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Properties And Experimental Of Gaussian And 
Non Gaussian Time Series Model 

 
A. M. Monem  

 
Abstract: Most of time series that appear in many economical geophysical and other phenomena are driven by non- Gaussian white noise (   ), in this 
paper investigate some probabilistic properties of Gaussian and non- Gaussian mixed with identification methods of ARMA model. We have theoretically 

derived the characteristic function the first of (four moments) of skeweness and kurtosis coefficients for white noise (  ) with Gaussian and non- 
Gaussian (Poisson) distribution, simulation experiments were used to confirm the accuracy of the theoretical results. Declared the identification sample 
Autocorrelation function (ESACF) and (Kumar) method (C- table) which depending upon the pad approximation and suggested new method depending 
upon the extended sample partial Autocorrelation function (ESPACF) and find ascertain efficiency of suggested method. 
 
Index Terms: Gaussian white noise distribution, non- Gaussian white noise distribution, ARMA process, characteristic function of moments for 
skeweness, characteristic function of moments for kurtosis extended sample autocorrelation, extended sample partial autocorrelation   

———————————————————— 

 

1 INTRODUCTION 
Time series analysis and forecasting methods play an 
important role in all researchers especially with Gaussian and 
non Gaussian mixed models. Nelson and Granger (1979), 
Obeysekera and Yevjevich (1985) reported a procedure for 
generation of samples of an autoregressive scheme that had 
an Poisson distribution with given mean and skewness. 
Fernandez and Salas (1986) developed and tested a new 
class of time series models capable of reproducing the 
covariance structure normally found in periodic stream flow 
time series under non-Gaussian marginal distribution. The 
general class of forecasting methods involves two basic tasks, 
analysis of time series data and selection of the forecasting 
model that best fits the data series. Today, alter acrimonious 
arguments and considerable debates, it is accepted by a large 
number of researchers that in empirical tests Box-Jenkins is 
not an accurate method for post-sample time series 
forecasting, at least in the domains of business and economic 
applications where the level of randomness is high and where 
constancy of pattern, or relationships. Sim (1987) considered 
a time series model which can be used for simulating 
stationary river flow sequences with high skewness and the 
long-term correlation structure of an ARMA(1,1) models valid 
for non-normal distribution have also been developed Series 
of weekly stream flow were used for application and 
comparison of the proposed method. In this research 
investigate some probabilistic properties of Gaussian and non- 
Gaussian mixed with identification methods of ARMA (1, 1) 
model with derived the characteristic function of moments for 
Skeweness and Kurtosis coefficients for (  ) with Gaussian 

and non- Gaussian (Poisson) distribution, a Simulation 
experiments were used to confirm the accuracy of the 
theoretical results.  
 
 
 
 
 
 
 
 
 
 
 
 
 

2 General theoretical 
Let, we have stationary time series (             , then, 

we have the following ARMA (P, q) process:  
 
                                             

                    … ( ) 

 

Where           
 
For e ch ( ), ( ) is  he me n of  ime series  nd {   is a purely 

random error (white noise) distributed Gaussian with E (  ) = 

0,  
 

Variance of (  ) = E (   
  =   

    and                                             
 
Covariance (  ,     ) =  , for  ll  ≠ .   

 
Then, ARMA (1, 1) distributed Gaussian or normal distribution.                                 
By (B) operator we get:   
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3 Mixed model with normal distribution: 
Let we have a mixed model ARMA (1, 1) with normal 
distribution as follows:   
 

(1-                      ,            
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Where;        is the polynomial function of order (1) in (B). 
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We c n find  he rel  ionshi  be ween  he   r me ers ( )  nd 

(�) as follows:  
    

             
                                  

 

                      
    

                                       … (4) 

 
 

4 New Identification method of ARMA (1, 1) 
process: 
We know there are many methods using for identification the 
rank of mixed ARMA (1, 1) process, the best of these methods 
depend on extended sample autocorrelation (ESACF) which 
suggested by (Tsay and Tiao – 1984), this method depend on 
the in depended estimation (OLS) method of autoregressive 
with order (p) model as follows 
 

         
    

            
   

                                                  … (5) 

 
Where (    is the time series of (n) observations has ARMA (p, 

q), (0) is the ordinary regression; (p) is the rank of model and   

    
   

 is the purely random error. But the second method of 

identification ARMA (1, 1) model is suggested by (Kuldeep 
Kumar – 1987), this method depend on Smoothing approach 
of (pade) of estimation method of ARMA (1, 1) by using 
autoregressive or moving average model The new method of 
identification ARMA (1, 1) model is suggested to extended 
sample partial autocorrelation (ESPACF) by using the 
following formula:  
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And                                     for   =  ,  , …,  -1 

 
We can definite the extended sample partial Autocorrelation 
function   (ESPACF) of time series (    in general and for any 
positive number (m) as follows:  
 

                                                                              … (7) 

 

Where   w m                      
 
         

 
So if the original model is ARMA (p, q), therefore   {w m        

close to AR (P), because 
 

                     
                   
              

                                … (8)              

 

5 Distribution of time series {    ARMA (1, 1)}: 
Using the characteristic function to find the distribution of {    
depend on The relationship between the characteristic function 
of {     and characteristic function of  white noise {    , where 

the relationship is:  
 

              
 
                                                … (9) 

 
Where          the characteristic function of {     and       is 

the characteristic function of  white noise {      
 

First:  when the white noise {           
     

 
In this case we have: 
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Therefore (11) represent the characteristic function of {     
normal Distribution with mean (zero),  
        

Variance =    
    

        
 

    
    and (pdf) as follows: 
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Second: when the white noise {      oisson wi h      
 
In this case we have the (pmf) as follows: 
 

f         
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              o w 
     ,            and     

 
So that the characteristic function of white noise {    is: 
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Or                

 
       

 
Therefore; the characteristic function of {              with 

white noise {     oi      is: 
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6 The moments of time series {   
when            : 
According to above formula (13) and by using the 
characteristic function of {   } we have:    
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                                     … ( 4) 

 
By the same way we derive the characteristic function of 
(second, third, and forth. To find another moment of time 
series (    ) when white noise {     oi    , so, the mean and 

variance of (    is:  
  

= E (         
 

 
      and Var (   = 

    
 
  

    By substitute in weights (   
 
  of {ARMA (1, 1)}, we 

gets four moments of time series (  ) as follows:  
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7-Skewness and Kurtosis coefficients of (    
when {          

   : 
 
The skewness (Sk) is a measure of symmetry and all 
symmetric distributions have zero skewness, so  
 

Sk. = 
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But the kurtosis (Ku) is a measure peakedness of the (pdf ) or 
the( pmf) (Usually, compared to the normal distribution), for the 
normal distribution, this value equal to zero; so 
 

Ku=
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By using the previous four moments of time series {    with 

formula (18) and (19) we find the skewness and kurtosis of 
{   as follows:  

 
Sk:(                                                                             …(  ) 
 
Ku:(      3                                                                      … (  )   

 

8- Skewness and Kurtosis coefficients of (    
with {              
By the same way we can find the skewness and kurtosis of 
{    as follows: 
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9- Experimental Part: 
In this part we use many experimental with simulation. We 
expressed by using basic form as given by (Box and Muller). 
We find the random variable (  ), values (    and with sample 

sizes (n = 50, 100 and 200) we get the follows:  
 
A- Comparing between skewness theoretical normal and 
Poisson (T.N), (T.P) with experimental of normal and Poisson 
(E.N), (E.P) and kurtosis coefficients of (    with normal and 

Poisson also. 
 
When                         },  
 
We find the moments of experimental time series (  ) and 

according to formulas (18) and (19) with normal and by using 
(22) and (23) with Poisson we gets the following tables:  
 
Table (1-A): The skewness coefficients of ARMA (1, 1) when { 

              nd  oi    } 
 

    
  n 

 
(    ) 

 

Sk. (    
 
T. 
N.  

 
T. 
P. 

 
E.N. 

 
E.P. 

50 

 
(-0.8, -
0.9) 

0 
0.9
6 

0.009 0.94 

100 0 
0.9
6 

0.003 0.96 

200 0 
0.9
6 

0.002 0.96 

50 

 
(-0.3, 0.1) 

0 
0.7
4 

0.004 0.72 

100 0 
0.7
4 

0.002 0.73 

200 0 
0.7
4 

0.002 0.73 

50 

 
(0.3, -0.1) 

0 
0.8
4 

0.002 0.82 

100 0 
0.8
4 

0.002 0.83 

200 0 
0.8
4 

0.002 0.84 

50 

 
(0.7, 0.5) 

0 
0.9
1 

0.002 0.90 

100 0 
0.9
1 

0.001 0.88 

200 0 
0.9
1 

0.001 0.90 

50 
 
(0.9, 0.9) 

0 1 0.003 0.99 

100 0 1 0.001 0.99 

200 0 1 0.001 1.00 
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Table (1-B): The kurtosis coefficients of ARMA (1, 1) when {    

           nd  oi    } 
 

    
  n 

 
(    ) 

 

K.U.(    

 
T.N 

 
T.P. 

 
E.N
. 

 
E.P. 

50 

 
(-0.8, -
0.9) 

3 3.95 
3.0
4 

3.89 

100 3 3.95 
3.0
4 

3.94 

200 3 3.95 
3.0
3 

3.95 

50 

 
(-0.3, 
0.1) 

3 3.74 
3.0
6 

3.77 

100 3 3.74 
3.0
5 

3.75 

200 3 3.74 
3.0
0 

2.75 

50 

 
(0.3, -
0.1) 

3 3.74 
3.0
4 

3.73 

100 3 3.74 
3.0
0 

3.74 

200 3 3.74 
3.0
1 

3.77 

50 

 
(0.7, 0.5) 

3 3.86 
3.0
0 

3.81 

100 3 3.86 
3.0
0 

3.80 

200 3 3.86 
3.0
1 

3.86 

50 

 
(0.9, 0.9) 

3 4 
3.0
0 

3.99 

100 3 4 
3.0
0 

3.99 

200 3 4 
3.0
1 

4.55 

 
But when         and (n =200) we get the following tables: 
 

Table (2-A): The skewness coefficients of ARMA (1, 1) 

when       oi       } 
 

(    ) 
Sk. (    Sk.(    

Theoretical experimental Theoretical 

(0.9, 0.9) 0.22361 0.22816 0.22361 

(-0.3, 0.1) 0.15868 0.15920 0.22361 

 
Table (2-B): The kurtosis coefficients of ARMA (1, 1) when    

   oi       } 
 

(    ) 

Ku. (    Ku.(    

Theoretical 
experiment
al 

Theoretical 

(0.9, 0.9) 3.05 3.06738 3.05 

(-0.3, 0.1) 3.03649 3.03756 3.05 

 
B: Comparing between three methods (ESACF, C- table and 
ESPACF) of ARMA (1,1) with different parameters which 
identifies the stationary and invertibility values of (          , 
we gets the following table:  
 

Table (3): Frequency distribution for ARMA (1, 1) with different 
methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
So from above table, the results of method (ESPACF) and 
method (ESACF) gives more iterations and much better than 
(C-table) method. 
 
C: Comparing between the three methods for efficiency ARMA 
(1, 1) model by using (percentage Error) measurement, we 
gets the following table: 
 
Table (4): the percentage Error ratio for different methods  

 

10 CONCLUSION 
1- We find the results of method (ESPACF) and method 

(ESACF) gives more iterations and much better than 
(C-table) method 

2- Find that Error ratio decreasing with increasing 
sample size and method (ESACF) is better than the 
methods (ESPACF) and (C- table) respectively.  

 
 

   N (    ) 
ESAC
F 

C- table ESPACF 

50 
 
(-0.8, -0.8) 

0.038 0.044 0.042 

 100 0.016 0.018 0.024 

200 0.006 0.008 0.01 

50 
 
(-0.4, 0.2) 

0.032 0.04 0.044 

100 0.018 0.022 0.014 

200 0.008 0.006 0.002 

50 
 
(0.3, -0.1) 

0.036 0.036 0.038 

100 0.014 0.026 0.016 

200 0.004 0.002 0.006 

50 
 
(0.8, 0.6) 

0.03 0.034 0.028 

100 0.016 0.03 0.014 

200 0.002 0.008 0.01 

50 
 
(0.9, 0.9) 

0.032 0.038 0.032 

100 0.01 0.028 0.012 

200 0.006 0.01 0.008 

   n (    ) ESACF C- table ESPACF 

50  
(-0.8, -
0.8) 

481 478 479 

100 492 481 488 

200 497 486 495 

50 
 
(-0.4, 0.2) 

484 480 478 

100 491 489 493 

200 496 497 499 

50 
 
(0.3, -0.1) 

482 482 481 

100 443 487 492 

200 498 489 497 

50 
 
(0.8, 0.6) 

485 483 487 

100 492 485 493 

200 499 496 495 

50 
 
(0.9, 0.9) 

484 481 484 

100 495 486 494 

200 497 489 496 
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