
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 06, JUNE 2016  ISSN 2277-8616 

394 
IJSTR©2016 
www.ijstr.org 

Wave-Front Curvature And Resolution Of The 
Abraham-Minkowski Controversy 
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Abstract: This paper discusses about the momenta of photons in dielectric media. It is one of the unsolved problems in physics, especially optics. The 
problem took shape when, two scientists came up with two theories, mutually contradicting, with both of them supported by opposing experimental data. 
How can behaviour of light change in different experimental conditions? What have we missed? Shall we zoom in to the quantum level to explain this 
phenomenon? Or is it possible to explain it classically? I shall try to explain the variation of momentum with the help of curvature of the wave-front of 
incident light. We will discuss about the properties of curvature dependence of radiation pressure in media with higher refractive indices than vacuum. 
We will also derive a formula that accounts both for momentum and curvature, and also introduce the notion of ‘Transition Constant’. It will explain the 
transition between kinetic and canonical momenta of photons in experiments.  
 
Index Terms: Abraham-Minkowski Paradox; Curvature; Momentum; Radiation Pressure; Signum Function; Transition Constant; Wave-front. 

———————————————————— 

 

1 INTRODUCTION 
The motivation for this paper comes from the controversy 
between two scientists namely, Max Abraham and Hermann 
Minkowski. Both of their experiments on the momenta of light 
in a dielectric material suggested contradicting results. Firstly, 
the momentum of light according to the Einstein’s mass-
energy equivalence is given by,  

 

 
 

According to Abraham’s experiments, He put forward the fact 
that, as the light slows down by a factor of inverse of refractive 
index of the medium, so, the momentum must also decrease 
by the same factor. On the other hand, Minkowski’s 
experiments suggested that, the momenta of photons indeed, 
did not decrease in the optical medium but increase by the 
factor of the refractive index. This depicted inconsistency of 
data. Firstly, it was said that the experimental errors had 
contributed to wrong results. The results were speculated to 
be unreliable. But soon, it was established that this was not 
the case. Both of them were correct. It was proposed that 
relativistic light had two momenta, one was the kinetic 
momentum and the other was canonical momentum. This 
meant that the vector E × H did not always signify the direction 
of electromagnetic power flow. Here, E is the electric field 
component and H is the magnetic field component of an 
electromagnetic wave. The same happens inside an optical 
medium, i.e. deviation from the ‘poynting‘ vector. This means 
that there existed some fundamental anisotropy in dielectric 
media. 
 

2 ABRAHAM’S EXPERIMENTATION 
We have discussed about Abraham’s observations in the 
previous section. He proposed that due to the decrease in the 
speed of light in the medium, there is a decrease in the 
momentum of photons.  
 
 
 
 
 
 
 

All of his experimental results pointed towards an inverse 
dependence of momentum on refractive index. Thus, he 
formulated this fact as, 

 

 
Where, p: momentum 
 n: refractive index 
 E: energy 
 c: speed of light 
 ℏ : reduced Planck’s constant 
 (h/2π) 
 ω: angular frequency 
 ν: frequency 
 

3 MINKOWSKI’S EXPERIMENTATION 
Contrary to expectation, Minkowski suggested that the 
momentum of light in a medium is directly proportional to the 
refractive index. This happens even if light slows down. He 
formulated his results as, 

 

 
 

Cleary, something different happens in this case. Abraham’s 
momentum corresponds to kinetic momentum, and 
Minkowski’s version corresponds to canonical momentum. 
This result depends upon the type of beam used in 
experimentation. The focussedness of the beam somehow 
determined the outcome of the experiment. This variation is 
discussed in the next section. 
 

4 EXPERIMENTAL VARIATION 
It was coherently said by researchers in May 2015, that, 

 
“We illuminate a liquid…with an unfocused continuous-
wave laser beam; we have observed a (reflected-light) 
focusing effect…in quantitative agreement with Abraham 
momentum.” 
 

_______________________ 
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“We focused the incident beam tightly … we observed a 
de-focusing reflection…in agreement with Minkowski 
momentum transfer.” 
 

This is the key point in deriving a unified equation between 
both relations. In both the cases, the difference lies in the fact 
whether the beam of light is focused or not. As per the wave-
particle duality of the electromagnetic radiation, especially 
light, the property that differentiates between an unfocussed 
and a focused beam of light is the curvature of the wave-front. 
(See Fig. 1) Taking in consideration the sign conventions of 
ray optics, we can define the curvature of the wave-front to be 
positive or negative. Now, let us build some concepts in the 
next section. 

 
Fig. 1: Conversion of plane wave-front of light into spherical 

wave-front by a convex lens. 
 

5 BUILDING THE CONCEPT 
When we deal with lenses, they are the optical instruments 
that change plane wave-fronts to spherical wave fronts. So, 
we will have to construct an expression that accounts for the 
scalar curvature of the sphere. So, the scalar curvature for any 
surface (See Fig. 2, Next page) in Euclidean space is as 
follows; 

 

 
 

Where, ρ1 and ρ2 are the principle radii of the surface at the 
point.  

 

 
 

So for a 2-sphere, both the principal radii are equal. Let them 
be R. So, we get the scalar curvature of a 2-sphere as, 

 

 

 
Let us assume that, the radius of curvature of the wave-front is 
equal to the resultant curvature of the lens using which the 
beams are concentrated. Now, we use the lens maker’s 
formula, to setup a relation between curvature of wave front 
and the radii of curvature of both the surfaces of the lens taken 
into consideration. Let, f be the resultant focal length of the 
lens, n be its refractive index, R1 and R2 be the radii of 
curvature of the lens. 

 
Now, we can notice in both Abraham’s and Minkowski’s 
version of radiation pressure, the variation occurs in the 
dependence of momentum on refractive index. In one case, it 
is directly proportional, and in the other, it’s inversely 
proportional. So, in the expression we derive, we require that 
the power of the refractive index should vary from -1 to +1 
being a function of the scalar curvature of the wave-front. So,  
f (s) is some function of the scalar curvature S, of the wave-
front. So, now we need to find this function. Subsequently, it is 
intuitive that, this function must be bounded and has values 
only in the interval [-1, 1]. It should also have positive definite 
values for all numbers greater than a particular value of 
transition, and negative definite values for all numbers lesser 
than the same transition value. This transition value 
corresponds to the transition between the direct and inverse 
dependence of momentum on refractive index. So we also 
need to find this transition curvature value. Let us recall, when 
an unfocused beam of light is used in the experiment, we find 
numerical agreement with Abraham momentum. So an 
unfocused light has a plane wave-front, which corresponds to 
zero curvature. Thus, an unfocussed beam or a divergent 
beam (negative wave-front curvature), leads to inverse 
dependence on refractive index. And a focussed beam, having 
positive wave-front curvature, leads to direct dependence of 
refractive index. Consequently, the function should have only 
the value +1 for positive curvatures and -1 for 0 and negative 
curvatures. The function which satisfies such conditions is the 
Signum function or the Sign Function. Let’s now derive the 
equation. 

 
 

Fig. 2: A figure showing negative, zero and positive curvature 
conventions in three dimensional manifolds. 
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5 DERIVATION 
Consider a lens (may be convex or concave), which 
manipulates the curvature of the plane wave-front of light. Let 
the radii of curvature of the lens be ‘R1’ and ‘R2’. Let, the 
refractive index of the lens be ‘μ’. And that of the material in 
which experiment is performed be ‘n’. As per our parameters, 
the wave-front curvature is given by, 

 

 
 

Whenever wave-fronts converge or diverge, they do so in the 
form of concentric spheres. We know that curvature is 
proportional to square of distance from the optical centre of 
the lens, to any instantaneous converging wave-front (positive 
curvature) during propagation, as the principal radii tend to 
zero. This distance dependence is important, as it gives us the 
information about at what point in space does the wave-front 
collide with the medium interface. Because, there will be a 
difference in wave-front curvature if the lens is placed close or 
far away from the medium. (See Fig. 3, Next Page) This will 
also help to maintain dimensional consistency in the 
expression we need to derive. Let the distance between the 
lens and the medium interface be ‘d’. So we define γ, i.e. the 
distance dependent curvature as, 

 

 

 
 

Y is dimensionless. 
 

 
 

Fig. 3: Figure showing direct square dependence of curvature 
on distance. (It must not be confused with inverse square 

dependence of curvature on principal radii.) 
 

Now, Let us come back to the Signum function. We will make γ 
as the argument of the signum function, so that we get values, 
-1 and +1 based on wave-front curvature. The signum of γ 

must be the power of n, the refractive index of medium. Thus 
we come at an expression, 

 

 
Where, 

 

 

&  

There are some problems with this expression. Let us discuss 
and rectify them in the next section. 
 

6 A BETTER APPROXIMATION 
We all know that the Signum function is not continuous at x = 
0. Nature won’t take any jumps! Or the light finds zero 
curvature and as soon it crosses it, there is radical change in 
the momentum of light! This of course does not happen.  So, 
using the Signum function will only describe the, behaviour of 
nature at all curvatures except zero. This is not desirable. So 
we need to use a continuous approximation of the Signum 
function. This can be accomplished by using the Hyperbolic 
Tangent function, which asymptotically approaches the 
Signum function under certain conditions. This will now 
completely describe the characteristic momenta of photons in 
media. So, we have, 

 

 
 

So, we replace sgn(x) by tanh(kx) where, k is a constant and 
k≫1. Thus by replacing Signum function by tangent function 

we get momentum to be, 
 

 
Now, I’ve introduced a new constant here, in this context. It is 
η0, which is ‘Transition Constant’. This decides how smooth 
transition occurs between direct and inverse dependence of 
momentum on refractive index. This is universal to the 
behaviour of light and can be determined experimentally. This 
expression can successfully and accurately predict momentum 
of photons in medium dependent on signed wave-front scalar 
curvature. Let’s discuss the features and properties of the 
‘Transition Constant’ in the next section. 
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7 THE TRANSITION CONSTANT 
As we know that, the transition constant controls how 
transition occurs between direct and inverse dependence of 
momentum on refractive index, it can be determined 
experimentally by obtaining measured momentum in the 
neighbourhood of transition curvature that is zero curvature. 
The transition constant in fact, encodes the exceptional 
behaviour of light quanta in dielectric media in the transition 
period. Once we know those momentum values corresponding 
to particular curvatures near null curvature then we can 
calculate η0 by the formula as on the next page,  

 

 
 

This constant is very fundamental to the behaviour of light. It 
does not depend on the medium, frame of reference, 
wavelength of light or its energy etc.  The determination of this 
constant will demand accurate experiments. Let us graphically 
understand the significance of the transition constant. (See 
Fig.4). 

 

 
 

Fig. 4: A plot of momentum versus wave-front curvature at 
different transition constants. Greater is the transition 

constant, steeper is the transition. And when η0 → ∞  , tanh(x) 
→  sgn(x). 

 

8 ANALYSIS 
Let us discuss some of the plots of the obtained formula. (See 
Fig. 5) It is the graph that describes the variation of 
momentum with curvature of wave-front. For positive 
curvature, which is a convergent beam, the momentum is 
directly proportional to refractive index and for negative 
curvature; momentum is inversely proportional to refractive 
index. And, in between there is a smooth transition between 
direct and inverse dependence. The smoothness of transition 
depends on value of η0.  It displays momenta of photons 

having different frequencies. We can easily interpret that 
higher is the frequency, higher is the momentum, for both, 
negative and positive curvature. The y-intercept is always 
equal to the momentum of plane wave-front i.e. zero 
curvature. Now (See Fig.6, Next Page). It shows different 
transitions of momenta for different media varying in refractive 
indices. As, Minkowski momentum is directly proportional to 
refractive index, so higher the refractive index, higher the 
momentum, which is depicted in the positive curvature zone of 
the graph. The opposite is illustrated in the negative curvature 
zone; Abraham momentum tends to zero, as refractive index 
tends to infinity. Consequently, the derived formula proves to 
be extremely consistent with the physical world and its 
behaviour.  

 
 

Fig. 5: This plot depicts different momentum transitions for 
different frequencies of light. Thus momentum is directly 

proportional to frequency. 

 
 

Fig. 6: This plot depicts different momentum transitions in 
media having different refractive indices. Higher the refractive 
index higher the Minkowski momentum but lower the Abraham 

momentum. 
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9 CONCLUSION 
The formula hence derived predicts a smooth transition from 
direct to inverse dependence of momentum on refractive 
indices based on wave-front curvature. The smoothness is 
governed by the put forward transition constant. The obtained 
expression explains both Minkowski and Abraham momentum 
and unifies them. It gives mathematical explanation of 
behaviour of light beams having a defined curvature and its 
curvature dependent interaction with the dielectric. This is 
simply another manifestation of the kinetic momentum and the 
canonical momentum. This has indeed unified the observation 
of two scientists, and will help us understand the fundamental 
properties of light to the fullest. This is not just a solution to a 
paradox, but has deep meanings that will help us to question 
ourselves on the exactness of our knowledge and invigorate 
our curiosity. Hope for a better tomorrow!   
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