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Application Of Artificial Neural Network In 
Predicting The Weld Quality Of A Tungsten Inert 

Gas Welded Mild Steel Pipe Joint 
I.U. Abhulimen, J.I. Achebo 

 
ABSTRACT: The weld quality of Tunston inert gas welded joint has been investigated to identify the most economical weld parameters that will bring 
about optimum properties. Artificial neural network, has been used in the prediction and optimization of the Tunston inert gas weld of mild steel pipes. 
Neural network model was generated using the Levenberg-Marquardt algorithm with feed ward back propagation learning rule. Results show that the 
generated neural network model was able to predict tensile and yield strength to a mean square error of 34.2.  
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1 INTRODUCTION 
Operators in the oil and gas industry use pipelines for 
transportation of crude products to stations where they can 
be converted to their final products for consumer 
applications. Oil and gas pipelines are among the biggest 
infrastructure in oil producing countries in recent years. 
Their construction is burgeoning. Nearly 30,000 km of 
pipelines are planned annually. In Nigeria, the total pipeline 
length is 9,265 Km as at 2005 (Goodland, 2005). Because 
mild steel is available in a variety of structural shapes and 
are easily welded into pipe, tube, tubing etc., they are used 
for pipelines in the oil and gas industry. TIG welding 
(Tunston Inert Gas Welding) is also known as Gas Tunston 
Arc Welding (GTAW) which uses a non-consumable 
electrode and separate filler metal with an inert shielding 
gas. The non-consumable electrode serves two purposes, 
first it carries the current which powers the arc and 
secondly provides the filler metal. The arc also serves two 
purposes. First it provides the heat source for melting the 
base metal to be welded and secondly, it provides the filler 
metal that is added to the weld. GTAW process welding set 
utilizes a suitable power source, a cylinder of argon gas, 
torch with connections for current supply, tubing for 
shielding gas supply.Tunston Inert Gas Welding (TIG), is 
about the most popular welding method, which finds its 
applications in industrial environments (Dewolf and Francl, 
2000).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is used extensively by the sheet metal industry and, by 
extension, the automobile industry. In order to weld mild 
steel and other low alloy steels, a mixture of argon with 
additions of oxygen or carbon dioxide is used. Generally, 
the quality of a weld joint is directly affected by the 
aforementioned input parameters during the welding 
process. Therefore, welding can be considered as a multi-
input, multi-output process. Traditionally, it has been 
necessary to determine the weld input parameters for every 
new welded product so as to obtain a welded joint with the 
required specifications. To do so, requires a time-
consuming trial and error development effort, with weld 
input parameters chosen by the skill of the engineer or 
machine operator. Unfortunately, a common problem that 
has faced the manufacturer is the control of the process 
input parameters to obtain a good welded joint with the 
required bead geometry and weld quality with minimal 
detrimental residual stresses and distortion (Cochran and 
Cox, 1987). To obtain control of the parameters that will 
lead to optimum quality of the weld, models (mathematical 
and empirical) that will predict the output quality of the weld 
considering input parameters are necessary. Mathematical 
models that predict the influence and interactions of the 
process parameters have been developed for some welding 
processes (Mostafa and Khajavi, 2006; Rayes et al, 2004; 
Thao and Kim, 2009). Multiple regression techniques were 
also used to establish mathematical models for the weld 
bead geometry (Lee and Rhee, 2000; Yang et al., 2003). 
Because linear regression models have the inferiority of not 
being able to explain the non linear properties existing 
between the weld geometry parameters and welding 
parameters, intelligent systems (artificial neural networks, 
fuzzy logic and expert systems) have emerged. It is widely 
known that neural networks can serve as a powerful tool for 
pattern classification, especially when the distribution of the 
objective classes is unknown or cannot be expressed as 
mathematical models. (Lightfoot et al 2005). There are also 
studies that have shown that full factorial design and neural 
networks can be used as tools for future extraction, to 
produce new features based on the original ones or the 
inputs to a neural network. (Sudhakaran et al, 2011), The 
set of new features usually contains fewer and more 
informative features so that future classification can be 
conducted at a lower computational cost using only the 
condensed new features. An artificial neural network (ANN), 
usually called neural network (NN), is a mathematical 
model or computational model that is inspired by the 
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structure and/or functional aspects of biological neural 
networks (Bashenko and Sosin, 1988). The original 
inspiration for the term ANN came from examination of 
central nervous systems and their neurons, axons, 
dendrites, and synapses, which constitute the processing 
elements of biological neural networks investigated by 
neuroscience(Cheng and Titterington 1994). In an artificial 
neural network, simple artificial nodes, variously called 
"neurons", "neurodes", "processing elements" (PEs) or 
"units", are connected together to form a network of nodes 
mimicking the biological neural networks — hence the term 
"artificial neural network" and it processes information using 
a connectionist approach to computation. In most cases, an 
ANN is an adaptive system that changes its structure based 
on external or internal information that flows through the 
network during the learning phase (Hassoun, 1995). 
Modern neural networks are non-linearstatisticaldata 
modeling tools. They are usually used to model complex 
relationships between inputs and outputs or to find patterns 
in data. Generally, it involves a network of simple 
processing elements that exhibit complex global behaviour 
determined by connections between processing elements 
and element parameters. While an Artificial Neural Network 
does not have to be adaptive per se, its practical use 
comes with algorithms designed to alter the strength 
(weights) of the connections in the network to produce a 
desired signal flow. 
 

2. LITERATURE REVIEW 
Recently Subashini, L; Madhumitha, P; Vasudevan, M; 
(2012) investigated the Optimisation of welding process for 
modified 9Cr-1Mo steel using genetic algorithm. They 
reported that Modified 9Cr-1Mo steel is used as the 
structural material for steam generator components of 
power plants. Activated Tunston inert gas (A-TIG) welding 
is increasingly used for fabricating these 
components.Suhas et al (2011) Developed a Statistical 
Modeling& Application of Neural Network for Gas Tunston 
Arc Welding to Predict Weld Strength and Hardness in 
Welding Zone Industrially gas Tunston arc welding 
(GTAW), the work investigated the parametric effect on the 
weld quality (breaking load and hardness near the weld 
zone) of 304 stainless steel.AsifIqbal et al, (2011), 
investigated the weld bead geometry (front bead width and 
height, and back bead width and height) is a significant 
physical characteristic of a weldment. Several welding 
parameters such as welding speed, weld current, voltage, 
and shielding gas flow rate affect the weld bead geometry. 
Recently, Aktepe1et al (2011) presented a report on 
Artificial Neural Network Model on Welding Process Control 
of 155 mm on an Artillery Ammunition with the purpose of 
rehabilitating the welding process and minimizing the ratio 
of defective products by determining the inputs to have 
required output levels that are produced in MKEK 
Ammunition Factory by using an Artificial Neural Network 
(ANN) model and rehabilitating the process for error-free 
and intact production targeting at the optimum level. 
Sudhakaran et al (2011) presented a paper to highlight the 
development of neural network model for predicting depth 
of penetration and optimizing the process parameters for 
maximizing depth of penetration using simulated annealing 
algorithm. The process parameters chosen for the study are 
welding current, welding speed, gas flow rate and welding 

gun angle. The chosen output parameter was depth of 
penetration. Using the experimental data, feed forward back 
propagation neural network model was developed and 
trained using Levenberg Marquardt algorithm. It was found 
that ANN model based on network 4-15-1 predicted depth 
of penetration more accurately. 
 

3. METHODS 
 

3.1 Conducting Experiments 
The TIG welding and tensile test experiments were 
conducted at the Petroleum Training Institute (PTI) Warri 
using the actual values of the design matrix. While the non-
destructive tests were conducted at the department of 
Materials and Production Engineering, Ambrose Alli 
University, Ekpoma.The welding and tensile test 
experiments were conducted at the Department of Welding 
and fabrication technology, Petroleum Training Institute 
(PTI), Warri, Delta State, Nigeria. While the hardness tests 
and the micro structural examinations were carried out in 
the department of materials and production Engineering, 
Ambrose AlliUniversity Ekpoma, Edo state, Nigeria. The 
following machines and consumables were used for the 
purpose of conducting the experiments: 
 

1. A mild steel pipe of diameter 50.8mm, thickness of 
4mm. 

2. Filler material of mild steel ER70SG/2.4. 
3. Inert shielding Argon gas. 
4. Miller multi-process welding machine. 
5. Non-consumable Tunston Electrode. 
6. Universal Testing Machine (UTM) 
7. Rockwell scale B hardness tester 
8. Metallurgical microscope 

 

3.2 PREPERATION OF SPECIMEN 
A mild steel pipe was cut to size and the edge preparation 
was carried out by creating a groove of 30

o
on each end of 

the pipe in order to get a 60
o 
groove angle with root face of 

3mm. In order to achieve a very strong weld, the joints were 
properly cleaned with a grinder and sand paper. One 
careless moment can contaminate the Tunston so care was 
taken not to expose the Tunston, and not to touch the end 
of it with a finger or even a glove, as finger oils or residue 
on a glove can both wreck the tip of the Tunston. Argon gas 
with flow rates between 5 and 25 l/min was used for 
shielding. The purpose of using the shielding gas was to 
protect the weld area from atmospheric gases such as 
oxygen, nitrogen, carbon dioxide and water vapor. During 
fit-up (pipe fitting) 2.5mm was used to prepare the gap 
before the tackling of the pipe. The selection of the filler 
material is important to prevent excessive porosity. Oxides 
on the filler material and work piece were removed before 
welding to prevent contamination, and immediately prior to 
welding, alcohol was used to clean the surface. The 
prepared sample is shown in figure 1 below. 
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Fig.1 Sample preparation 
 

3.3 WELDING PROCESS 
To achieve the objectives of this study, the following basic 
steps were carefully carried out: selecting process 
parameters, doing an experimental design, executing the 
design, and measuring the output values. The chosen 
process parameters for this study were welding voltage, arc 
current, electrode size and gas flow rates. 30 run were 
carried out during the welding process, and a total of four 
different beads were achieved: 1. Root Run, 2. Hot Pass, 3. 
filling and 4. Capping. The final welded specimen is shown 
in the figure below. 

 
 

Fig.2 Final welded sample 
 

3.4 MECHANICAL TESTING 
The mild steel pipe of 4 mm thickness was cut into the 
required dimension (150 mm×50 mm) by oxy-fuel cutting 
and grinding. The initial joint configuration was obtained by 
securing the plates in position using tack welding. Single ‗V‘ 
butt joint configuration was used to fabricate the joints using 
shielded metal arc welding process. All the necessary cares 
were taken to avoid the joint distortion and the joints were 
made with applying clamping fixtures. The specimens for 
testing were sectioned to the required size from the joint 
comprising weld metal, heat affected zone (HAZ) and base 
metal regions and were polished using different grades of 
emery papers. Final polishing was done using the diamond 
compound (1μm particle size) in the disc polishing machine. 
The specimens were etched with 5 ml hydrochloric acid, 1 g 
picric acid and 100 ml methanol applied for 10–15 s. The 
welded joints were sliced using power hacksaw and then 
machined to the required dimensions (100 mm x 10mm) for 
preparing tensile tests.  
 

 
 

Fig. 3 Tensile Test samples before final preparation 
 

3.5 TENSILE STRENGTH 
The un-notched smooth tensile specimens were prepared 
to evaluate transverse tensile properties of the joints such 
as tensile strength and yield strength. The specimen was 
mounted on both ends of the universal testing machine. 
The Tensile test was conducted with a 40 ton electro-
mechanical controlled universal testing machine.  Typically, 
the testing involved taking a small sample with a fixed 
cross-sectional area and then pulling it with a controlled, 
gradually increasing force until the sample changed shape 
and eventually fractured. 
  

 
 

Fig. 4 Prepared samples for tensile tests  
 

4. RESULTS 
Haven conducted the experiments, tensile strength results 
were read directly from the Universal Testing Machine 
(UTM) and a factor (6.492) was used to convert it to System 
International unit (MPa) and presented in table 1 below: 
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4.1 Network Selection 
Previous studies have related the number of neurons of 
each layer to the number of input and output variables and 
the number of training patterns (Rogers, 1994, Swingler, 
1996, Golafshani et al., 2012). However, these rules cannot 
be generalized (Alshihri, 2009). Other researchers have 
proposed that the upper bound for the required number of 
neurons in the hidden layer should be one more than twice 
the number of input points. But, again this rule does not 
guarantee generalization of the network (Atici, 2011). 
Choosing the number of hidden layers and neurons of each 
layer must be based on experiences, and a few numbers of 
trials are usually necessary to determine the best 
configuration of the network (Cachim, 2011). The number of 
neurons in an ANN must be sufficient for correct modelling 
of the problem of interest, but it should be sufficiently low to 
ensure generalization of the network (Atici, 2011). 
Generally, a neural network is created for three phases 
commonly referred to as ‗training‘, ‗validation‘ and ‗testing‘. 
The network is trained with input and output values and the 
network is adjusted according to the obtained errors. 
Sample data (both inputs and desired outputs) are 
processed to optimize the network‘s output and thereby 
minimize deviation. Validation is used to measure network 
generalization, and to halt training when generalization 
ceases improving and testing has no effect on training 
(Atici, 2011). In this research, the Levenberg–Marquardt 
feed forward back-propagation (LMBP) algorithm is utilized 
as the training algorithm. LMBP is often the fastest 
available back-propagation algorithm, and is highly 
recommended as a first-choice supervised algorithm 
although it requires more memory than other algorithms.  
 

4.2 Network Model and Parameters 

The neurons of the input layer receive information from the 
outside environment and transmit them to the neurons of 
the hidden layers without performing any calculation. The 
hidden layer neurons then process the incoming information 
and extract useful features to reconstruct the mapping from 
the input space. The neighbouring layers are fully 
interconnected by weights. Finally, the output layer neurons 
produce the network predictions to the outside world. As 
mentioned earlier, there is no general rule for selecting the 
number of neurons in a hidden layer. Repeated trials 
showed that a model with three hidden layers, having five 
(5) neurons in the first layer and five (5) neurons in the 
second layer and three (3) neurons in the third hidden layer 
were most useful for the training. A tan-sigmoid transfer 
function was used in all hidden layers and a linear transfer 
function in the output layer. Number of epochs was 
determined and the model was trained through multiple 
iterations.The network developed for this research has the 
form shown in figure 1 below. 
 

4.3 Model Assessment 
Mean square error was used to measure the performance 
of the network in each run. The mean square error 
performance index for the linear network is a quadratic 
function. Thus, the performance index either has one global 
minimum, a weak minimum, or no minimum, depending on 
the characteristics of the input vectors. Specifically, the 
characteristics of the input vectors determine whether or not 
a unique solution exists proving the mean square error an 
adequate performance measuring standard. Two networks 
of the same size but different parameters gave most 
appreciable results and are presented in the report below. 
The plot in figure 1 shows the mean squared error for the 
training session (blue line) decreases with number of 
epochs starting at a large value and decreasing to a smaller 
value. In other words, it shows that the network is learning. 
The plot has three lines, because the 30 input and targets 
vectors are randomly divided into three sets. 60% of the 
vectors are used to train the network. 20% of the vectors 
are used to validate how well the network generalized. 
Training on the training vectors continues as long the 
training reduces the network‘s error on the validation 
vectors. After the network memorizes the training set (at the 
expense of generalizing more poorly), training is stopped. 
This technique automatically avoids the problem of over 
fitting, which plagues many optimization and learning 
algorithms. Finally, the last 20% of the vectors provide an 
independent test of network generalization to data that the 
network has never seen. 
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Figure 4.1: Schematic illustration of the neural network 
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Figure4.2: Performance plot 
 

The overall performance shows a mean square error of 
34.2 with twelve iterations in three seconds. Figure 3 shows 
the linear regression plot between network output and 
experimental data. The R value for training shows 99.999 % 
closeness whereas that of validation shows 99.073 % and 
testing 98.762 %. Figures 4 – 5 show the plot of predicted 
results versus the experimental for tensile strength, tensile 
strain and yield strength respectively.   
 

 

 
 

Figure 4.3: Regression plot 
 

4.4 PREDICTIONS 
Figures4.4, 4.5 and 4.6 depicted the measured tensile 
strength, strain and yield strength from the experiment and 
predicted output values using artificial neural feed forward 
network. The measured and predicted output values are 
close to each other. The aim of this paper shows the 
possibility of the use of neural network to predict tensile and 
yield strength accurately. The ANN model was unable to 
produce appreciable strain predictions. This was also seen 
in the use of two-level factorial analysis where none of the 
main effects were significant in the prediction of strain. 
Based on the result, the following can be observed: The 
maximum and minimum absolute errors in the testing sets 
were 22 MPa and 0.09 MPa, respectively while the largest 
and smallest relative errors were 18% and 0.02%, 
respectively, and the average mean absolute error of the 
total 30 sets of test data was about 15.35%, which can be 
considered as good and acceptable. The constructed ANN 
model exhibited good prediction performance; it was able to 
fit most of the tensile and yield strength values close to the 
target strength as shown in fig 4 below. Some of the test 
data did not fit very well, and this might be due to several 
reasons including: 

1) Erroneous experimental data. 
2) Limited data set. 
3) Other welding parameters which were not 

tested 
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Figure 4.4: Predicted versus Experimental Tensile strength 
of weld joint 

 

 
 

Figure 4.5: Predicted versus Experimental Tensile strain of 
weld joint 

 

 
 
 

Figure4. 6: Predicted versus Experimental Yield strength of 
weld joint 

 

 
 

Figure 4.7: The ANN Network structure 
 

4.5 WEIGHTS AND BIAS 
The input layer weights (ILWs), the input layer biases 
(ILBs), the first hidden layer weights (1HLWs) and the first 
hidden layer biases (1HLB), the second hidden layer 
weights (2HLW), the second hidden layer biases (2HLB), 
the third hidden layer weights (3HLW), the third hidden 

layer biases (3HLB), of the optimum ANN model areshown 
below: 
 
ILW = [-2.0368 -0.82317 -4.2332 -0.52562; -1.865 1.9363 -
0.25799 3.7145;-3.2794 4.6826 -6.1729 1.882; 2.4047 -
0.98774 -0.72054 2.7982; -0.061128 -0.52343 0.81765 
0.16752] 
 
HLW= [4.8892 0.28199 0.71016 1.4335 -1.1905; -0.25904 -
0.95766 -0.54934 2.5836 1.5701; -0.88726 0.54036 2.4158 
1.193 1.2664; 0.72812 1.6061 1.1235 -1.7022 0.60299; 
1.6175 2.9383 -4.3833 -4.2324 -0.99274] 
 
2HLW= [-2.2579 0.097202 1.9504 0.38081 1.7822; 2.636 -
2.3292 1.99 1.0476 -0.56039; 2.066 -1.6792 0.091444 
1.2869 -0.70303] 
 
3HLW= [-1.1311 -0.7107 -0.60774; 0.35984 0.91407 
0.84977; -1.1095 -0.69465 -0.60031] 
 
ILB= [0.95039; 2.2053; 0.32745; -0.20164; -3.1451] 
 
HLB= [-0.062211; -1.2743; -1.0604; -0.32527; -0.072352] 
 
2HLB= [2.0124; 0.98943; 3.381] 
 
3HLB= [1.218; -0.46779; 1.205] 
 
Figures 4.8 and 4.9 with Tables 3 and 4 illustrate the 
difference between predicted values from ANN, two-level 
factorial design and experimental values tensile strength 
and yield strength respectively. It can be deduced that both 
modeling make predictions that are not so different from 
experimental values. At some point both factorial and ANN 
predictions are the same while at some points they differ 
considerably. 
 

 
 

Figure 4.8: Comparison of predicted and 
experimentalTensile Strength 
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Figure 4.9: Comparison of predicted and experimental 
Yield Strength 

 
 
 

5 CONCLUSION 
This study reveals the successful use of ANN to in 
predicting tensile and yield strength of TIG welded mild 
steel pipe joints and the results reported are in good 
agreement with other researchers. Predicted results shows 
a mean squared error of 34.2 for overall performance, a 
maximum and minimum absolute errors of 22MPa and 0.09 
MPa respectively. Relative errors were 18% and 0.02% for 
largest and smallest errors respectively. The calculated 
average absolute error of 15.35% with an average 
percentage error of 3.5. These values are in agreement 
within the ranges of errors predicted by other  researchers 
though they were conducted under different conditions. 
Barclay et al, (2012), reported a minimum percentage error 
of 0.0859 and a maximum absolute error of 0.0469 in 
predicting weld distortions using induced welding. They also 
recorded an average percentage error of 6.51%. Predicted 
values shows that tensile and yield strength as good as 508 
MPa and 388 MPa can be achieved by a combination of 
certain factors as shown in the model.  
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