Gα And Ag Closed Maps In Ideal Topological Spaces

K. Indirani, P. Sathishmohan, V. Rajendran

Abstract: In this paper some properties of gl±-I-closed maps, I±g-I- closed maps, wgl±-Iclosed, wl±g-I- closed functions are studied

1. INTRODUCTION AND PRELIMINARIES

An ideal I on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties. (1) $A \in I$ and $B \subseteq A$ implies $B \in I$, (2) $A \in I$ and $B \in I$ implies $A \cup B \in I$. An ideal topological space is a topological space (X, τ) with an ideal I on X and is denoted by (X, τ, I) . For a subset $A \subseteq X$, $A^*(I,\tau)=\{x \in X : A \cap U \notin I \text{ for every } U \in \tau (X,x)\}$ is called the local function of A with respect to I and τ [4]. We simply write A^* in case there is no chance for confusion. A kuratowski closure operator cl^{*}(.) for a topology $\tau^*(I, \tau)$ called the ^{*}- topology ,finer than τ is defined by cl^{*}(A) = $A \cup A^*$ [9]. If $A \subseteq X$, cl(A) and int(A) will respectively, denote the closure and interior of A in (X, τ) .

Definition1.1. A subset A of a topological space (X, τ) is called

- 1) α g-closed [5], if α cl (A) \subseteq U whenever A \subseteq U and U is open in (X, τ)
- 2) $g\alpha$ -closed [5], if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ)
- 3) wg α -closed [10], if α cl (int(A)) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).
- 4) wag-closed [10], if acl (int(A)) \subseteq U whenever A \subseteq U and U is open in (X, τ).

The complements of the above mentioned closed sets are called their respective open sets.

Definition 1.2. [1] A subset A of an Ideal topological space (X, τ , I) is said to be α I-open if A \subseteq int(CI*(int(A))). The complement of the α I-open set is called α I-closed.

- P.Sathishmohan is currently working as Head of the Department of Mathematics CA in KSG College of Arts and Science, Coimbatore. Tamilnadu, India, PH-09994662019. E-mail: <u>iiscsathish@yahoo.co.in</u>
- V.Rajendran is currently working as Assistant Professor in Department of Mathematics CA at KSG College of Arts and Science, Coimbatore. Tamilnadu, India, PH-09597454845. E-mail: <u>mathsraj05@yahoo.co.in</u>

Definition 1.3. A subset A of an ideal topological spaces (X, τ , I) is said to be

- 1) $\alpha g I closed [8]$, if $\alpha I cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 2) $g\alpha I closed [8]$, if $\alpha I cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α - open in X.
- 3) wg α -I-closed [3], if α Icl (int(A)) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).
- wag-I-closed [3], if alcl (int(A)) ⊆ U whenever A ⊆ U and U is open in (X, τ).
- 5) Ig-closed [7] , if $A^* \subseteq U$ whenever $A \subseteq U$ and U is open in X.

The complements of the above mentioned closed sets are called their respective open sets.

2. $g\alpha I - closed maps$

Definition 2.1. A map $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is called $g\alpha I - closed$ map if for each closed set F of (X, τ, I) , f(F) is a $g\alpha I - closed$ set of (Y, σ, J) .

Example 2.2. Let $X = Y = \{a,b,c\}, \tau = \sigma = \{\emptyset, \{a\}, \{b,c\}, X\}$ and $I = \{\emptyset, \{c\}\}$. Define a map $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ as follows. f(a) = a, f(b) = b, f(c) = c. Then for $\{b,c\}$ which is closed in X, $f(\{b,c\}) = \{a,c\}$ is not $\alpha - I$ - closed in Y. Hence f is not an αI -closed map. However, f is a $g\alpha I$ - closed map.

Definition 2.3. A map $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is said to be pre α I-closed, if f (U) is α I-closed in (Y, σ, J) for every α I-closed set U in (X, τ, I) .

Definition 2.4. A map f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ is said to be α l-irresolute, if the inverse image of every α -I set in Y is α -I-set in X.

Theorem 2.5. Let $f : (X, \tau, I) \rightarrow (Y, \sigma, J), h : (Y, \sigma, J) \rightarrow (Z, \eta, K)$ be two mapping such that h o $f : (X, \tau, I) \rightarrow (Z, \eta, K)$ is a $g\alpha I$ - closed map. Then

- 1. If f is continuous and surjective, then h is $g\alpha l$ closed.
- If h is αl-irresolute, Pre-αl- closed and injective, then f is gαl - closed.

Proof.

- Let B be a closed set of Y. Then f-1(B) is closed in X. But (h o f) (f-1(B)) is gαl-closed in Z and hence h(B) is gαl - closed in Z. Therefore h is a gαl-closed map.
- (2) Let A be closed in Y. Then (h o f) (A) is gαl-closed in Z. But h is αl-irresolute. Therefore h-1[(h o f) (A)] is gαl-closed in Y. This implies f(A) is gαl - closed in Y.

Hence f is a $g\alpha$ l-closed map.

Theorem 2.6.

- If f: (X, τ, I) → (Y, σ, J) is gαl- closed and A is αlclosed set of X then its restriction f / A : (A, τ / A, I) → (Y, σ, J) is gαl - closed.
- (2) Let B be open and $g\alpha$ I-closed is a subset of Y. If f: (X, τ , I) \rightarrow (Y, σ , J) is α I- closed then f / A : (A, τ / A, I) \rightarrow (Y, σ , J) is $g\alpha$ I - closed. Where A = f-1(B).
- (3) If B is αI closed, $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is galclosed then $f / A : (A, \tau / A, I) \rightarrow (Y, \sigma, J)$ is gal closed. Where A = f-1(B).

Proof: To prove (1). Let F be a closed set of A. Since F is closed in X, (f / A) (F) = f(F) is gal - closed in Y. Hence f / A is a gal – closed map. To prove (2). Let F be a closed set of A. Then F = A \cap H for some closed set H of X. But f (H) is al-closed in Y, since f is an α l-closed map. We have (f / A) (F) = f (A \cap H) = f(H) \cap B. But f(H) \cap B is gal- closed in Y, since B is open and gal- closed in Y. This implies that B is gal- closed in Y, since f(H) is α l-closed in Y. Therefore f / A is a gal- closed map. To prove (3). Let F be a closed set of A. Then F = A \cap H for some closed set H of X. But f(H) is a gal – closed set in Y, since f is a gal – closed map. We have (f / A) (F) = f (A \cap H) = f(H) \cap B, since f(H) is a gal – closed map. We have (f / A) (F) = f (A \cap H) = f(H) \cap B, since f(H) is gal-closed and B is α l-closed. We have f(H) \cap B is gal-closed. Hence f / A is a gal-closed map.

Definition 2.7. An Ideal topological space (X, τ , I) is said to be α I-normal if for every pair of disjoint closed sets A and B of (X, τ , I) there exists disjoint α I-open sets U and V such that A \subset U and B \subset V.

Theorem 2.8. If $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is continuous, $g\alpha I$ closed surjection and if (X, τ, I) is normal then (Y, σ, J) is αI -normal.

Proof. Let A, B be disjoint closed set of Y. Since X is normal, there exist disjoint open sets U and V of X. Such that f-1(a) \subset U and f-1(B) \subset V. Then there exist gal-open sets in G and H such that A \subset G, B \subset H and f-1(G) \subset U. f-1 (H) \subset V. Then we have f-1(G) \cap f-1(H) = ϕ . Since G is galopen and A is αI – closed, G \supset A implies $\alpha lint(H) \supset A$. Similarly $\alpha lint(H) \supset B$. Therefore $\alpha lint(G) \cap \alpha lint(H) = G \cap H = \phi$ and hence Y is αl -normal.

3. α gl – closed maps

Definition 3.1. A map f : (X, τ , I) \rightarrow (Y, σ , J) is called α glclosed map if for each closed set F of (X, τ , I), f(F) is a α glclosed set of (Y, σ , J).

Remark 3.2. Every α I-closed map, Ig-closed map and $g\alpha$ Iclosed map are α gI-closed. However the converse are not true in general as seen from the following examples.

Example 3.3. Let $X = Y = \{a,b,c\}, \tau = \{\phi, \{a\}, X\}, I = \{\phi, \{c\}\}\)$ and $\sigma = \{\phi, \{b\}, \{c\}, \{b,c\}, X\}$. Define f: $(X, \tau, I) \rightarrow (Y, \sigma, J)$ as follows. f(a) = b, f(b) = c and f(c) = a. Then the image f $\{b,c\}$ = $\{a,c\}$ is not α I-closed. Hence f is not an α I-closed map. However f is an α gI-closed map. **Example 3.4.** Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a, b\}, X\}, I = \{\phi, \{a\}\}$ and $\sigma = \{\phi, \{a\}, \{a, c\}, X\}$. Define $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ as follows. f(a) = a, f(b) = c, f(c) = b. Then the image $f(\{c\}) = \{b\}$ is not Ig-closed in (Y, σ, J) . Hence f is not Ig-closed map. However f is α g-I-closed.

Example 3.5. Let $X = Y = \{a,b,c\}, \sigma = \tau = \{\phi, \{a\}, X\}, I = \{\phi, \{c\}\}.$ Define f : (X, τ , I) \rightarrow (Y, σ , J) as follows. f(a) = b, f(b) = a, f(c) = c. Then the image f{b,c} = {a,c} is not g\alpha l-closed in (Y, σ , I). Hence f is not g\alpha l-closed. However f is α gl-closed.

Theorem 3.6. A map $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is αgl -closed if and only if for each subset S of Y and for each open set V containing f-1(S), there exists an αgl -open set V of Y containing S and f-1(V) \subset U.

Proof. Necessity. Let S be a subset of Y and U be open set of X such that $f-1(S) \subset U$. Then Y / f (X / U) say V, is an α glopen set containing S such that $f-1(V) \subset U$. Sufficiency. Let F be a closed set of X. Then f-1 (Y / f (F)) \subset X / F. By taking S = Y / f(F) and V = X / F in hypothesis there exists an α glopen set V of Y containing Y / f (F) and f-1(V) \subset X / F. Then we have F \subset X / f-1(V) and Y / V = f (F). Since Y / V is α gl-closed and thus f is an α gl-closed map.

Theorem 3.7. 1. If a map $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is continuous and Pre- α I-closed, then for every α gI-closed set *F* of *X*, *f*(*F*) is α gI-closed in *Y*. 2. If a map $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is continuous and α gI-closed for every Ig-closed set *F* of *X*, *f*(*F*) is α gI-closed.

Proof. To prove (1) Let F be an α gl-closed set of (X, τ , I). Let O be an open set of (Y, σ , J). Such that $f(F) \subset O$. Then F \subset f-1 (O) implies α ICl(F) \subset f-1(O). since F is α gl-closed and f-1(O) is open. This implies $f(\alpha$ ICl(F)) \subset O. Since f is Pre- α l-closed, $f(\alpha$ ICl(F)) is α l-closed. Therefore α ICl($f(\alpha$ ICl(F))) = f(\alphaICl(F)) \subset O. This implies α ICl(f(F)) \subset O and hence f(F) is α gl-closed in (Y, σ , J). To prove (2) let U an open set of Y such that $f(F) \subset U$. We claim that f(F) is α gl-closed. But F \subset f-1(V) and f-1(U) is open set of X and hence Cl(F) \subset f-1(U), since F is a Ig-closed set. Therefore $f(Cl(F)) \subset U$ and f(Cl(F)) is an α gl-closed set, since f is an α gl-closed map and this implies α ICl($f(\alpha$ ICl(F))) \subset U. Hence α ICl(f(F)) \subset U. Therefore f(F) is an α gl-closed set.

Theorem 3.8. Let $f : (X, \tau, I) \to (Y, \sigma, J)$ and $h : (Y, \sigma, J) \to (Z, \eta, K)$ be two mappings such that $h \circ f : (X, \tau, I) \to (Z, \eta, K)$ is a $g\alpha$ I-closed map. Thena) If f is a continuous, surjection then h is α gI-closed. b) If h is α I-irresolute, Pre- α I-closed injection then f is α gI-closed.

Proof. To prove (1). Let F be closed in Y. Then f-1(F) is closed in X. Since f is continuous. By hypothesis (h o f) (f-1(F)) is gal-closed set in Z. This implies h(F) is gal-closed set and therefore h(F) is an agl-closed set. Hence h is an agl-closed map. To prove (2). Let F be closed in X. Then (h o f) (F) is gal-closed in Z and h-1(h o f) (F) is gal-closed in Y. Since f(F) is gal-closed in Y. But every gal-closed set is

an α gl-closed set. Therefore f(F) is α gl-closed. Hence f is α gl-closed.

Theorem 3.9. 1. If $f: (X, \tau, I) \to (Y, \sigma, J)$ is α gl-closed and $h: (Y, \sigma, J) \to (Z, \eta, K)$ is continuous and Pre- α l-closed then $h \circ f: (X, \tau, I) \to (Z, \eta, K)$ is α gl-closed. 2. if $f: (X, \tau, I) \to (Y, \sigma, J)$ is closed and $h: (Y, \sigma, J) \to (Z, \eta, K)$ is α gl-closed then $h \circ f: (X, \sigma, I) \to (Z, \eta, K)$ is α gl-closed.

Proof. To prove (1). Let F be closed in (X, τ , I), Then f(F) is agl-closed in (Y, σ , J). By theorem 3.7 (2), h(f(F)) is agl-closed in (Z, η , K). Therefore h o f is agl-closed. To prove (2). Let F be closed in (X, τ , I). Then f(F) is closed in (Y, σ , J). Since h is agl-closed map. h(f(F)) is agl-closed in (Z, η , K). Therefore h o f is agl-closed.

4. wag-I-closed and wga -I-closed function

Definition 4.1. A function $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is said to be wag-I-closed function if the image of every closed set in (X, τ , I) is wag-I-closed in (Y, σ , J). The complement of wag-I-closed set is wag-I-open.

Theorem 4.2. Every closed map is wag-I-closed map but not conversely. Proof. Let $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ be an closed map and V be a closed set in X. Then f(V) is closed and hence f(V) is wag-I-closed in Y. Thus f is wag-I-closed.

Example 4.3. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{ac\}, X\}, \sigma = \{\phi, \{ab\}, X\}$ and $I = \{\phi, \{a\}\}$. Let $f : X \rightarrow Y$ be the identity function then f is wag-I-closed but not closed.

Theorem 4.4. A function $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is wag- lclosed if and only if for each subset B of Y and for each open set G containing f-1(B) there exists a wag-l-open set F of Y such that f-1(F) \subseteq G.

Proof. Necessity. Let G open subset of (X, τ, I) and B be a subset of Y such that f-1(B) \subseteq G. Then F = Y - f (X - G) is wag-l-open set containing B such that f-1(F) \subseteq G. Sufficiency. Let U be a closed subset of (X, τ, I) . Then f-1(Y - f(U)) \subseteq X - U and X - U is open. By hypothesis, there is a wag-l-open set F of (Y, σ , J) such that Y - f(U) \subseteq F and f-1(F) \subseteq X - U. Therefore U \subseteq X - f-1(F). Hence Y - F \subseteq f(U) \subseteq f (X - f-1(F)) \subseteq Y - F. which implies f(U) = Y - F and hence f(U) is wag-l-closed in (Y, σ , J). Therefore, f is wag-l-closed function.

Theorem 4.5. If a function $f: (X, \tau, I) \rightarrow (Y, \sigma, J)$ is closed and a map $g: (Y, \sigma, J) \rightarrow (Z, \eta)$ is w α g-*I*-closed then their composition $g \circ f: (X, \tau, I) \rightarrow (Z, \eta)$ is w α g-*I*-closed.

Proof. Let G be a closed set in X. Then f(G) is closed in Y and (g o f) (H) = g (f(H)) is wag-l-closed, as g is wag-l-closed. Thus g o f is wag-l-closed.

Definition 4.6. A function $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is said to be $wg\alpha$ -I-closed function if the image of every closed set in (X, τ , I) is $wg\alpha$ -I-closed in (Y, σ , J). The complement of $wg\alpha$ -I-closed set is $wg\alpha$ -I-open.

Theorem 4.7. Every closed map is $wg\alpha$ -*I*-closed but not conversely.

Proof. Let $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ be a closed map and V be a closed set in X. Then f(V) is wg α -I-closed in Y. Thus f is wg α -I-closed.

Example 4.8. Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{ab\}, X\}, \sigma = \{\phi, \{a\}, \{ab\}, X\}$ and $I = \{\phi, \{a\}\}$. Let $f : X \rightarrow Y$ be the identity function then f is wg α -l-closed but not closed.

Theorem 4.9. A function $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is $wg\alpha$ -*l*-closed if and only if for each subset *B* of *Y* and for each open set *G* containing f-1(*B*) there exists a $wg\alpha$ -*l*-open set *F* of *Y* such that f-1(*F*) \subseteq *G*.

Proof. Necessity. Let G open subset of (X, τ, I) and B be a subset of (Y, σ, J) such that f-1(B) \subseteq G. Let F = Y - f(X - G) since f is wg α -l-closed, F is wg α -l-open set containing B. Such that f-1(F) \subseteq G. Sufficiency. Let U be a closed subset of (X, τ, I) . Then f-1(Y - f(U) \subseteq X - U and X - U is open. By hypothesis, there is a wg α -l-open set F of (Y, σ, J) such that Y - f(U) \subseteq F and f-1(F) \subseteq X - U. Therefore U \subseteq X - f-1(F). Hence Y - F \subseteq f(U) \subseteq f (X - f-1(F)) \subseteq Y - F. which implies f(U) = Y - F and hence f(U) is wg α -l-closed in (Y, σ , J). Therefore, f is wg α -l-closed function.

Theorem 4.10. If a function $f : (X, \tau, I) \rightarrow (Y, \sigma, J)$ is closed and a map $g : (Y, \sigma, J) \rightarrow (Z, \eta)$ is wg α -l-closed then their composition g o f : (X, τ , I) \rightarrow (Z, η) is wg α -l-closed.

Proof: Let G be a closed in X. Then f(G) is closed in Y and (g o f) (G) = g(f(G)) is wg α -l-closed as g is wg α -l-closed. Thus g o f is wg α -l-closed.

REFERENCES

- A. A cikgoz, T. Noiri and S.Yuksal, on α-lcontinuous and α-l-open functions, Acta Math. Hunger., 105 (1- 2) (2004), 27 – 37.
- [2]. Devi, R.Balachandran. K and Maki. H (1997) : on generalized α -continuous maps and α -generalised continuous maps, for East J. Math., Sci., Special Volume, Part I, 1.
- [3]. K.Indirani, V.Rajendran and P.Sathishmohan, On wgα-I-continuity and wαg-I-continuity, Global Journal of Advances in Pure and Applied Mathematics Volume 1. Issue 1(2012), Pages 1-8.
- [4]. K. Kuratowski, Topology, Vol. I, Academic Press, Newyork (1966).
- [5]. H.Maki, R.Devi and K.Balachandran, Associate topologies of generalized α -closed sets and α -generalised closed sets, Mem. Fac, Sci., Kochi. Univ. Ser., (1994), 51 63.
- [6]. O. Njastad, On some classes of nearly open sets, Pasific J. Math., 15 (1965), 961 – 970.

- [7]. M. Navaneethakrishnan and J. Paulraj Joseph, gclosed sets in ideal topological spaces, Acta Math. Hunger, 119(4) (2008), 365 – 371.
- [8]. M.Rajamani and V.Rajendran, A study on gαclosed sets in ideal topological spaces, M.Phil., Thesis (2009).
- [9]. R.Vaidyanatha Swamy, set topology, Chelsea publishing Company, New York, (1960).
- [10]. A. Viswanathan, K.Ramasamy and K.Sivakamasundari, Weakly $g\alpha$ -continuous and weakly α g-continuous functions in topological spaces. Bull.Cab. Math. Soc., 10, (6) (2009), 635 644.

