% 0.0% 0.0% 0.0% 

Cjpeg 8K 8K 8K 0.0% 0.0% 0.0% 0.0% 

Djpeg 16K 8K 8K 11.48% 19.57% 31.52% 11.48% 

Qsort 32K 32K 32K 0.0% 0.0% 0.0% 0.0% 

Dijkstra 16K 8K 2K 28.86% 9.51% 49.1% 69.86% 

Patricia 32K 32K 32K 0.0% 0.0% 0.0% 0.0% 

Blowfish 16K 16K 8K 0.0% 0.0% 12.64% 43.1% 

Rijndael 32K 32K 32K 0.0% 0.0% 0.0% 0.0% 

average    5.45% 6.84% 13.25% 17.43% 

 
 

Table 2.  The results of other applications for data cache with Line Size=16 & Set Associative=2 
 

 
Cache Size 65nm 32nm 

90nm 65nm 32nm 
Energy 
saving 

Performance 
penalty 

Energy 
saving 

Performance 
penalty 

Basicmath 4K 2K 2K 27.34% 2.73% 39.31% 2.73% 

Sha 16K 2K 2K 50.14% 8.6% 74.48% 8.6% 

Cjpeg 16K 8K 8K 17.71% 8.76% 36.29% 8.76% 

Djpeg 32K 8K 8K 23.94% 25.97% 55.64% 25.97% 

Qsort 16K 2K 2K 43.69% 8.13% 70.98% 8.13% 

Dijkstra 32K 8K 8K 33.1% 35.88% 56.39% 35.88% 

Patricia 16K 8K 4K 25.73% 7.3% 55.15% 21.9% 

Blowfish 16K 8K 8K 25.72% 7.84% 40.58% 7.84% 

Rijndael 32K 8K 8K 30.57% 37.69% 55.61% 37.69% 

average    30.88% 15.88% 53.83% 17.5% 
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