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Nature Of Stress-Strain Accumulation Due To A 
Reatangular Finite Fault In A Viscoelastic Layer 

Over A Viscoelastic Half-Space. 
 

Subrata Kr. Debnath. 
 

Abstract: - The process of stress accumulation near earthquake faults during the aseismic period in between two major seismic events in seismically 
active regions has become a subject of research during the last few decades. Earthquake fault of finite length of strike-slip nature in a viscoelastic layer 
over a viscoelastic half space representing the lithosphere-asthenosphere system has been considered here. Stresses and strain accumulate in the 

region due to various tectonic processes, such as mantle convection and plate movements etc, which ultimately leads to movements across the fault. In 
the present paper, a three-dimensional model of the system is considered and analytical expressions for displacements, stresses and strains in the 
model have been obtained using suitable mathematical techniques developed for this purpose. A detailed study of these expressions may give some 

ideas about the nature of stress-strain accumulation in the system, which in turn will be helpful in formulating an effective earthquake prediction 
programme. 
 
Key words: - Aseismic period, Earthquake prediction. Finite fault, Mantle convection, Plate movements, Stress accumulation, Tectonic 

process, Viscoelastic layer. 
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1. Introduction:  
Modeling of dynamic processes leading to an earthquake is 
one of the main concerns of seismologist. Two consecutive 
seismic events in a seismically active region are usually 
separated by a long aseismic period during which slow and 
continuous aseismic surface movements are observed with 
the help of sophisticated measuring instruments. Such 
aseismic surface movements indicate that slow aseismic 
change of stress and strain are occurring in the region which 
may eventually lead to sudden or creeping movements across 
the seismic faults situated in the region. It is therefore seems 
to be an essential feature to identify the nature of the stress 
and strain accumulation in the vicinity of seismic faults 
situated in the region by studying the observed ground 
deformations during the aseismic period. A proper 
understanding of the mechanism of such aseismic quasi static 
deformation may give us some precursory information 
regarding the impending earthquakes. We now focus on some 
of the reasons of consideration of viscoelastic layer over 
viscoelastic half space model. The laboratory experiments on 
rocks at high temperature and pressure indicates the 
imperfect elastic behavior of the rocks situated in the lower 
lithosphere and asthenosphere. Investigations on the post-
glacial uplift of Fennoscandia and parts of Canada indicate 
that at the termination of the last ice age, which happened 
about 10 millennia ago a 3 km.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ice cover melted gradually leading and upliftment of the 
regions .Evidence of this upliftment has been discussed in the 
work of [10] , [27] , [3] , if the Earth were perfectly elastic, this 
deformation would be managed after the removal of the load, 
but it did not so happened, which indicates that the Earth crust 
and upper mantle is not perfect elastic but rather viscoelastic 
in nature. A pioneering work involving static ground 
deformation in elastic media were initiated by [31] , [32] , [15] , 
[16] , [4] , [7] , [6] . Chinnery, M.A. and Dushan B. Jovanovich 
[5] did a wonderful work in analyzing the displacement, stress 
and strain in the layered medium. Later some theoretical 
models in this direction have been formulated by a number of 
authors such as [24] , [25] , [22] , [30] , [2] , [23] , [17] , [18] , 
[19] , [20] , [8] , [28] , [25] , [10] , [29] , [12] , [9] . Paul Segall 
[26] has discussed various aspects of fault movement in his 
book. Ghosh, U and Sen, S [11] have discussed stress 
accumulation near buried fault in lithosphere-asthenosphere 
system. In most of these works the medium were taken to be 
elastic and /or viscoelastic, layered or otherwise. In most of 
the cases the faults were taken to be too long compared to its 
depth, so that the problem reduced to a 2D model. Noting that 
there are several faults which are not so long compared to 
their depth, a 3D model is imminent. In the present case we 
consider a strike-slip fault of finite length situated in a 
viscoelastic layer over a viscoelastic half-space which reach 
up to the free surface. The medium is under the influence of 
tectonic forces due to mantle convection or some related 
phenomena. The fault undergoes a creeping movement when 
the stresses in the region exceed certain threshold values. 
  

2. Formulation: 
We consider a strike-slip fault F of length 2L (L-finite) and 
width D situated in a viscoelastic layer of thickness H(say) 
over a viscoelastic half space of linear Maxwell type. A 
Cartesian co-ordinate system is used with the mid-point O of 
the fault as the origin, the strike of the fault along the Y1 
axis,Y2 axis perpendicular to the fault and Y3 axis pointing 

downwards so that the fault is given by F : (L< y1 < L, y2 = 0, 

0 < y3 < D) as shown in fig1. Let (u 
k
i), ( ij

k ) and (e 
k
ij) be the 

displacement, stress and strain components, i, j=1, 2, 3. And 
k=1 for the layer and k=2 for the half-space. 
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Fig 1:Section of the model by the plane y1=0. 

 
For a viscoelastic Maxwell type medium the constitutive 
equations have been taken as: 
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k=1 for the layer and k=2 for the half-space. 
 

where k is the effective viscosity and is the effective rigidity of 
the material. 
 
The stresses satisfy the following equations (assuming 
quasistatic deformation for which the inertia terms are 
neglected); and body forces does not change during our 
consideration. 
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where (<y1<, <y2<,0<y3<H, t>0) for the layer 

and (<y1<, <y2<,y3>H, t>0) for the half-space. 
 
Boundary conditions: 
The boundary conditions are taken as, (with t=0 representing 
an instant when the medium is in aseismic state.) 
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y2 = 0, 0<y3<D, t>0     (1.10) 
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for y2 = 0, 0 < y3 < D, t > 0    (1.11) 
 

assuming that the stresses maintaining a constant value L at 
the tip of the fault along Y1 axis [the value of this constant 
stress is likely to be small enough so that no further extension 
is possible along the Y1 axis] . 
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On the interface , 
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[where )( t  is the shear stress maintained by tectonic 

forces which arises due to mantle convection and other 
tectonic phenomena ] . 
 
The initial conditions: 

Let (u 
1

i)0, ( ij
1 )0 and (e 

1
ij)0 i,j = 1,2,3 be the value of (u 

1
i), (

ij
1 ) and (e 

1
ij) at time t=0 which are functions of y1,y2,y3 and 

satisfy the relations (1.1)-(1.23). 
 

(3) Solutions before fault movement: 
([31] , [32] ).  
The boundary value problem given by (1.1)-(1.23), can be 
solved (as shown in the Appendix-I) by taking Laplace 
transform with respect to time ‘t’ of all the constitutive 
equations and the boundary conditions. On taking the inverse 

Laplace transform we get the solutions for displacement, 
stresses as: 
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From the above solution we find that 
1

12 increases with time 

and tends to (t) as t tends to , while 
1

22, 
1

23 tends to zero, 

but 
1

33 retains the constant value (
1

33)0. We assume that the 
geological conditions as well as the characteristic of the fault 

in such that when 
1

12 reaches some critical value, say c < 

(t) the fault F starts creeping. The magnitude of slip is 
expected to satisfy the following conditions: 
 
(C1) Its value will be maximum near the middle of the fault on 
the free surface. 
 
(C2) It will gradually decrease to zero at the tips of the fault 
(y1=+L, y2=0, 0<y3<D) along its length. 
 
(C3) The magnitude of the creep will decrease with y3 as we 
move downwards and ultimately tends to zero near the lower 
edge of the fault. 
 

),,( DyyLy  321 0  

 
 The function, f (y1, y2) satisfy the above conditions.[ we call it 
creep function]  
 
(4) Solutions after fault movement: 
([31] ,[32] ) 

We assume that after a time T1, the stress component 
1

12 
(which is the main driving force for the strike-slip motion of the 
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fault) exceeds the critical value c, and the fault F starts 
creeping, characterized by a dislocation across the fault. We 
solve the resulting boundary value problem by modified 
Green’s function method following [17] , [18] , [26] and 
correspondence principle (As shown in the Appendix 2) and 
get the solution for displacements, stresses and strain as : 
 



]])()(

)/[((])(

)()/[()[(,(

)2/()()()/()0()((

)/()/()(),,,(

2/32

33

2

22

2

112

2/32

33

2

22

2

11231
0

1
0

11

121101
1

3211
1

xyxy

xyyxy

xyxyyxxf

TtHdt

ytyutyyyu

DL

L

t

L



















 



 
 

-


1

 (a/b)
m
{1+ 









 r

mm

r 1

 [b1
r
 /(r-1)!] t

(r-1)
 e

(-a
1

t)

 

 
[{(x2-y2)/[(y1-x1)

2
+(x2–y2)

2
+(x3-2mH–y3)

2
] +(x2-y2)/[(y1-x1)

2
+(x2– 

y2)
2
+(x3-2mH+y3)

2
] +(x2-y2)/[(y1-x1)

2
+(x2–y2)

2
+(x3+2mH+y3)

2
] 

+(x2-y2)/[(y1-x1)
2
+(x2–y2)

2
+(x3+2mH-y3)

2
] }dx3dx1]  

 






















  







dt

yyutyyyu

t

)())0()((

)/)(()(),,,(

0
1

1

12102
1

3212
1

 
 

03
1

3213
1 )(),,,( utyyyu 

 
 

 

   







)()]2/()([)(

)1()/(),,,(

111

/

011
1

/

132111
1

11

11

tuTtHe

etyyy

t

t

L









 
 

  






  
deu

t
t

11 /

0
11 )(/  

 

 

 2
3

2

33

2

22

2

11

22

311

1

)()()(

)(

),(

xyxyxy

xy

xxf
y F












 

 
 

  2/32

33

2

22

2

11

22

)()()(

)(

xyxyxy

xy






 
 
 

-(1/4π) 


1

(a/b)
m
{1+ 









 r

mm

r 1

[b1
r
/(r-1)!]  

 
t
(r-1)

e
(-a

1
t) 

 
{(x2-y2)/[(y1-x1)

2
+(x2–y2)

2
+(x3-2mH–y3)

2
] + (x2-y2)/[(y1-x1)

2
+(x2–

y2)
2
+(x3-2mH+y3)

2
] +(x2-y2)/[(y1-x1)

2
+(x2–y2)

2
+(x3+2mH+y3)

2
] 

+(x2-y2)/[(y1-x1)
2
+(x2–y2)

2
+(x3+2mH-y3)

2
] })dx3dx1) 

 















 ])(/

)()][2/()([

))()0(()(

),,,(

))(/(

0
11

111

)/(

012
1

32112
1

11

11













deu

tuTtH

et

tyyy

t
t

t

 

 2
3

2

33

2

22

2

11

22

311

2

)()()(

)(

),(

xyxyxy

xy

xxf
y F












 

 

 

  2/32

33

2

22

2

11

22

)()()(

)(

xyxyxy

xy






 

 

-(1/4π)


1

 (a/b)
m
{1+ 









 r

mm

r 1

[b1
r
/(r-1)!]  

 
t
(r-1)

e
(-a

1
t)
{(y2)/[(y1-x1)

2
+(x2–y2)

2
+(x3-2mH–y3)

2
] +(y2)/[(y1- 

 
x1)

2
+(x2–y2)

2
+(x3-2mH+y3)

2
] +(y2)/[(y1-x1)

2
+(x2– 

 
y2)

2
+(x3+2mH+y3)

2
] +(y2)/[(y1-x1)

2
+(x2–y2)

2
+(x3+2mH-y3)

2
]}) 

 
dx3dx1) 
   

033
1

33
1)/(

023
1

23
1 )(,)( 11  


 t

e
 





























]])(

)()/[())((

])()()[(

/)))()[((,()2/()(

])()/())0()()[(/1(

)(
2

1
),,,(

2/52

33

2

22

2

11222

2/52

33

2

22

2

11

22231
0

1

0
111

012
1

32112
1

xy

xyxyxyy

xyxyxy

xyyxxfTtH

dt

etyyye

DL

L

t





 

  



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 3, FEBRUARY 2013    ISSN 2277-8616 

258 
IJSTR©2013 

www.ijstr.org 

 2
3

2

33

2

22

2

11

22

311

2

)()()(

)(

),(

xyxyxy

xy

xxf
y F












 

  

 

 

  2/32

33

2

22

2

11

22

)()()(

)(

xyxyxy

xy




  

 
 

-(1/4π)


1

(a/b)
m
{1+ 









 r

mm

r 1

 [b1
r
/(r-1)!]  

 
t
(r-1)

e
(-a

1
t)
{(y2)/[(y1-x1)

2
+(x2–y2)

2
+(x3-2mH–y3)

2
] +(y2)/[(y1- 

 
x1)

2
+(x2–y2)

2
+(x3-2mH+y3)

2
] +(y2)/[(y1-x1)

2
+(x2– 

 
y2)

2
+(x3+2mH+y3)

2
] +(y2)/[(y1-x1)

2
+(x2–y2)

2
+(x3+2mH-y3)

2
] }) 

 
dx3dx1)               (B). 
 

3. Numerical computations: 
Following [3] , [1] and the recent studies on rheological 
behaviour of crust and upper middle by[4] ,[16] ,the values of 
the model parameters are taken as: 
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conditions stated in (C1)(C3). 
 
We now compute the following quantities: 
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where 12
1

11
1 ,  and 12

1
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1 ,ee  are given by (B). 

 

4. Results and discussions. 
(A) Displacements (U

1
1) on the free surface y3=0 due to the 

creeping movement across the fault: 
 
We first consider the displacement U

1
1 due to the movement 

of the fault for y3=0.The expression for U
1

1 is given in (2.1). 
Figure2: shows the variation of U

1
1 against y2 for some 

selective values of y1 representing the distance of the point 
along the strike of the fault. It is found that, 
 
(i) U 

1
1 is symmetric with respect to y2 = 0;  

 
(ii) For comparatively large values of y2 the magnitude of U

1
1 

as expected becomes very small (10
2

 cm); i.e. |U
1

1| 
decreases as y2 increases. 
 
(iii) In each case for negative y1, U

1
1 is the same for y1>0. 

 

(iv) |U 
1

1|  0 as |y1| increases. 
 
(v) |U 

1
1| always remains bounded. It attains it's extreme at 

points which gradually drift away from y1=0 with increase in y2. 
The maximum magnitude of U

1
1 is found to be of the order of 

10.0 cm. one year after the commencement of the fault slip at 
points very close to the fault line on the free surface as is clear 
from the fig3. Thus the large observed displacement is well 
explained by our viscoelastic layered model. 
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y2 ( in km.) 

Fig2: Variation of surface displacement U1with y2 for 
y3=0,y1=5km,t1=1year due to fault movement. 

 

 
y1 ( in km.) 

Fig3: Variation of surface displacement U1 with y1 for 
y2=10km,y3=0,t1=1year due to fault movement. 

 
(B)  Spacial variation of stresses due to fault movement with 
depth (with t1=1 year): 
 
(i) Variation of shear stress t12 due to fault movement with 

depth: 
 
Numerical computational works carried out for computing the 
values of t12 at different points of the free surface. In the fig4 it 
is observed that as we go down along the line 
y1=10km,y2=10km the accumulation of shear stress occurred 
with increasing depth with varying magnitude of accumulation. 
The magnitude of accumulation first increases up to a depth of 
about 7 km and there after decreases sharply up to a depth of 
about 22 km and after that the magnitude of stress 
accumulation is found to die out gradually as depth increases. 
It is also observed that the accumulation of stress pattern is 
the same for y1=±10km ,y2=±10km. 

 

 
y3 (in km.) 

Fig4: Variation of shear stress t12 with y3 for 
y2=10km,y1=10km,t1=1year due to fault movement. 

 
(ii) Variation of normal stress t1: 
 
Numerical computations show that as we move downwards 
with depth there are regions of stress accumulation. For points 
very close to the fault (y1=1 km, y2=1km.fig6) there are regions 
of stress accumulation with increasing depth. The maximum 
accumulation occurs very close to the free surface with y3=6.5 
km. Thereafter the rate of accumulation decreases sharply 
and ultimately decreases to zero at a depth of about 18 km. At 
points little bit away from the fault (y1=10km, y2=10km.) the 
nature of stress accumulation is similar to the above case but 
with much less magnitude. The accumulation ceased at a 
depth of about 36 km. from the free surface. Similar features 
have been observed along the verticals through the points 

(y1= 10km, y2=10km) and (y1= 5km, y2=5km;. In each cases 
the accumulation of stress t11 due to the fault movement tends 
to zero at a depth of about 50km. The maximum accumulation 
occurs at a depth of about 6 km from the free surfaces as the 
fig5 shows. 
 

 
y3(inkm.) 

Fig5:Variation of normal stress t11 with depth y3 for 
y1=10km,y2=10km and t1=1 year due to fault movement. 
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y1( in km.) 

Fig6: Variation of stress t11 with y3 for y2=1km,y1=1km. 
t1=1year due to fault movement. 

 

(C)Temporal variation of shear 1
12 stress : 

 

Figure7 shows rate of shear stress 
1

12 accumulation/release 
at y3=0km,y1=10km and y2=10km.It is observed that the rate of 
shear stress accumulation is linear represented by a straight 
line which does not pass through the origin, which is justified 
as the material is assumed to be linear viscoelastic of Maxwell 
type which carries memory. 
 

 
t(in year). 

Fig7: Variation of shear stress t12 time t at 
y3=0km,y1=10km and y2=10km. 

 
(D) Effect of the length and width of the fault on shear stress 
accumulation/release. 
 
Fig8 shows the variation of shear stress t12 due to the variation 
of finite fault length. It is observed that as long as the length of 
the fault is less or equal to the width of the fault the shear 
stress t12 but when the length is greater than the width the 
change is slower. The similar phenomena is observed when 
the width is greater than the length but greater numerical 
value as is explained by the fig9. 

 
L(in km.) 

Fig8: Variation of shear stress t12 with the variation of the 
fault length L. 

 

 
D(in km.) 

Fig9: Variation of shear stress t12 with the variation of the 
fault width D. 

 

5. APPENDIX-1. 
 
Solutions for displacements, stresses and strains in 
the absence of any fault movement: 
We take Laplace transform of all the constitutive equations 
and the boundary conditions (1.1)-(1.23) with respect to time 
and we get, 
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where, 0(11
1

0
11

1  


 pdte pt , Laplace transformation 

variable) and similar other equations. Also the stress 
equations of motions in Laplace transform domain as: 
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On the free surface y3 = 0, ( < y1, y2 < ) 
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Also as y3   ( < y1, y2 < ) 
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Using (3.1), other similar equations and assuming the initial 
fields to be zero, we get from (1.7a). 
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be the solution of (3.2). 
 
Using the boundary conditions (1.10a)-(1.19a) and the initial 
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On taking inverse Laplace transformation, we get, 
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Similarly we can get the other components of the 
displacements. 
 
The stress are given by, 
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Using the displacements the strains can also be found out to 
be, 
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6. Appendix-II: 
 
Solutions after the fault movement 

We assume that after a time T1 the stress component 12 
(which is the main driving force for the strike-slip motion of the 

fault) exceeds the critical value c, the fault F starts creeping. 
Then we have an additional condition characterizing the 
dislocation in u1 due to the creeping movement as: 
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where H (t1) is the Heaviside function. 
 
Taking Laplace transformation in (4.1), we get, 
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Therefore, 
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Taking inverse Laplace transformation, 
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where H (t1) is the Heaviside step function, which gives the 
displacement at any points Q (y1,y2,y3). 
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and similar other equations. Now, 
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Using (4.11) and taking inverse Laplace transformation, we 
get 
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Similarly the other components of the displacements, stresses 
and strains can be found out. These are given in (B). 
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