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Abstract: Nowadays, in computer networks, the routing is based on the shortest path problem.  This will help in minimizing the overall costs of setting up 
computer networks.  New technologies such as map-related systems are also applying the shortest path problem.  This paper’s main objective is to 
evaluate the Dijkstra’s Algorithm, Floyd-Warshall Algorithm, Bellman-Ford Algorithm, and Genetic Algorithm (GA) in solving the shortest path problem.  A 

short review is performed on the various types of shortest path algorithms.  Further explanations and implementations of the algorithms are illustrated in 
graphical forms to show how each of the algorithms works.  A framework of the GA for finding optimal solutions to the shortest path problem is 
presented.  The results of evaluating the Dijkstra’s, Floyd-Warshall and Bellman-Ford algorithms along with their time complexity conclude the paper. 

 
Index Terms: Bellman-Ford Algorithm, Computer Networks, Dijkstra’s Algorithm, Floyd-Warshall Algorithm, Genetic Algorithm (GA), Shortest Path 
Problem.   

———————————————————— 

 

1 INTRODUCTION 
THE shortest path problem is a problem of finding the shortest 
path or route from a starting point to a final destination.  
Generally, in order to represent the shortest path problem we 
use graphs.  A graph is a mathematical abstract object, which 
contains sets of vertices and edges.  Edges connect pairs of 
vertices.  Along the edges of a graph it is possible to walk by 
moving from one vertex to other vertices.  Depending on 
whether or not one can walk along the edges by both sides or 
by only one side determines if the graph is a directed graph or 
an undirected graph.  In addition, lengths of edges are often 
called weights, and the weights are normally used for 
calculating the shortest path from one point to another point. In 
the real world it is possible to apply the graph theory to 
different types of scenarios.  For example, in order to 
represent a map we can use a graph, where vertices 
represent cities and edges represent routes that connect the 
cities.  If routes are one-way then the graph will be directed; 
otherwise, it will be undirected. There exist different types of 
algorithms that solve the shortest path problem.  However, 
only several of the most popular conventional shortest path 
algorithms along with one that uses genetic algorithm are 
going to be discussed in this paper, and they are as follows: 

1. Dijkstra’s Algorithm 
2. Floyd-Warshall Algorithm 
3. Bellman-Ford Algorithm 
4. Genetic Algorithm (GA) 

 
Other than GA, nowadays, there are also many intelligent 
shortest path algorithms that have been introduced in several 
past research papers. For example, the authors in [1] used a 
heuristic method for computing the shortest path from one 
point to another point within traffic networks.   
 
 
 
 
 
 
 
 
 
 
 
 
 

They proposed a ―new dynamic direction restricted algorithm 
obtained by extending the Dijkstra’s algorithm [1].‖ In another 
paper [2], a heuristic GA was used for solving the single 
source shortest path (SSSP) problem.  Its main goal was to 
investigate the SSSP problem within the Internet routing 
setting, particularly when considering the cost of transmitting 
messages/packets is significantly high, and the search space 
is normally very large. In a paper by Li, Qi, and Ruan [3], an 
efficient algorithm named Li-Qi (LQ) was proposed for the 
SSSP problem with the objective of finding a simple path of 
the smallest total weights from a specific initial or source 
vertex to every other vertex within the graph. The ideas of the 
queue and the relaxation form the basis of this newly 
introduced algorithm; the vertices may be queued several 
times, and furthermore, only the source vertex and relaxed 
vertices are being queued [3]. 
 

2 RESEARCH OBJECTIVES 
The following list gives the objectives of this research paper: 

 To determine and identify the concepts of the shortest 
path problem. 

 To determine the representation of graphs in computer in 
order to solve the shortest path problem, as well as to 
understand the different basic terms of a graph. 

 To explain the general concepts and the implementations 
of Dijkstra’s Algorithm, Floyd-Warshall Algorithm, 
Bellman-Ford Algorithm, and Genetic Algorithm. 

 To evaluate each algorithm, and presents the 
evaluations’ results. 

 

3 LITERATURE REVIEW 
As mentioned earlier, a graph can be used to represent a map 
where the cities are represented by vertices and the routes or 
roads are represented by edges within the graph.  In this 
section, a graph representation of a map is explained further, 
and brief descriptions and implementations of the four shortest 
path algorithms being studied are presented. 

 

3.1 Representation of the Graph 
In order to represent a graph in a computer we will use 
adjacency matrix a.  The dimension of the matrix will be equal 
to (n x n), where n is number of vertices in graph.  The 
element of matrix a[i][j] is identified by an edge that connects 
the i-th and j-th vertices; the value here represents the weight 
of the corresponding edge.  However, if there is no edge 
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between vertices i and j, the value in (a[i][j]) will be equal to 
infinity. An array of edges is another common representation of 
the graph.  If m is the number of edges in a graph, then in 
order to represent the graph we have to use m x 3 two-
dimensional arrays; in each row, the first vertex, the second 
vertex, and the edge that connects them are also stored.  The 
benefit of using an array of edges in comparison to adjacency 
matrix is when there is more than one edge that connects two 
vertices we cannot use adjacency matrix in order to represent 
graph. 

 

3.2 Dijkstra’s Algorithm: Explanation and 
Implementation 
For each vertex within a graph we assign a label that determines 
the minimal length from the starting point s to other vertices v of 
the graph.  In a computer we can do it by declaring an array d[]. 
The algorithm works sequentially, and in each step it tries to 
decrease the value of the label of the vertices.  The algorithm 
stops when all vertices have been visited. The label at the starting 
point s is equal to zero (d[s]=0); however, labels in other vertices 
v are equal to infinity (d[v]=∞), which means that the length from 
the starting point s to other vertices is unknown.  In a computer 
we can just use a very big number in order to represent infinity.  In 
addition, for each vertex v we have to identify whether it has been 
visited or not.  In order to do that, we declare an array of Boolean 
type called u[v], where initially, all vertices are assigned as 
unvisited (u[v] = false). The Dijkstra’s algorithm consists of n 
iterations.  If all vertices have been visited, then the algorithm 
finishes; otherwise, from the list of unvisited vertices we have to 
choose the vertex which has the minimum (smallest) value at its 
label (At the beginning, we will choose a starting point s).  After 
that, we will consider all neighbors of this vertex (Neighbors of a 
vertex are those vertices that have common edges with the initial 
vertex).  For each unvisited neighbor we will consider a new 
length, which is equal to the sum of the label’s value at the initial 
vertex v (d[v]) and the length of edge l that connects them.  If the 
resulting value is less than the value at the label, then we have to 
change the value in that label with the newly obtained value [4].  

 
d [ neighbors ] = min ( d [ neighbors ] ,  d[ v ]  +  l )           (1) 

 
After considering all of the neighbors, we will assign the initial 
vertex as visited (u[v] = true).  After repeating this step n times, 
all vertices of the graph will be visited and the algorithm 
finishes or terminates. The vertices that are not connected with 
the starting point will remain by being assigned to infinity. In 
order to restore the shortest path from the starting point to 
other vertices, we need to identify array p [], where for each 
vertex, where v ≠ s, we will store the number of vertex p[v], 
which penultimate vertices in the shortest path.  In other 
words, a complete path from s to v is equal to the following 
statement [5] 
 
P = ( s , … , p [ p [ p [ v ] ] ] , p [ p [ v ] ] , p [ v ] , v )             (2) 
 
 
 
 
 
 
 
 
 

Fig. 1 shows an excerpt of the Dijkstra’s algorithm, which is 
written in Java. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

3.3 Floyd-Warshall Algorithm: Explanation and 
Implementation 
Consider the graph G, where vertices were numbered from 1 
to n. The notation dijk means the shortest path from i to j, which 
also passes through vertex k. Obviously if there is exists edge 
between vertices i and j it will be equal to dij0, otherwise it can 
assigned as infinity. However, for other values of dijk there can 
be two choices: (1) If the shortest path from i to j does not 
pass through the vertex k then value of dijk will be equal to dijk-

1. (2) If the shortest path from i to j passes through the vertex k 
then first it goes from i to k, after that goes from k to j. In this 
case the value of dijk will be equal to dikk-1 + dkjk-1. And in order 
to determine the shortest path we just need to find the 
minimum of these two statements [6]: 

 
dij0 = the length of edge between vertices i and j              (3) 
 
dijk = min (dijk-1, dikk-1 + dkjk-1)                          (4) 
 
Fig. 2 shows an excerpt of the Floyd-Warshall algorithm, which 
is written in Java. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

3.4 Bellman-Ford Algorithm: Explanation and 
Implementation  
In comparison to Dijkstra’s algorithm, the Bellman-Ford 
algorithm admits or acknowledges the edges with negative 
weights.  That is why, a graph can contain cycles of negative 
weights, which will generate numerous number of paths from 

 
 

Fig.  1.  Implementation in Java: An Excerpt 

 
 

Fig.  2.  Implementation in Java: An Excerpt 
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the starting point to the final destination, where each cycle will 
minimize the length of the shortest path. Taking into 
consideration this fact let’s assume that our graph does not 
contain cycles with negative weights.  The array d[] will store 
the minimal length from the starting point s to other vertices. 
The algorithm consists of several phases, where in each 
phase it needs to minimize the value of all edges by replacing 
d[b] to following statement d[a] + c; a and b are vertices of the 
graph, and c is the corresponding edge that connects them.  
And in order to calculate the length of all shortest paths in a 
graph it requires n – 1 phases, but for those vertices of a 
graph that are unreachable, the value of elements of the array 
will remain by being assigned to infinity [7].  Fig. 3 shows an 
excerpt of the Bellman-Ford algorithm, which is written in Java. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.5 Genetic Algorithm (GA)  
Intelligent algorithms have been introduced in finding optimal 
shortest paths in many situations that require the systems to 
search through a very large search space within limited time 
frame and also in accommodating an ever-changing 
environment.  One of these algorithms is GA.   By definition, 
genetic algorithms are a class or group of ―stochastic search 
algorithms‖ that are based on biological evolution [8]. GA is 
mostly used for optimization problems.  It uses several genetic 
operations such as selection, crossover, and mutation in order 
to generate a new generation of population, which represents 
a set of solutions (chromosomes) to the current problem.  In 
addition, on average, this new generation is supposed to be 
better in terms of their overall fitness value as compared to the 
previous population.  Each individual or chromosome within 
the population will be assigned a fitness value, which is 
calculated based on a pre-determined fitness function that 
measures how optimal its solution is in solving the current 
problem. In order to solve the shortest path problem using the 
GA [9], we need to generate a number of solutions, and then 
choose the most optimal one among the provided set of 
possible solutions. In order to solve the problem, an initial 
population that forms the first set of chromosomes to be used 
in the GA is randomly created.  Each chromosome represents 
one possible solution to the current problem at hand.  After 
that, they (chromosomes) are estimated using certain fitness 
function, which determines how well the solutions are.  Taking 
into account the fitness value of each solution or chromosome, 
some chromosomes or individuals will be selected (selection 
operation), and the basic genetic operations such as 
crossover and mutation are applied on these chromosomes.  
Then, the fitness value of each chromosome is re-calculated, 
and the best solutions are selected to be considered for the 
next generation. This process continues until the criteria of the 

given problem will not be achieved. Thus we can identify the 
following stages of a GA: 

 Step 1: Determine the fitness function; in our case we 
need to maximize the following function f(Chk) = (∑edge)-
1, where Chk is k-th chromosome and ∑edge is the sum 
of edges from starting point to final destination. 

 Step 2: Create initial population – a population that 
contains n individuals.  At this stage we do not need to 
create fittest individuals, because it is probable that GA 
will transfer them into viable population. In order to create 
chromosomes for initial population, we will produce 
random paths from the starting point to final destination.  

 Step 3: Selection – the stage of GA that is used to select 
two chromosomes for genetic operations such as 
crossover and mutation. There are different types of 
selection methods; however, the Roulette Wheel 
selection method is chosen in order to solve the shortest 
path problem.   

 Step 4: Crossover – the process of reproduction where 
descendants are inherit traits of both parents mixing 
them in some way. Individuals for reproduction will be 
chosen from whole population (not from the survivors in 
the first iteration), because we need to keep diversity of 
individuals, otherwise entire population will be hammered 
with single copies of one individual. There exist different 
types of crossover methods; however, for our problem 
we will use the simplest method, which is called single 
point crossover. 

 Step 5: Mutation – the act of changing the value of some 
gene. Mutation keeps the genetic diversity of the 
population by changing genes of selected chromosome.  

 
If the fittest chromosome does not change after a specific 
number of iterations, which was described above, then the 
algorithm will terminate; the most optimal solution is 
automatically the fittest chromosome among the whole 
population. Fig. 4 illustrates the flowchart of the shortest path 
problem’s solution using GA.  This diagram is a framework that 
will be used for the implementation of GA in finding the 
shortest path or route in a given map of a city named Almaty in 
Kazakhstan, which is part of our current and future works. The 
GA used here is quite general in nature except for the part 
where loops might be introduced while executing GA in finding 
the most optimal solution; all loops must be removed because 
loops must not exist in a path.  

 
 

Fig. 3.  Implementation in Java: An Excerpt 
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4 RESULTS 
 
4.1 Test Results 
Dijkstra’s, Floyd-Warshall and Bellman-Ford algorithms were 
tested using pre-defined test cases and automated checking 
system available in the websites [10][11][12]. In the following 
figures (Fig. 5, Fig. 6, Fig. 7) some information such as the 
number of test cases, results, author, date of submission, and 
programming language used for each algorithm are provided. 

 
 

 

Fig. 4.   A Framework: Genetic Algorithm for the Shortest Path Problem 
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4.2  The Time Complexity 
The time complexity for each algorithm is illustrated in Table I; 
n represents the total number of vertices, and m is the total 
number of edges. 

 
TABLE 1 

TIME COMPLEXITY 

 
 

5 CONCLUSION AND FUTURE WORK 
The computed time complexity for each of the Dijkstra’s, 
Floyd-Warshall and Bellman-Ford algorithms show that these 
algorithms are acceptable in terms of their overall performance 
in solving the shortest path problem. All of these algorithms 
produce only one solution.   However, the main advantage of 
GA over these algorithms is that it may produce a number of 
different optimal solutions since the result can differ every time 
the GA is executed. In the future, the proposed GA framework 
will be extended and improved in finding the shortest path or 

distance between two places in a map that represents any 
types of networks.  In addition, other artificial intelligence 
techniques such as fuzzy logic and neural networks can also 
be implemented in improving existing shortest path algorithms 
in order to make them more intelligent and more efficient. 
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