Experimental Investigation and Statistical Analysis of Creep Properties of a Hybridized Epoxy-Alumina-Calcium Silicate Nanocomposite Material Operating at Elevated Temperatures

Obuka Nnaemeka Sylvester P., Ihueze Chukwutoo Christopher, Okoli Ndubuisi Celestine, Ikwu Gracefield Okwudilichukwu R.

Abstract - The experiments of this research were designed to lend itself to two way and three way classification ANOVA analysis in the SPSS software. The new hybrid epoxy matrix composites consist of 5%wt, 10%wt, 15%wt, 20%wt, 25%wt, and 30%wt of fillers (alumina and calcium silicate) in nanoscale. Tensile strength of each constituent material was obtained through tensile experiments. Creep experiments were performed at temperatures of 50°C, 70°C, 90°C, 110°C, and 130°C, at constant loading of 14 MPa. The composite material with 15%wt constituent showed highest tensile strength followed by the 20%wt constituent showing higher strength than a baseline Epoxy-Alumina nanocomposite. Also the 15%wt and the 20%wt constituents exhibited the best resistant property to creep than every other constituent at short term creep tests and at analytical results. Though the two way classification ANOVA show enough significance at 95% confidence interval, the three way classification ANOVA showed significances of time, temperature and samples (with interactions), which are responsible for the creep failure of the studied composites. The creep limit property of the new material was found to be higher than the creep limit of the Epoxy filled with Alumina only.

Keywords: Nanocomposites, Epoxy, Alumina, Calcium Silicate, ANOVA, Creep, Tensile Strength, SPSS Software

1 INTRODUCTION

THIS research is carried out to develop a polymer matrix hybrid nanocomposite material for oil and gas supply system through classical experimental design and application of trendy analytical tools to investigate the materials' creep properties. The tests are carried out based on the maximum parameters of operation of oil and gas pipelines, basically temperature, pressure and corrosive environment (Seawater, H2S and CO2). Creep phenomenon is a natural failure mechanism for materials and equipments working under stress, high temperature and at a space of time. During high temperature services, components typically operate under complex non-steady stress-temperature conditions. Even so, the creep and creep fracture properties of engineering materials are usually determined under uniaxial tensile stresses, applying a known constant load to a specimen held at a fixed temperature (Wilshire and Evans, 1994).

- Obuka Nnaemeka Sylvester P. is currently pursuing a doctor of philosophy degree program in Industrial/Production Eengineering department at Nnamdi Azikiwe University, Awka, Nigeria. PH-+234(0)8034002623. E-mail: silvermeks7777@yahoo.com
- Ihueze, Chukwutoo Christopher is a Professor of management design and engineering in Industrial/Production Engineering department at the same University as the corresponding author. Okoli Celestine: Ndubuisi and lkwu Gracefield Okwudilichukwu R., are currently pursuing the same degree program as the corresponding author in the same department and in the same University.

Nanotechnology, nanostructured polymers, nanoparticles and nano composites have been a lot research topic of high promise for years. A lot has been done, highly interesting scientific findings and even significant technical applications, yet there are still significant unfulfilled promises and visions to be made true. It is good to keep in mind that nature is a master in optimizing nanostructures in materials. Also, nature has shown that significant improvements in materials properties can be reached, and properties achieved (Seppala. 2010). tailored Nanocomposite materials have emerged as suitable alternatives to overcome limitations of micro composites and monolithic, while posing preparation challenges related to the control of elemental composition and stoichiometry in the nano cluster phase. In 1995, the deep-water offshore oil industry was looking for strong, lightweight materials to replace the heavy alloy piping used on oil platform in seawater as was reported by Lea (2002), of Specialty Plastics Inc., by reducing the weight of the piping materials on the service deck of a Tension Leg Platform (TLP), the buoyancy of the TLP would increase. This would reduce the amount of structural steel needed below water, there by significantly reducing the cost of a TLP. Although carbon steel, copper-nickel alloy and duplex steel pipe had traditionally been used on offshore platforms and pipelines, advanced composite were known to be stronger, more resistant to corrosion, and lighter than steel. For example, composite pipe with a 6 inch diameter weighs 4 pounds per foot, while a copper nickel pipe with the same diameter weighs 24 pounds per foot. Advanced composites also cost less initially than steel piping and have a longer life cycle (Schmidt, Shah and Giamnelis, 2002). Epoxy resin systems are increasingly used as matrix in composite materials for a wide range of automotive, aerospace, oil and gas applications and for ship building or electronic devices.

Nano particles constrain the matrix deformation less than microparticles, because they integrate better into the polymer microstructure as they approach nearly molecular dimensions. Depending on more or less strong interactions with the matrix, it can be expected that they influence deformation mechanisms in the polymer on the micro or eve the nano scale.

2 LITERATURE REVIEW

Nanoscale science and technology research is progressing with the use of a combination of atomic scale characterization and detailed modeling (Roy, Roy, and Roy, 1986). In the early 1990s, Toyota Central Research Laboratories in Japan reported work on a Nylon-6 nanocomposite (Usuki, et al, 1993), for which a very small amount of nano filler loading resulted in a pronounced improvement of thermal and mechanical properties. "The properties of nanocomposite materials depend not only on the properties of their individual parents (nano filler and nylon, in this case) but also on their morphology and interfacial characteristics", says Kanartzidis (Oriakhi, 1998). The transition from microparticles to nanoparticles yields dramatic changes in physical properties. Nanoscale materials have a large surface area for a given volume (Luo and Daniel, 2003). Since many important chemical and physical interactions are governed by surfaces and surface properties a nanostructured material can have substantially different properties from larger-dimensional materials of the same composition (RTO, 2005). In general, nanomaterials provide reinforcing efficiency because of their high aspect ratio. The properties of a nanocomposite are greatly influenced by the size scale of its component phases and the degree of mixing between the two phases. Depending on the nature of the components used (layered silicate or nanofiber, cation exchange capacity, and polymer matrix) and the method of preparation, significant differences in composite properties may be obtained (Park, et al, 2001). Analogously, in fibrous or particle reinforced Polymer Nanocomposites (PNC), dispersion of the nanoparticle and adhesion at the particle-matrix interface play crucial roles in determinina the mechanical properties of the nonocomposite. Without proper dispersion. the nanomaterial will not offer improved mechanical properties over that of the conventional composites, in fact, a poorly dispersed nanomaterial may degrade the mechanical properties (Gorga and Cohen, 2004).

2.1 Potentials and Opportunities in Polymer-Nanocomposites

Polymers have been filled with several inorganic compounds, either synthetic or natural, in order to increase heat and impact resistance, flame retardancy and mechanical strength, and to decrease electrical conductivity and gas permeability with respect to oxygen and water vapour (Fischer, 2003). Furthermore, metal and ceramic reinforcements offer striking routes to certain unique magnetic, electronic, optical or catalytic properties coming from inorganic nano-particles, which add to other polymer properties such as processibility and film forming capability (Athawale, et al, 2003). Using this approach polymers can be improved while keeping their lightweight and ductile nature (Jordan, et al, 2005; Akita and Hatlori, 1999; Zavyalov, Pivkina, and Schoonman, 2002). Another

important aspect is that nanosacle reinforcements have an exceptional potential to generate new phenomena, which leads to special properties in these materials. It may be pointed out that the reinforcing efficiency of these composites, even at low volume fractions, is comparable to 40-50% for fibers in microcomposites (Ray and Bousmina, 2005). Addition of reinforcements to a wide variety of polymer resins produces a dramatic improvement in their biodegradability. For instance, rocket propellants are prepared from a Polymer-AI/AI2O3 nanocomposite to improve ballistic performance (Meda, et al. 2005), Thermosetting and thermoplastic pipes and liners created from nanocomposite materials have enhanced thermomechanical and creep properties, allowing for operations at higher temperatures and pressures without increasing the thickness of the pipe or changing the manufacturing processes involved (Vincenzo, Gasem, and Mauyed, 2010). Drill bits coated with nanostructured ceramic materials have increased hardness and durability compared with their conventional counterparts (Milue, 2009). Another major area where nanocomposite materials can make a dramatic impact is with sealants. Currently used rubber sealants and O-rings are very stable under common well conditions (175°C and 135MPa), exhibiting appropriate flexibility and structural stability. When subjected to harsher conditions, however, the structural integrity of the rubber is severely compromised (Endo, Naguchi, and Ho, 2008). In hightemperature-pressure condition, old electrical sensors and other measuring tools often are not reliable. But researchers currently are developing a set of reliable and economical sensors from optical fibers for measuring temperature and pressure, oil flow-rate, and acoustic waves in oil wells (Scott, Jones and Crudden, 2003: Ying and Sun, 1997). Another nanosensor, Smart Dust, is being developed by researchers at the University of California in San Diego. Smart Dust was created from nanostructured porous silicon crystals that can be tuned to change colour when a specific compound is detected. Within the oil and gas industry this sort of technology could be deployed to remotely sense pipeline leaks for gases, such as toxic hydrogen sulphide, or to remotely monitor the structural integrity of pipelines and wells (Sailor and Link, 2005). Evora and Shukla (2003) have reported improvement in fracture toughness for polyester resin reinforced with TiO₂ nanoparticles; however the tensile strength of the composites was lower than that of the resin at higher particle volume fraction. Similar trend of reduction in tensile strength was reported by Daniel et al (2003) for epoxy-clay nanocomposites. Gojny, et al, (2004), achieved moderate improvements in fracture toughness and elastic modulus of epoxy by the addition of carbon nanotubes, but the tensile strength decreased when the nanotubes were used without any treatment Yong and Hahn (2004) also have reported decrease in tensile strength for vinyl ester reinforced with unmodified SiC nanoparticles. While agglomeration of nanoparticles at higher volume fractions is one of the reasons attributed for decrease in the tensile strength. The more prominent reason is the lack of chemical bonding between the inorganic particles and organic matrix. Masahiro, et al, (2006), studied the preparation and various characteristics of Epoxy /Alumna nanocomposites by dispersing 3, 5, 7 and 10weight (wt)% boehmite alumina nanofillers in a bisphenol A epoxy resin using a special two-

stage direct mixing method. It was elucidated that nanofillers affect various characteristic of epoxy resins. when they are nano structured. Omrani. Simon and Rostami (2009), investigated the effect of alumina nanoparticle on the properties of an epoxy resin system. Formation of composite made up of alumina particles in gamma phase and diglycidyl ether of bisphenol-A, the following were observed: From the kinetic analysis using the Avrami equation, it has been seen that the kinetic parameters are influenced by the presence of nanoparticle and the used curing temperatures. It was found that a relatively low concentration of Al2O3 nanoparticles led to an impressive improvement of dynamic mechanical. mechanical, and thermal properties.

3 MATERIALS AND METHOD

The methodology of this research work on development of hybrid nanocomposite material is experimental and analytical employing mix-method approach. This hybrid polymer nanocomposite is made of Epoxy matrix, and two nano-fillers of Aluminum Oxide (Al2O3) and Calcium Silicate (CaSiO3). Due to factor of availability, the combination system of Epikote Resin 836/Epikure curing Agent F205 is used in this research. About twelve (12) samples were produced, six(6) of which are the hybrid composites of 5 wt%, 10wt%, 15wt%, 20wt%, 25wt% and 30wt%, weight fractions of the fillers (fibre). The other six (6) samples will be used as baseline samples for the experiment made of epoxy-alumina nanocomposites of the same weight fractions of the filler (fibre) as in the hybrid nanocomposite samples. Hence the sampes are labeled samples A, B, C, D,..... to L. The resin and its curing agent, which form the epoxy matrix were measured at the ratio of 2:1. Due to the application of the centrifugal force, the curing temperature of the composite is recorded at between 1800C and 1850C. The composite is allowed to cure at this temperature of T \leq 1850C for 6 hours (360mins), after which it is allowed for post-cure at ambient temperature without external air cooling for at least 24 hours. Table 3 shows the dimension of the samples used in the experiment.

TABLE 1: DIMENSIONS OF TENSILE TEST SAMPLE
--

Specimen	Gage Length	Thickness	Width	Length of
	(mm)	(mm)	(mm)	Grip section
				(mm)
A (SH)	60	7.5	15	20
B(10H)	60	9	15	20
C (15H)	60	7	15	20
D (20H)	60	8	15	20
E(25H)	60	6	15	20
F(30H)	60	6	15	20
G(5C)	60	9	15	20
H(10C)	60	7	15	20
I(15C)	60	8	15	20
J (20C)	60	8	15	20
K(25C)	60	7	15	20
L(30C)	60	7	15	20

3.1 Theory of Tensile Tests

If the results of tensile testing are to be used to predict how a metal will behave under other forms of loading, it is desirable to plot the data in terms of true stress and true stain. The measurement of elongation is used to calculate the engineering or nominal strain \mathcal{E} n, using the following equation, (ASMI, 2011);

$$\mathcal{E}_n = \frac{\Delta L}{L_0} = \frac{L_f - L_0}{L_0} \tag{1}$$

Engineering or nominal stress, σ n, is defined as;

$$\sigma_n = F/_{A_o} \tag{2}$$

When force-elongation data are converted to engineering stress and strain, a stress-strain curve that is identical is shape to the force-elongation curve can be plotted. The advantage of dealing with stress versus strain rather than load versus elongation is that the stress-strain curve is virtually independent of specimen dimensions. However, true stress, σ , is defined as;

$$\sigma = F/_{A_f} \tag{3}$$

where A_f is the cross sectional area at the time that the applied force is F. Up to the point at which necking starts, true strain, \mathcal{E} (natural or logarithmic), is defined as;

$$\mathcal{E} = ln \left(\frac{L_0}{L_f}\right) \tag{4}$$

This definition arises from taking an increment of the strain, d \mathcal{E} , as the incremental change in length, dL, divided by the length, L, at the time, d \mathcal{E} = dL/L, and integrating. As long as the deformation is uniform along the gage section, the true stress and strain can be calculated from the engineering quantities. With constant volume and uniform deformation, $L_f A_f = L_0 A_0$:

$$A_0 / A_f = \frac{L_f}{L_0}$$
⁽⁵⁾

Thus, according to equation (1);

$$\frac{A_0}{A_f} = 1 + \varepsilon_n \tag{6}$$

Equation (3) can be rewritten as,

$$\sigma = \left(\frac{F}{A_0}\right) \left(\frac{A_0}{A_f}\right) \tag{7}$$

and, with substitution of equations (2) and (6) into equation (7), we obtain;

 $\sigma = s (1 + \mathcal{E}_n)$ (8) Substituting the expression $L_f/L_0 = 1 + \mathcal{E}_n$ in accordance with equations (5) and (6), into the expression for true strain (4) gives the true strain as,

$$\mathcal{E} = \ln\left(1 + \mathcal{E}_n\right) \tag{9}$$

At very low strains, the differences between true and engineering stress and strain are very small. It does not really matter whether Young's modulus is defined in terms of engineering or true stress-stain. It must be emphasized that these expressions are valid only as long as the deformation is uniform. Once necking starts, equation (3) for true stress is still valid, but the cross-sectional area at the base of the neck must be measured directly rather than being inferred from the length measurements (Gedney, 2002). Because the true stress, thus calculated, is the true stress at the base of the neck, the corresponding true strain should also be at the base of the neck. Equation (4) could still be used if the Lf and Lo values were known for an extremely short gage section centered on the middle of the neck (one so short that variations if area along it would be negligible). Of course, there will be no such gage section;

but if there were, equation (5) would be valid. Thus the true strain can be calculated as (Gedney, 2002);

$$\mathcal{E} = ln \left(\frac{A_0}{A_f}\right) \tag{10}$$

3.2 Material Strength (Tensile Tests)

The tensile strength (true stress) of each sample was obtained from equation (3), the cross-sectional area (Af) at the time that the applied force is F (see table 3) was calculated from a combination of equations (1) and (6). Assuming a uniform deformation at constant volume, the instantaneous area (Af) is also obtained through the application of equation (5). The original cross-sectional area (A0) of each sample's gage length domain (which is a prism) is given by the expression;

$$A_0 = 2(L_0W + L_0h + Wh)$$
(11)

 TABLE 2: SUMMARY OF TENSILE STRENGTH DATA

Sample	Original	Instantaneo us	Normal	Force F	Tensile
	Area (A)	Area (A)	Strain (s _n)	(KN)	Strength (MIPa)
A (5H)	.00029	.00027	0.090	13.25	49
B (10H)	.000315	.00029	0.103	1730	59
C (15H)	.000285	.00028	0.077	2520	84
D (20H)	.00030	.00028	0.087	23.68	90
E (25H)	.00027	.00025	0.063	19.00	63
F (30H)	.00027	.00025	0.060	13.40	54
G (5C)	.00032	.00030	0.087	12.00	40
H (10 C)	.00029	.00026	0.117	13.00	50
I (15 C)	.00030	.00028	0.087	15.10	54
J (20C)	.00030	.00029	0.103	18.52	64
K(25C)	.00029	.00027	0.090	19.40	72
L (30C)	.00029	.00027	0.087	22.40	83

4 THEORY OF DATA ANALYSIS USING ANOVA

4.1 Two Way Classification

The Two way classification model is expressed as;

 $X_{ijk} = \mu + \alpha_i + \beta_j + \lambda_{ij} + e_{ijk}$

Where; α_i = Factor A effects

 β_i = Factor B effects

 $\lambda_{ij} = (\alpha \beta)_{ij}$ = Interaction effects

The estimates of these parameters are;

$$\mu = \bar{X}.., \quad \alpha_i = \bar{X}_{i.} - \bar{X}..., \quad \lambda_{ij} = \bar{X}_{ij.} - \bar{X}_{i.} - \bar{X}_{.j} + \bar{X}... \quad (13)$$

Where,
$$\overline{X}_{i.} = \frac{\sum_{j} T_{i.}^{2}}{q}$$
, $\overline{X}_{.j} = \frac{\sum_{i} T_{.j}^{2}}{p}$, $\overline{X}_{ij.} = \frac{\sum_{k=1}^{r} X_{ijk}}{q}$
And,
 $\overline{X}_{...} = Grand mean(\mu) = \frac{T_{...}}{pqr}$ as $T_{...} = \sum_{ijk} X_{ijk}$ (14)

To test for the significance of the factors A, B, and interaction effects, we use the Two way ANOVA table proposed in table 3 (Eze, 2002);

TABLE 3: TWO WAY CLASSIFICATION ANOVA

Source of	Degrees of	Sum of	Mean	F-ratio
V ariance	Freedom	Squares	Squares	
Factor A	p-l	SSA	MSA	MSA/MSc
Factor B	q-1	SSB	MSB	MS3/MSc
Interaction (λ)	(p-1)(q-1)	SSλ	MSλ	MSX/MSE
Error	Pq(r-1)	SSe	MSe	
Total		SST		

Where; SSA = Sum of squares due to factor A SSB = Sum of squares due to factor B SS λ = Sum of squares due to interaction MSA = Mean sum of squares due to factor A MSB = Mean sum of squares due to factor B MS λ = Mean sum of squares due to interaction

The estimates of these parameters are;

$$SSA = C_i - C = \frac{\sum T_{i..}^2}{qr} = \frac{T_{...}^2}{pqr}$$
(15)

$$SSB = C_j - C = \frac{\sum I_{.j.}}{pr} = \frac{I_{...}}{pqr}$$
(16)

$$SS\lambda = C_{ij} - C_i - C_j + C \tag{17}$$

Where, $C_{ij} = \frac{\sum T_{ij}}{r}$

$$SSe = C_{ijk} - C_{ij}$$
(18)
Where, $C_{ijk} = \sum_{ijk} X_{ijk}^{2}$

$$MSA = \frac{SSA}{p-1} \tag{19}$$

$$MSB = \frac{SSB}{q-1} \tag{20}$$

$$MS\lambda = \frac{SS\lambda}{(p-1)(q-1)}$$
(21)

$$MSe = \frac{SSe}{pq(r-1)}$$
(22)

4.2 Three Way Classification

Three way classification relation is expressed classically as;

$$\begin{split} X_{ijkl} &= \mu + \alpha_i + \beta_j + \lambda_k + (\alpha\beta)_{ij} + (\alpha\lambda)_{ik} + (\beta\lambda)_{jk} + \\ (\alpha\beta\lambda)_{ijk} + e_{ijkl} & (23) \end{split}$$
Where, α_i = Factor A effect β_j = Factor B effect λ_k = Factor C effect $(\alpha\beta)_{ij}$ = Interaction effect between A and B $(\alpha\lambda)_{ik}$ = Interaction effect between A and C $(\beta\lambda)_{jk}$ = Interaction effect between B and C $(\alpha\beta\lambda)_{ijk}$ = Interaction effect between A, B, and C e_{ijkl} = Error or residual effect The estimates for sum of squares of these parameters are;

$$SS\alpha_{i} = \frac{1}{ncL} \sum T_{i...}^{2} - \frac{T_{...}^{2}}{N}$$
(24)

$$SS\beta_{i} = \frac{1}{nRL} \sum T_{.j..}^{2} - \frac{T_{...}^{2}}{N}$$
(25)

$$SS\lambda_{i} = \frac{1}{nRc} \sum T_{..k.}^{2} - \frac{T_{...}^{2}}{N}$$
(26)

$$SS(\alpha\beta)_{ij} = \frac{1}{nL} \sum_{nL} T_{ij...}^{2} - \frac{1}{nLc} \sum_{nLc} T_{i...}^{2} - \frac{1}{nRL} \sum_{nLc} T_{.j...}^{2} + \frac{T_{....}^{2}}{N}$$
(27)

$$SS(\alpha\lambda)_{ik} = \frac{1}{nc} \sum_{k=1}^{\infty} T_{i.k.}^{2} - \frac{1}{nLc} \sum_{k=1}^{\infty} T_{i...}^{2} - \frac{1}{nRc} \sum_{k=1}^{\infty} T_{..k.}^{2} + \frac{T_{...}^{2}}{N}$$
(28)

(12)

$$SS(\beta\lambda)_{jk} = \frac{1}{nR} \sum_{n=1}^{\infty} T_{.jk.}^{2} - \frac{1}{nRL} \sum_{n=1}^{\infty} T_{.j.}^{2} - \frac{1}{nRc} \sum_{n=1}^{\infty} T_{..k.}^{2} + \frac{T_{...}^{2}}{N}$$
(29)

$$SS(\alpha\beta\lambda)_{ijk} = \frac{1}{n} \sum_{ijk.}^{2} T_{ijk.}^{2} - \frac{1}{nL} \sum_{ijl.}^{2} T_{ijl.}^{2} - \frac{1}{nc} \sum_{ill.}^{2} T_{i.k.}^{2} - \frac{1}{nR} \sum_{ill.}^{2} T_{ijk.}^{2} + \frac{1}{nLc} \sum_{ill.}^{2} T_{i...}^{2} + \frac{1}{nRL} \sum_{ill.}^{2} T_{ill.}^{2} + \frac{1}{nRc} \sum_{ill.}^{2} T_{i.k.}^{2} - \frac{T_{...}^{2}}{N}$$
(30)

$$SSerror = \sum X_{ijkl}^{2} - \frac{1}{n} \sum T_{ijk}^{2}$$
(31)

Where; T =Grand sum

 $T_{i...}$ = Sum of factor A at ith level

 T_{j} = Sum of factor B at jth level

 $T_{k} =$ Sum of factor C at kth level

 T_{ii} = Sum of interactions of A and B at ith and jth

 $T_{i.k.}$ = Sum of interactions of A and C at ith and kth level

 T_{ik} = Sum of interactions of B and C at jth and kth level

level

Note: i = 1, 2, ..., Rj = 1, 2, c $k = 1, 2, \dots \dots L$ l = 1, 2, ..., n

Hence, to test for the significance of the factors A, B, and interaction effects, we use the Three way ANOVA table proposed below;

	-			
Source of	Degrees of	Sum of	Mean	F-ratio
V ariance	Freedom	Squares	Squares	
α,	R-1	SSa	MSα	MSa /MSc
ßı	c-l	SSK	MS §	MSB/MSc
З,	L-1	SS.4	MSA	$MS\lambda/MSe$
αB	(R-l)(c-l)	SS≝ß	MS at 3	MS0R/MSe
al	(R-1)(L-1)	SSind	MS red	MSa2./MSc
31	(c-1)(L-1)	SSRA	MS μ_{s}	MS\$2/MSe
$n\beta_{2}$	(R-l)(c-l)(L-l)	SS a βλ	MSasi	MSaBA/MSc
Error	RcL(n-1)	SSe	MSe	
Total		SST		

Therefore;

$MS\alpha = \frac{SS\alpha}{R-1}$	(32)
$MS\beta = \frac{SS\beta}{c-1}$	(33)

$$MS\lambda = \frac{BSR}{L-1}$$
(34)
$$MS\alpha\beta = \frac{SS\alpha\beta}{(R-1)(c-1)}$$
(35)

$$MS\alpha\lambda = \frac{SS\alpha\lambda}{(R-1)(L-1)}$$
(36)

$$MS\beta\lambda = \frac{SS\beta\lambda}{(L-1)(c-1)}$$
(37)

$$MS\alpha\beta\lambda = \frac{SS\alpha\beta\lambda}{(R-1)(L-1)(c-1)}$$
(38)

4.3 Creep Experiments

Creep tests were conducted on the samples at a constant stress (loading) based on the average value of pressure obtained from, the operations data made available by Shell Production Development Corporation (SPDC), Bonga project, 130km off shore Nigeria, FPSO. The mean pressure is calculated at 14.1MPa (141bar). At applications of equations (1) to (10) in different combinations on the experimental field data, the true stress and strain tables were developed, thus;

TABLE 5: TRUE STRAIN VALUES

Sample A							
Temp/Time	I hr.	1.5 hrs	2hrs	25 hrs	3hrs		
50 °c	0.0140	0.0152	0.0162	0.0173	0.0175		
70 °c	0.0193	0.0218	0.0221	0.0229	0.0234		
90 °c	0.0256	0.0266	0.0283	0.0285	0.0288		
110 °c	0.0269	0.0302	0.0330	0.0350	0		
130 °c	0.0313	0.0352	0	0	0		

Sample B								
Temp/Time	Temp/Time I hr. 1.5 hrs 2 hrs 2.5 hrs 3 hrs							
50 °c	0.0044	0.0099	0.0128	0.0139	0.0147			
70 °c	0.0196	0.0208	0.0215	0.0222	0.0224			
90 °c	0.0227	0.0229	0.0244	0.0251	0.0252			
110 °c	0.0262	0.0280	0.0290	0.0298	0.0311			
130 °c	0.0293	0.0309	0.0334	0	0			

Sample C							
Temp/Time	I hr.	1.5 hrs	2hrs	25 hrs	3hrs		
50 °c	0.0045	0.0054	0.0073	0.0098	0.0099		
70 °c	0.0190	0.0210	0.0214	0.0218	0.0220		
90 °c	0.0198	0.0214	0.0222	0.0245	0.0259		
110 °c	0.0222	0.0245	0.0264	0.0268	0.0290		
130 °c	0.0274	0.0286	0.0305	0.0316	0.0331		

Sample D							
Temp/Time	I hr.	1.5 hrs	2hrs	25 hrs	3hrs		
50 °c	0.0073	0.0078	0.0087	0.0091	0.0092		
70 °c	0.0195	0.0199	0.0201	0.0203	0.0210		
90 °c	0.0245	0.0256	0.0259	0.0264	0.0264		
110 °c	0.0261	0.0271	0.0276	0.0286	0.0295		
130 °c	0.0304	0.0312	0.0320	0.0326	0		

Sanp le E							
Temp/Time	ime I hr. 1.5 hrs 2hrs 2.5 hrs 3hrs						
50 °c	0.0122	0.0150	0.0171	0.0177	0.0186		
70 °c	0.0142	0.0156	0.0159	0.0174	0.0200		
90°c	0.0190	0.0197	0.0203	0.0208	0.0215		
110 °c	0.0216	0.0224	0.0242	0.0273	0.0287		
130 °c	0.0294	0.0306	0.0311	0.0331	0		

Sample F									
Temp/Time	I hr.	1.5 hrs	2hrs	25 hrs	3hrs				
50 °c	0.0007	0.0012	0.0021	0.0030	0.0043				
70 °c	0.0115	0.0122	0.0229	0.0149	0.0155				
90 °c	0.0179	0.0183	0.0189	0.0191	0.0193				
110 °c	0.0198	0.0207	0.0218	0.0256	0.0261				
130 °c	0.0267	0.0278	0.0285	0.0320	0				

TABLE 6: TRUE STRESS VALUES

Sample A x 10° (Pa)									
Temp/Time	lhr	1.5hrs	2hrs	2.5hrs	3hrs				
50 °C	14.363	14.380	14.395	14.410	14.415				
70 °C	14,440	14,476	14.481	14.492	14.500				
90 °C	14.532	14.545	14.571	14.574	14.577				
110 °C	14,551	14.598	14.640	14.668	0				
130 °C	14.615	14.672	0	0	0				

Sample B x 10⁶ (Pa)

Temp/Time	lhr	1.5hrs	2hrs	2.5hrs	3hrs
50 °C	14.226	14:304	14.345	14.361	14.373
70 °C	14.444	14.461	14.471	14.483	14.484
90 °C	14,488	14,506	14.514	14.525	14.526
110 °C	14,540	14.566	14.582	14.592	14.162
130 °C	14,585	14,409	14.646	0	0

Sample C x 10° (Pa)

Temp/Time	lhr	1.5hrs	2hrs	25hrs	3hrs
50 °C	14.228	14 240	14.267	14.304	14.305
70 °C	14,436	14.464	14.470	14.475	14.479
90 ℃	14,447	14,470	14.481	14.515	14.537
110 °C	14,482	14515	14.543	14.549	14.580
130 °C	14,558	14.575	14.602	14.619	14.641

Sample D x 10⁶ (Pa)

Temp/Time	lhr	1.5hrs	2hrs	2.5hrs	3hrs
50 °C	14.267	14.274	14.285	14.295	14.296
70 °C	14.443	14.448	14.452	14.455	14.465
90 °C	14515	14.531	14.537	14.542	14.577
110 °C	14,539	14.554	14.559	14.575	14.588
130 °C	14.602	14.612	14.625	14.634	0

Sample E x 10° (Pa)

······································								
Temp/Time	lhr	1.5hrs	2hrs	2.5hrs	3hrs			
50 °C	14.338	14378	14.408	14.416	14.430			
70 °C	14366	14386	14.389	14.413	14.450			
90 °C	14,437	14,445	14.457	14.462	14.471			
110 °C	14.472	14.485	14.510	14.557	14.578			
130 °C	14,585	14,595	14.611	14.631	0			

Sample F x 10⁶(Pa)

Temp/Time Ihr 1.5hrs 2hrs 2.5hrs 3hrs 50 °C 14.174 14.181 14.194 14.206 14.223 70 °C 14.200 14.223 14.224 14.205 14.223					
Temp/Time	lhr	1.5hrs	2hrs	25hrs	3hrs
50 °C	14.174	14.181	14.194	14.206	14.223
70 °C	14.329	14.338	14.349	14.375	14.383
90 °C	14.421	14.426	14.435	14.437	14.438
110 °C	14,447	14,460	14.476	14.531	14.538
130 °C	14.547	14.559	14.574	14.625	0

4.2.1 Creep Curves

The creep experiments were conducted under constant stress (load) which produced varying strain effects on different samples at various temperatures and time intervals. The strain-time curves shown below portray the effect of creep on the samples of study which were taking from Tables 7a-to-7f.

Table 7a: Strains atvarious Temperatures for Sample A

Time (hr)	A ₅₀	A ₇₀	A _{so}	A ₁₁₀	A ₁₃₀
1	0.0140	0.0193	0.0256	0.0269	0.0313
15	0.0152	0.0218	0.0256	0.0302	0.0352
2	0.0162	0.0221	0.0283	0.0330	0
2.5	0.0173	0.0229	0.0285	0.0350	0
3	0.0175	0.0234	0.0288	0	0

Table 7b : Strains at various Temperatures for Sample B

Time (hr)	B ₅₀	Bn	B∞	B ₁₁₀	B ₁₃₀
1	0.0044	0.0196	0.0227	0.0262	0.0147
1.5	0.0099	0.0208	0.0239	0.0280	0.0224
2	0.0128	0.0215	0.0244	0.0291	0.0252
2.5	0.0139	0.0222	0.0251	0.0298	0.0311
3	0.0147	0.0224	0.0252	0	0

Table 7c: Strains at various Temperatures for Sample C

Time (hr)	C ₅₀	C ₇₀	C ₅₀	C ₁₁₀	C ₁₃₀
1	0.0045	0.0190	0.0198	0.0222	0.0274
1.5	0.0054	0.0210	0.0214	0.0245	0.0286
2	0.0073	0.0214	0.0222	0.0264	0.0305
2.5	0.0098	0.0218	0.0245	0.0268	0.0316
3	0.0099	0.0220	0.0259	0.0290	0.0331

Table 7d : Strains at various Temp eratures for Samp le D

Time (hr)	D ₅₀	D ₇₀	D ₂₀₀	D ₁₁₀	D ₁₃₀
1	0.0073	0.0195	0.0245	0.0261	0.0304
1.5	0.0078	0.0199	0.0256	0.0271	0.0312
2	0.0087	0.0201	0.0259	0.0276	0.0320
2.5	0.0091	0.0203	0.0264	0.0286	0.0326
3	0.0092	0.0210	0.0264	0.0295	0

Table 7e: Strains at various Temperatures for Sample E

Time (hr)	E ₅₀	Eπ	Exo	E110	E ₁₃₀
1	0.0122	0.0142	0.0190	0.0216	0.0294
1.5	0.0150	0.0156	0.0197	0.0224	0.0306
2	0.0171	0.0159	0.0203	0.0242	0.0311
2.5	0.0177	0.0174	0.0208	0.0273	0.0331
3	0.0186	0.0200	0.0215	0.0287	0

Table 7f: Strains at various Temperatures for Sample F

Time (hr)	\mathbf{F}_{50}	F ₇₀	F ₂₀	Fno	F ₁₃₀
1	0.0007	0.0115	0.0179	0.0198	0.0267
1.5	0.0012	0.0122	0.0183	0.0207	0.0278
2	0.0021	0.0129	0.0189	0.0218	0.0285
2.5	0.0030	0.0149	0.0191	0.0256	0.0320
3	0.0042	0.0155	0.0193	0.0261	0

5 ANALYSIS OF DATA USING SPSS SOFTWARE

The true strain and stress data generated in this research can further be analyzed to investigate the variance between samples and the significant effect of factors and treatments. The "SPSS" statistical tool is employed to this regard by applying: One way, Two way and further Three way classification analysis of variance, nonetheless, the One way analysis produced no significant result hence its details were ignored. The results of the analysis are shown in the following tables below, while the details are in Appendix C. The level of significance adopted throughout the analysis of this research data is 95 percent confidence interval, making our significance level to 0.05. Due to the bulky nature of the data collected, the manual computation will be too cumbersome and full of analytical mistakes so, the use of statistical software was advised. The software used for this analysis as earlier mentioned is SPSS (Statistical Package for Social Sciences) version 17. The collected field data (experimental data) were reduced to a one observation per cell to depict creep parameters (strain and stress) of the samples. The statistical inference drawn from the analysis is based on the following null hypotheses and their alternatives;

- 1. H0: The main effects (time, temperature, and sample) are not significant.
- 2. H1: The main effects are significant.
- 3. H0: The interaction effects are not significant.
- 4. H1: The interaction effects are significant.

The ANOVA tables that follow are drawn from analysis done with SPSS software .

 TABLE 8: SPSS – Two Way ANOVA FOR DEPENDENT

 VARIABLE
 STRAIN

Source	Type III Sum	df	Mean	F	Sig.
	ofSquames		Square		
Corrected Model	. 001°	8	.000	1.248	.335
Intercept	.011	1	.011	100.099	.000
Temp.	.001	4	.000	1.536	.239
Hours	.000	4	.000	.959	.456
Error	.002	16	.000		
Total	.014	25			
Corrected Total	.003	24			

TABLE 9: SPSS – Two Way ANOVA FOR DEPENDENT	
VARIABLE STRESS	

S ource	Type III Sum	df	Mean	F	Sig.
	ofSquares		Square		
Corrected Model	398.590*	8	49.824	2.573	.051
Intercept	3718,438	1	3718,438	192.004	.000
Temp.	118.331	4	29.583	1.528	.028
Hours	280.258	4	70.065	3.618	.241
Error	309.864	16	19.366		
Total	4426.891	25			
Corrected Total	708.453	24			

From Tables 8 and 9, it is obviously inferred that the Two way classification could not produce the interaction effect, even the temperature and time (hour) effects are not significant for the Strain variable (table 8), but temperature showed a good significant effect on the samples in the case of Stress variables (table 9). The ANOVA for sample C (strain) indicates that time (hour) and temperature treatments are super significant on the material sample C. Only temperature treatment showed significant effect on sample D and also on sample F and slight significance on sample B. The ANOVA of dependent variable Stress also produced the facts that temperature treatment showed a significant effect on sample A unlike in strain. A super significance is observed for both time and temperature treatments on sample C, a slight significance of temperature on sample B but no significant of both temperature and time treatments on rest of the samples. As stated earlier no interaction effects were recorded in the analysis for both Stress and Strain variables. The actual reason for this development (no sign of interaction effect) is because the data have only one observation per cell, hence no interaction effect came out of the analysis, as this has been reduced to the error or residual in the model. Also, there was no sample effect since the analysis was two way accommodating only temperature and time effects. Then, we move a step further to the three way classification of analysis of variance to search for both sample and interaction effects.

 TABLE 10: SPSS – THREE WAY ANOVA FOR DEPENDENT

 VARIABLE STRAIN

Source	Туре	IΠ	df	Mean	F	Sig.
	Sum	of		Square		
	Squames	5				
Corrected Model	.010	ø	69	.000	4.359	.000
Intercept	.06	2	1	.062	1875.218	.000
S ample	.00	1	5	.000	3.369	.008
Hour	.00	0	4	7.364E-5	2.236	.072
Temperature	.00	4	4	.001	31.942	.000
S ample-Hour	.001		20	3.170E-5	.962	.514
S ample-Temperature	.00	12	20	8.815E-5	2.676	.001
Hour-Temperature	.00	12	16	.000	4.651	.000
Error	.00	в	80	3.294E-5		
Total	.07	14	150			
Corrected Total	וח	3	149			

Due to full factorial nature of the design (that is no error term) the interaction effect was used as error (effect of single observation per cell). Therefore, at two way, no interaction effect was estimated but at three way the two way interaction was drawn but not three way interaction because the three way interaction was used as error. The statistical inferences drawn from Table 10 above on the strain variable are;

- 1. Sample effects are significant.
- 2. Hour (time) effects are not significant.

- 3. Temperature effects are super significant.
- 4. Sample-hour interaction effects are not significant.
- 5. Sample-temperature interaction effects are very significant.
- 6. Hour-temperature interaction effects are super significant.

 TABLE 11: SPSS – THREE WAY ANOVA FOR DEPENDENT

 VARIABLE
 STRESS

Source	Type III Sum	df	Mean	F	Sig.
	ofSquares		Square		
Corrected Model	1312.496*	69	19.022	3303	.000
Intercept	27752.433	1	27752.433	4818.668	.000
Sample	75.970	5	15.194	2.638	.029
Hour	170.977	4	42.744	7.422	.000
Temperature	318,107	4	79.527	13.808	.000
S ample-Hour	97.470	20	4.874	.846	.652
S ample-Temperature	185.351	20	9.268	1.609	.071
Hour-Temperature	464.620	16	29.039	5.042	.000
Error	460.749	80	5.759		
Total	29525.677	150			
Corrected Total	1773.244	149			

The statistical inferences drawn from Table 11 on the stress variable are;

- 1. Sample effects are significant.
- 2. Hour (time) effects are super significant.
- 3. Temperature effects are super significant.
- 4. Sample-hour interaction effects are not significant.
- 5. Sample-temperature interaction effects are not significant.
- 6. Hour-temperature interaction effects are super significant.

5.1 FURTHER ANALYSIS OF RESULTS AND INFERENCES

5.1.1 Material Strength

From Table 2, it is apparent that the new hybrid nanocomposite material has high strength compared to the baseline epoxy-alumina nanocomposite material. The new hybrid material with a 15% wt fraction of fillers (13% wt. alumina and 2% wt. calcium silicate) showed the highest tensile strength of 90Mpa followed by the new hybrid material with a 20% wt. fraction of fillers, which has a tensile strength of 84Mpa. Nevertheless, the baseline nanocomposite material with a 30% wt. fraction of alumina filler showed a good strength of 83Mpa.

5.1.2 Strain-Time Creep Curve

The curves of Fig.1 to Fig.6 show the creep response of each hybrid nanocomposite basically at the secondary creep stage. The creep curves obey the power law of the following form;

$$\mathcal{E} = At^n \tag{39}$$

The equation above depicts the strain-time relationship which governs all the line equations of the creep curves (Figures 1 - 6). Through these line equations the time (t) of failure for the uncreeped materials can be predicted. The correlation coefficients of these lines are also shown on the graphs.

5.2.3 The ANOVA Post Hoc Tests and Inferences

This is the post ANOVA tests for make multiple comparisons for the main effects (samples, time and temperatures), among each effect, basically carried out after the three way classification analysis, as it is the only analysis that shows the interaction effect. Post hoc tests for the dependent variable strain produced the following results; It is clearly observed in the comparisons between samples according to the mean difference, that sample C showed superior means over other samples except sample D. This indicates that samples C and D are the best of the new hybrid nanocomposites, which is in affirmation with the result obtained on the tensile tests. In terms of hour (time) comparisons, the third hour (3 hrs) is the only time with remarkable significance when compared with others, which shows that samples were mostly affected at this period. Finally, the 50 degrees temperature shows a super significance over others, this means that all the samples will operate best at this temperature. Post hoc tests for the dependent variable stress produced the following results; Sample C at this instant also showed superior means over other samples, followed closely by sample D. This also confirms the previous inferences drawn from the strain and tensile tests. Multiple comparisons on time indicate also that stress is most significant at the third hour (3 hrs) just as in the case of strain. But the post hoc tests for temperature at stress variable shows that stress is most significant at 130 degrees temperature than at any other temperature.

6 CONCLUSION

The high temperature creep and creep fracture properties of engineering materials are usually analyzed in terms of the variations in minimum creep rate and rupture life, with stress and temperature. In this research we applied an experimental design in collection of the field data and further application of analysis through standard statistical software. The strength of the new hybrid nanocomposite material was measured using a dependable tensile testing machine. The result of the tensile test shows that the new hybrid composite material has good strength when compared with the strength of a neat epoxy or the baseline epoxy/alumina composite material. The development of the creep testing machine is another phase of this research work which we did not lay emphasis upon but nonetheless, made good contribution towards the actualization of this research work. Creep experiment which was used in generating the required field data (elongation) for the research helped on provision of the required stress-strain data through the application of some analytical models. The short term creep experiment conducted at constant stress but at varying temperatures and time, shows the new hybrid materials creep response at various temperatures and time. Each of the new materials showed good creep resistant property at temperatures between 500C and 900C but the 15% wt and 20% wt filler constituent exhibited good creep resistance above these temperatures. The hybrid composite with 15%wt constituent was the only one that could withstand temperature of 1300C.

REFERENCES

 Akita, H., and Hattori, T. (1999). Studies on molecular composite.I. Processing of molecular composites using a precursor polymer for poly(P-Phenylene benzobisthiazole). Journal of Polymer Science: Part B: Polymer Physics, 37(3), 189-197.

- 2. ASM International (n.d). Tensile testing:. Introduction to tensile testing (2nd ed).www.asminternational.org.
- 3. Athawale, A.A., Bhagwat, S.V., Katre, P.P., Chandwadkar, A.J., and Karandikar, P. (2003). Aniline as a stabilizer for metal nanoparticles. Materials Letters, 57(24-25),3889-3894.
- Daniel, I.M., Miyagawa, H., Gdoutos, E.E., and Luo, J.J. (2003). Processing and characteristization of epoxy/clay nanocomposites. Express Mechanics, 43, 348 – 354. Doi: 10.1243/03093247V293159.
- Endo, M., Naguchi, T. and Ho, M., (2008). Extreme performance rubber nanocomposites for probing and excavating deep oil resources using multi walled carbon nanotubes. Advanced Functional Materials, 18, 3403 -3409.
- Evora, V.M.F., and Shukla, A. (2003). Fabrication, characterization and dynamic behaviour of polyester/Ti02 nanocomosites. Material Science Engineering A, 36, 358 – 366.
- 7. Eze, F.C.(2002). Introduction to analysis of variance, volume 1. Obiagu, Enugu: Lanno.
- Gedney, R. (2002). Guide to testing metals under tension. Advanced Materials and Processes, pp 29 - 31.
- Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., and Schulte, K. (2004). Carbon nanotube reinforced epoxy – composites: Enhanced stiffness and fracture toughness at low nanotubes content. Composite science and Teachnology, 64, 2363 – 2371: Elsevier. Retrieved from http://www.hinari– gw.who.int/composite science technology.
- Gorga, R.E., and Cohen, R.E. (2004). Toughness enhancements in poly (methyl methacrylate) by addition of oriented multi-wall carbon nanotube. Journal of Polymer Science, Part B: Polymer Physics, 42(4), 2690-2702.
- Jenkins, M.G. (2007). Mechanical Engineering: Me 354 [Lecture notes]. Seattle, Washington: University of Washington, Department of Mechanical Engineering.
- Lea, R.H. (2002). Composite piping systems to improve celi and gas production. Baton Ronge, LA: Edo Specialty plastics.
- Luo, J.J., Daniel, I.M. (2003). Characterization and modeling of mechanical behaviour of pohymer/clay nanocomposites. Composite Science and Technology, 63(11), 1607-1616.
- 14. Masahiro, K., Yoshimichi, O., Masanori, K., Shigemitsu, O., and Toshikalsu, T. (2006). Preparation and various characteristics of

epoxy/alumina nanocomposites. IEEJ Transactions on Fundamentals and Materials, 126 (11), 1121 – 1127: The Institution of Electrical Engineers of Japan. Doi:10.1541/iecjfms.126.1121.

- Meda, L., Marra, G., Galfetti, L., Inchingalo, S., Severini, F., na De Luca, L. (2005). Nanocomposites for rocket solid propellants. Composites Science and Technology, 65(5), 769-773.
- 16. Milue, D. (2000). Small solutions for big returns. Oil and Gas Next Generation, Q4, 2009, 93-98. Retrieved from http://www.ngoilgas.com.
- 17. Omrani, A., Simon, L.C., and Rostami, A. (2009). The effect of alumina nanoparticle on the properties of epoxy resin system. Materials Chemistry and Physics 114 (1), 145 – 150: Elsevier. Retrieved from http://www.hinari-gw.who.int/compositescience.
- 18. Oriakhi, C.O. (1998). Nano Sandwiches. Chemical Briefing, 34:59-62.
- Park, C., Park, O., Lim, J., and Kim, H. (2001). The fabrication of syndiotactic polystyrence/organophilic clay nanocomposites and their properties. Polymer Letters, 42, 7465 -7475.
- Ray, S.S., and Bousmina, M. (2005). Brodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science, 50(8), 962-1079.
- Ritchie, R.O. (1993). Mechanical behavior of materials [Lecture notes]. Rhoads, Berkely, California: University of California.
- 22. Roy, R., Roy, R.A., and Roy, D.M. (1986). Alternative perspectives on quasi–crystallinity: non-uniformity and nanocomposites. Material Letters, 4 (8-9), 323 328.
- 23. RTO Lecture series, EN-AVT- 129, May 2005.
- 24. Sailor, M.J., and Link, J.R. (2005). Smart dust: Nanostructured devices in a grain of sand. Chemical Community, 2005, 1375-1383.
- 25. Schmidt, D., Shah, D., and Giannelis, E.P. (2002). New advances in polymer/layered silicate nanocomposites. Current opinion in solid and Materials Science, 6 (3), 205 – 212.
- Scott, S., Crudden, C.M., and Jones, C. W. (Eds) (2003). Nanostructured catalysts. Nanostructure science and Technology Series, P.342. New York: Springer.
- Seppala, J. (2010). Editorial corner a personal view Nanocomposites, excellent properties or hype? eXPRESS Polymer Letters, 4 (3), 130. DOI: 3144/expresspolymlett.2010.17

- Usuki, A., Kawasum, M., Kojima, Y., Okada, A., Kuraruchi, T., and Kamigaito, O.J. (1993). Swelling behaviour of Montmorillorite cation exchanged for vamiro acids by E-caprolactam. Materials Resources, 8(5), 1174.
- 29. Vincenzo, S., Fallatah, G.M., and Mehdi, M.S. (2010). Applications of nanocomposite materials in the Oil and Gas industry. Advanced Materials Research, 83(86), 771-776.
- 30. Walpole, R. E. (1982). Introduction to statistics (3rd ed.)pp 403 428. New York: Macmillan.
- Wilshire, B., and Evans, R.W.(1994). Acquisition and analysis of creep data. The Journal of Strain Analysis for Engineering Design, 29, 159 – 165.
- 32. Yong, V., and Hahn, H.T (2004). Processing and properties of SiC/Vinyl ester nanocomposites. Nanotechnology, 15, 1338-1343.
- Zavyalov, S.A., Pivkina, A.N., and Schoonman, J. (2002). Formation and characterization of metalpolymer nanostructured composites. Solid State lonics, 147(3-40), 415-41.