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Abstract:- The problem of scattering of capillary waves by a semi-infinite dock with a porous undulatory sea bed is attempted using perturbation 
technique. Two different eigen function expansions of the velocity potential function on the two sides of the surface discont inuity are constructed. 
An integral expression for first order reflection coefficient is arrived at involving the bottom shape function. The first order reflection co-efficient is 

graphically depicted in case of a sinusoidal bottom topography for various values of the porous parameter and selected values  of the surface 
tension parameter. 
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1  INTRODUCTION 
Problems involving scattering of water waves due to a 
discontinuity in the free surface with a variable bed 
topography have been dealt with by many authors working 
in the field of fluid dynamics and ocean engineering. The 
free surface discontinuity arises, as an instance, when half 
the surface of water is free and the remaining half is 
covered by a dock extended upto infinity. The dock problem 
was formulated mathematically by Friedrich and Lewy [1]. 
Chung and Linton [2] found analytic expressions of 
hydrodynamic coefficients relating to scattering of waves 
across a finite gap between two semi-infinite elastic plates 
using techniques of residue calculus. Linton [3] made use of 
modified residue calculus technique to study the scattering 
problem in presence of a finite dock. Chakraborti, Mandal 
and Gayen [4] revisited the semi-infinite dock problem using 
Fourier analysis and singular integral equation. In this 
context, problems concerning scattering of wave due to a 
variable bottom geometry are also relevant. In this 
connection Mandal and Basu [5] studied the water wave 
scattering problem in presence of bottom undulation and 
surface tension in the free surface using perturbation 
expansion in terms of bed undulation parameter. Mandal 
and De [6] investigated surface wave propagation over 
small undulation at the bottom of an ocean with surface 
discontinuity using an eigen function expansion method. 
These problems are, in general, difficult to solve analytically 
although there exist several approximate and numerical 
methods to find expressions of physical interest such as 
reflection and transmission coefficients. Roseau [7] 
obtained an explicit analytic solution for the two-
dimensional problem of wave propagation over a particular 
bottom topography.  
 
 
 
 
 
 
 
 
 
 
 

Peters [8], Weitz and Keller [9] considered the Wiener-Hopf 
technique to study the propagation of surface waves at an 
inertial surface composed of a thin but uniform distribution 
of non-interacting floating materials, e.g. broken ice, floating 
mat, etc. on one side and the free surface on the other side. 
Clearly, the discontinuity arises due to two different types of 
boundary conditions on the two halves. Martha and Bora 
[10] applied Fourier transform to analyse scattering of 
surface waves by small undulation on a porous sea-bed. 
The present paper examines scattering of capillary waves 
arising out of surface tension in the free surface region in 
front of a semi- infinite dock in a sea with porous bottom 
undulation. The capillary waves as an effect of surface 
tension may arise, for example, due to presence of, say, oil, 
in front of the dock. Since the water below the dock is 
undisturbed there will be no transmission of incoming wave-
train and hydrodynamic parameter of interest in the related 
scattering phenomena is the reflection coefficient. The 
bottom boundary condition suggest a small perturbation 
parameter expansion of the velocity potential and the 
reflection coefficient. The problem is segregated into two 
boundary value problems, one for the zero order and 
another for the first order potential function. The potential 
functions are expanded on either side of discontinuity in 
terms of orthonormal eigen functions. These eigen 
functions involve the physical quantities such as wave 
number, depth and porous parameter. Besides, they also 
involve unknown constants and unknown reflection 
coefficients. A system of linear equations involving the 
constants is arrived at using the matching conditions of the 
potential functions and its first order derivatives at the 
junction of discontinuity and keeping in mind the 
orthonormality of depth eigen functions. The zero order 
reflection coefficient is obtained by recollecting the 
corresponding expressions given by Evans and Linton [11]. 
Next, Green’s second integral theorem is suitably applied to 
get the expression for the first order reflection coefficient. It 
has been ensured graphically that the relevant dispersion 
relation possesses a unique non-trivial positive real root. 
The first order reflection coefficient is plotted against wave 
number for different values of the porosity parameter and 
selected values of surface tension parameter in the 
particular case of sinusoidal bottom topography. The 
present work gains importance in studies on coastal 
dynamics and marine science where construction of dock of 
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a specified geometry is of frequent occurrence. This paper 
is also relevant in connection with ongoing scientific 
activities in polar regions, including the investigation of 
scattering of water waves by an obstacle with an uneven 
sea-bed, 
 

2  MATHEMATICAL FORMULATION 
A two-dimensional potential flow in an ocean of finite depth 
with a porous bottom with small undulation is considered. A 
rectangular cartesian co-ordinate system with  axis 
vertically downwards along the depth of the ocean is 
chosen. The semi-infinite floating dock of small width and 
uniform density is assumed to occupy the other side 

 of the free surface in water of finite depth 

. The free surface  is subject to surface 
tension with parameter  given by  where  is 
the acceleration due to gravity,  is the coefficient of 

surface tension,  is the density of water. The discontinuity 
in the surface boundary condition exists because the free 
surface boundary condition involving the effect of surface 
tension differs from the boundary condition applicable on 
the dock portion. A wave train with source at negative 
infinity is incident normally upon the semi-infinite dock and 

gets reflected. The direction of the real positive  axis 
coincides with that of the incident wave field. Since the 
water under the dock is undisturbed and the dock extends 
infinitely along the positive  - axis, any transmission of the 
incident wave is absent. The water in the ocean is assumed 
to be irrotational, incompressible, inviscid and the wave 

motion is time-harmonic with angular frequency . 
 

Let  represent the velocity 
potential of the fluid motion for the two-dimensional fluid 
region. The mathematical problem under consideration is to 
solve the boundary value problem in which the potential 

function  satisfies the following Laplace equation along 
with certain boundary conditions: 
 

 in the entire fluid region 2.1 
 
The free surface boundary condition, taking surface tension 

parameter  into account, is given by: 
 

 on   2.2 

 

where ,  is the angular frequency,  is the 

acceleration due to gravity. 
 
The surface boundary condition at the dock is given by: 

 
 on   2.3 

 
The sea-bottom boundary condition is given by: 

 

 on   2.4 

 

where  is the outward normal to the ocean bed and 

, the porous effect parameter. The quantity  is 

dimensionless constant with depends on the structure of 

the porous medium and   is the permeability of the porous 
medium. Here,  denotes the bottom of an 

ocean of variable depth,  being a small non-dimensional 
positive number giving a measure of smallness of the 

ocean-bottom undulation and , the shape function, is a 
bounded function with compact support with the property 

that  as . This indicates that far away from 
the undulation the ocean bottom is of uniform finite depth  
below the mean free surface. 
 
Let the incident wave train be described by the velocity 

potential  where 
 

 

 

 

 
 being the real root of the dispersion relation: 
 

    2.5 

 
The far field behaviour of the potential function is described 
by: 

 

  2.6 

 

where determination of , the unknown reflection 
coefficient, is our main concern. 
 

3 METHOD OF SOLUTION 
The sea-bed condition (2.4) can be approximated as: 
 

 on   3.1 

 
The scattering of the incident wave train due to free surface 
discontinuity and uneven ocean bottom imply that a 
perturbation technique can directly be applied to the 
governing problem. The form of (2.6) suggests that  and  
can have the following perturbation expansion in terms of 
variational parameter  : 

 

  3.2 
 

   
 
We substitute the expression (3.2) in the governing 
PDE(2.1), the surface boundary conditions (2.2) and (2.3), 
the approximate bottom boundary condition (3.1) and 
equate the like powers of  upto order one. These produce 

two separate boundary value problems in terms of  
and  . They are denoted by BVP-1 and BVP-2 
respectively. 
 
3A.  BVP-1 

The function  satisfies 
 

 in   3A.1 
 

 on   3A.2 
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 on   3A.3 

 
 on   3A.4 

 

  3A.5 

 

where  is the zero order reflection coefficient. 
 
3B.  BVP-2 

 in   3B.1 
 

 on   3B.2 

 
 on   3B.3 

 

 on   3B.4 

 

  3B.5 

 

where  is the first order reflection coefficient. 
 
The BVP-1 corresponds to the problem of water wave 
scattering by a semi-infinite dock in uniform finite depth of 
water. This can be determined analytically using residue 
calculus technique of the complex variable theory which 
was used by Evans and Linton [11] to solve the problem of 
scattering of water waves in case of a discontinuity in the 
free surface boundary condition in an uniform depth of 
water. Without solving BVP-2,  can be determined in 

terms of  and its first order partial derivatives. 
 

The zero order potential function  of the BVP-1 can 
be expanded in terms of orthonormal sets of eigen 
functions in two different regions of the ocean as follows: 
 

 3.6 

 

where ,  are the unknown constants; ,  are the 
eigen values of the BVP in the free surface region  
and the dock region  respectively. 
 
The two sets of orthonormal eigen functions  and 

 corresponding to the free surface region  
and the dock region  respectively are given by: 

 

 

 
And 
 

 

 
where, 
 

 

 
 
And 
 

 

 
,  being the real roots of the following equations 

respectively: 
 

 

 
And 
 

 
 

where  is the unknown reflection coefficient of zero order; 
….. are the unknown constants which are to 

be determined. The matching conditions at  give: 
 

  
As a consequence we obtain the following relations: 
 

 

 
And 
 

 

 
Using orthogonality of  we get: 
 

 
 
These imply: 
 

 

 
And 
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where  and  can be numerically evaluated from the 

above system of linear equations. As estimation of  as 
given by Evans and Linton [11] is as follows: 
 

 where ; 

 
Further, an application of Cauchy’s residue theorem leads 
to the following representation of zero order reflection 
coefficient: 
 

 

 
 

4 THE FIRST ORDER REFLECTION 

COEFFICIENT 
The first order correction of the reflection coefficient of the 
incident wave field can be evaluated applying Green’s 
integral theorem using the two potential functions  and 

 along the contour  given by: 
 

 4.1 

 

Along   4.2 

 

where  is the outward normal to the line element . The 
surface boundary conditions satisfied by the potential 

functions  and  ensure that there is no 
contribution to the integral along the path . 
Again, since the water under the dock is undisturbed and 
there is no dispersion of incoming wave, therefore, there is 
no contribution to the integral along the path 

. The only contribution to the integral (4.2) arises from the 

bottom part, i.e. along the portion . 
Finally, making  we arrive at: 
 

 4.3 

 

5 A SPECIAL BED SURFACE 
We consider the interaction of progressive surface waves 
with a patch of sinusoidal ripples on the porous sea-bed, 
and the ripples do not imply any restriction on the bed wave 
number. The bed surface is given by 
 

  5.1 

 

where  is the amplitude of the sinusoidal ripples.  the 
wave number of the sinusoidal ripples,  is an arbitrary 

phase angle. Let  where m is a 

positive integer. This represents a patch of sinusoidal 
ripples on an otherwise flat bottom, the patch consisting of 
m ripples having the same wave number . For such a 
sinusoidal sea bottom topography an explicit expression for 
the first order reflection coefficient is given by: 

 

 

 

6 GRAPHS 
Fig.1 indicates the existence of a unique non-trivial positive 
real root of the dispersion relation(2.5) ensuring the 
practical feasibility of the current problem. 
 
Fig.2 and fig.3 depict the variation of the modulus of first 
order reflection coefficient  with variation in the wave 
number for different values of non-dimensionalised porosity 
parameter  in case of a bottom profile which varies 
sinusoidally. 
 

Fig. 2 plots  against  taking  while 
the surface tension parameter  is fixed at 0.09. 
 
Fig. 3 plots  against  taking  while 
the surface tension parameter  is fixed at 0.1. The graphs 

of  are found to be oscillatory in nature for each  and 
the oscillation gradually decreases with . Bragg 
resonance is indicated in all cases where the oscillation of 

 attains a maximum value for certain value of . 
 
Fig. 2 and fig. 3 are significantly different around the value 

. In the neighbourhood of this value, the plot of  
in fig. 3 attains its maximum at a higher value than the plot 

of  in fig. 2. This is particularly pronounced in case of 
absence of bottom porosity . Thus for a sinusoidal 
bottom profile a slight increase in surface tension 

considerably changes the plot of , especially when the 
bed is non permeable. 
 

                 G’h=0 

                 G’h=0.1 

                 G’h=0.2 

M=0.1 
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Fig. 1: Root of Dispersion Relation for G’h=0.1 and M=0.1.    
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Fig. 2:  Reflection Coefficient for different values of porous 

parameter with M=0.09 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 3:  Reflection Coefficient for different values of porous 

parameter with M=0.1 
 

7 CONCLUSION 
The zero and first order reflection coefficients for water 
wave scattering in front of a semi-infinite dock with porous 
undulatory bottom profile and surface tension in the free 
surface are obtained. An expression for the first order 
reflection coefficient is arrived at without solving the first 
order potential function. The graphs indicate oscillatory 
damping of first order reflection coefficient with increase in 
wave number. Furthermore, it can be concluded that 
presence of surface tension in the free surface and 
sinusoidally varying porous sea bed play their own 
significant roles in modifying the incoming wave train which 
gets reflected by the floating dock. 
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