
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

169
IJSTR©2014
www.ijstr.org

EXTRACTION OF WEB BLOCKS FROM WEB PAGES

AND ANALYSIS OF EXTRACTION ALGORITHMS

S.K.SHIRGAVE, V.B.BINAGE

Abstract: Web page can be divided in various blocks called as fragments. A fragment is a portion of a web page which has a distinct theme or
functionality and is distinguishable from the other parts of the page.Dividing web pages into fragments has provided significant benefits. Good methods
are needed for dividing web pages into fragments. Manual fragmentation of web pages is expensive, error prone, and un-scalable. Due to these
problems, extraction of web fragments using Content extractor algorithm and DeSeA algorithm have been widely used.
The proposed work has following features:

1) Detect fragment using content extractor algorithm.
2) Extraction of fragment detected in step (1).
3) Detect fragment using DeSeA algorithm.
4) Extraction of fragment detected in step (3).
5) Analyze results of extracted fragment using above algorithms.

Index Terms: Fragment, ContentExtractor, DeSeA.

————————————————————

1. INTRODUCTION
The search engines crawl the World Wide Web to collect
Web pages. These pages are either readily accessible
without any activated account or they are restricted by
username and password. Whatever be the way the
crawlers access these pages, they are (in almost all cases)
cached locally and indexed by the search engines. An end-
user who performs a search using a search engine is
interested in the primary informative content of these Web
pages. However, a substantial part of these Web pages,
especially those that are created dynamically is content that
should not be classified as the primary informative content
of the Web page. These blocks are seldom sought by the
users of the Web site. Such blocks are non-content blocks.
Non-content blocks are very common in dynamically
generated Web pages. Typically, such blocks contain
advertisements, image-maps, plug-ins, logos, counters,
search boxes, category information, navigational links,
related links, footers and headers, and copy- right
information etc. Before the content from a Web page can be
used, it must be subdivided into smaller semantically
homogeneous sections based on their content. Such
sections are known as blocks. A block (or Web page block)
B isaportionofaWebpageenclosedwithinanopen-tagand its
matching close-tag, where the open and close tags belong
to an ordered tag-set T that includes tags like <TR>, <P>,
<HR>, and . Fig. 1, shows a Web page obtained from
CNN‟s Web site1 and the blocks in that Web page.

We address the problem of identifying the primary
informative content of a Web page. Identifying blocks
involves partitioning a Web page into sections that are
coherent, and that have specific functions. For example, a
block with links for navigation is a navigation block. Another
example is an advertising block that contains one or more
advertisements that are laid out side by side. Usually, a
navigation block is found on the left side of a Web page.
Typically, the primary informative content block is laid out to
the right of a Web page. For web block extraction we
implemented two algorithms, ContentExtractor, and DeSeA
which identify the primary content blocks in a Web page. An
added advantage of identifying blocks in Web pages is that
if the user does not require the non-content blocks or
requires only a few non-content blocks, we can delete the
rest of the blocks. This contraction is useful in situations
where large parts of the Web are crawled, indexed, and
stored. Since the non-content blocks are often a significant
part of dynamically generated Web pages, eliminating them
results in significant savings with respect to storage cache
and indexing.

Fig. 1.A Web page from CNN.com and its blocks (shown
using boxes).

Algorithms can identify similar blocks across different Web
pages obtained from different Web sites. For example, a
search on Google News on almost any topic returns several

 S.K.SHIRGAVE, V.B.BINAGE

 Associate Professor, CSE/IT, DKTE’s Textile and
Engg. Institute ichalkaranji, Maharashtra, india,
skshirgave@yahoo.com

 ME Student, CSE, D. Y. Patil College of Engg. And
Technology Kolhapur, Maharashtra, India,
vikbinage@yahoo.com

mailto:skshirgave@yahoo.com
mailto:vikbinage@yahoo.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

170
IJSTR©2014
www.ijstr.org

syndicated articles. Popular items like syndicated columns
or news articles written by global news agencies or Reuters
appear in tens of newspapers. Even the top 100 results
returned by Google contain only a very few unique columns
related to the topic because of duplicates published at
different sites. Ideally, the user wants only one of these
several copies of articles. Since the different copies of the
article are from different newspapers and Web sites, they
differ in their non-content blocks but havesimilarcontent
blocks. Byseparatingand indexingonly thecontentblocks,
wecaneasilyidentifythattwoWebpages have identical
content blocks, save on storage and indexing by saving
only one copy of the block, and make search results better
by returning more unique articles. Even search times
improve because less data to search. ContentExtractor and
DeSeA used to identify and separate content blocks from
non-content blocksbased on the appearance of the same
block in multiple Web pages. ContentExtractor and DeSeA
produce excellent precision and recall values and runtime
efficiency and, above all, do not use any manual input and
require no complex machine learning process.

1.1 Literature Survey
The amount of information on the World Wide Web
continues to grow at an astonishing speed. Fragment-
based approach of web pages has been successfully
commercialized in recent years [1]. An algorithm for
identifying non content blocks (they refer to it as “noisy”
blocks) of Web pages developed [5]. Their algorithm
examines several Web pages from a single Web site. If an
element of a Web page has the same style across various
Web pages, the element is more likely than not to be
marked as a non-content block. In order to identify the
presentation styles of elements of Web pages, Yi and Liu‟s
algorithm constructs a “Style Tree”. A “Style Tree” is a
variation of the DOM substructure of Web page elements.
Another work that closely related was the work by Lin and
Ho [5]. The algorithm proposed also tries to partition a Web
page into blocks and identify content blocks. They used the
entropy of the keywords used in a block to determine
whether the block is redundant. Cai et al. [6] has introduced
a vision-based page segmentation (VIPS) algorithm. This
algorithm segments a Web page based on its visual
characteristics, identifying horizontal spaces, and vertical
spaces delimiting blocks much as a human being would
visually identify semantic blocks in a Web page. They use
this algorithm to show that better page segmentation and a
search algorithm based on semantic content blocks
improves the performance of Web searches. Ramaswamy
et al. [8], [9] propose a Shingling algorithm to identify
fragments of Web pages and use it to show that the storage
requirements of Web caching are significantly reduced.
Kushmerick [7] has proposed a feature-based method that
identifies Internet advertisements in a Web page. It is solely
geared toward removing advertisements and does not
remove other non-content blocks. Although researchers
have made considerable efforts to improve the performance
and benefits of fragment-based caching, there has been
little research on extracting cache- effective fragments in
Web sites. Fragment-based caching solutions typically rely
upon Web pages that have been manually fragmented at
their respective Web sites by the Web administrator or the
Web page designer. Manual markup of fragments from Web

pages is both labor-intensive and error-prone. More
importantly, identification of fragments by hand does not
scale as it requires manual revision of the fragment markups
in order to incorporate any new or enhanced features of
content into an operational fragment-based solution
framework . Furthermore, the manual approach to fragment
extraction becomes unmanageable and unrealistic for edge
caches that deal with multiple content providers. Thus,
there is a need for schemes for extraction of fragment from
web pages and that are scalable and robust for efficiently
delivering web content. By “interesting”, we mean that the
fragments detected are cost effective for fragment-based
caching. Goal for web block extraction is to extract
interesting fragments from web pages which exhibit potential
benefits and, thus, are cost-effective as cache units, refer to
these interesting fragments as candidate fragments. The
Web documents considered here are well-formed HTML
documents, although the approach can be applied to XML
documents as well.

1.2 Limitations
In existing system humans can easily identify fragments
with different themes or functionality based on their prior
knowledge in the domain of the content. However, in order
for machines and programs to automate the fragment
extraction process, we need mechanisms that on the one
hand can correctly identify fragments with different themes
or functionality without human involvement, and on the
other hand are efficient and effective for detecting and
flagging such fragments through a cross-comparison of
multiple pages from a web site. In past extraction of web
blocks or web fragments from web pages and analysis of
extraction algorithms work is done based on Comparison of
Content Extractor with Feature Extractor, K-Feature
Extractor, and with LH algorithm. Work in needed to
compare Content Extractor with DeSeA Algorithm.

1.3 Need of Present Work
In the papers cited at references [1], [5], [6], [7], [8], [9] it
shows that many researchers worked on the Extraction of
web blocks from web pages and analysis of algorithms. For
that purpose they used different rules, patterns and
information retrieval strategies of web mining. Taking into
consideration all above techniques, the work uses “content
extractor algorithm”, and “DeSeA algorithm” to detect and
extract fragments (web blocks) in web pages and analysis
of extraction algorithms based on precision and recall
values. It analyzes web pages with respect to their
information sharing behavior, personalization
characteristics, and the change frequencies over time.
Based on this analysis, this system detects and flags the
“interesting” fragments in a web site. We consider a
fragment interesting if it has good share ability with other
pages served from the same web site or it has distinct
lifetime Characteristics. This work consists following main
tasks:

1) Extraction of fragment (web blocks) from web
page using Content extractor algorithm.

2) Extraction of fragment (web blocks) from web
pages using DeSeA algorithm.

3) Analysis of detected fragment (web blocks)
using above algorithms.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

171
IJSTR©2014
www.ijstr.org

2 SYSTEM DESIGN
The previous approaches for extraction of web blocks from
web pages and analysis of extraction algorithms.Different
authors have compared ContentExtractor with
FeatureExtractor, K-FeatureExtractor as well as LH (Lin
and Ho) Algorithm Discussedas in chapter 1. This chapter
highlights on the problem statement, describes the
architecture of the proposed system and algorithms used
for implementation of the system.

2.1 Problem statement
Extraction of web blocks from web pages and analysis of
extraction algorithms

2.2 Architecture of Web block extraction

Figure 2.1 Architecture of Proposed System

The architecture of the proposed system is shown in
figure2.1. The proposed system consists of different parts
such as HTML Parser, Filter and Settings. In the HTML
Parser convert the web page into DOM Tree. Filter block
take input as a DOM tree and partition it into informative
and non-informative contents. Settings block shows the
web page by extracting redundant web blocks from web
pages.

2.3 Processes
The proposed work consists of following processes:

i) Segmenting web pages into blocks
ii) ContentExtractor Process
iii) DeSeA Process

2.3.1 Segmenting web pages into blocks
Most Web pages on the Internet are still written in HTML
[8]. Even dynamically generated pages are mostly written
with HTML tags, complying with the SGML format. The
layouts of these SGML documents follow the Document
Object Model tree structure of the World Wide Web
Consortium.2 Out of all of these tags; Web authors mostly
use <TABLE> to design the layouts. ContentExtractor
algorithm uses <TABLE> as the first tag on the basis of
which it partitions a Web page. After <TABLE>, it uses
<TR>, <P>, <HR>, , <DIV>, and , etc., as the
next few partitioning tags in that order. Algorithm Select the
order of the tags based on our observations of Webpages
and believe that it is a natural order used by most Web
page designers For example,<TABLE>comes as a first
partitioning tag since we see more instances of in a

table cell than<TABLE>s coming inside , an item under
. Algorithms partition a Web page based on the first
tag in the list to identify the blocks, and then sub partitions
the identified blocks based on the second tag and so on. It
continues to partition until there is any tag left in a block in
the block-set which is part of the list of tags. This ensures
that the blocks are atomic in nature and no further division
is possible on them. In partitioning algorithm this tag-set is
called the partitioning tag-set. In this process,
differentHTML documents (web pages) are collected.
Thesedocuments are converted into XML code in order to
generate DOM Tree.Itconsists of following steps:

1) Filtering the data from web pages
This module works only on HTML pages. Normally web
pages contain data such as hyperlinks, images, scripts,
advertisements, noisy data etc.The main objective is to
process web page and concentrate only on web blocks. So
it is easy to remove such unwanted data if any, when a
page is selected for processing.

2) XML conversion and DOM tree Generation
This process includes fetching the web page from specific
location and converting it into XML code. This XML code is
then used for the generation of DOM tree. The Document
Object Model (DOM) is an application programming
interface (API)for valid HTMLand well-formed XML
documents.It defines the logical structure of documents and
the way a document is accessed and manipulated. The
XML-DOM defines a standard way for accessing and
manipulating XML documents. The DOM presents an XML
document as a tree-structure. Figure2.2 shows the general
structure of the DOM treein which each element is
separated based on Document, Root element, Element,
Attribute and Text.

Figure 2.2 DOM Tree

2.3.2 ContentExtractor process
The input to the ContentExtractor algorithms is a set (at
least two) of Web pages belonging to a class of Web
pages. A class is defined as a set of Web pages from the
same Web site whose designs or structural contents are

Root
Element<ht

ml>

<><

Document

Element :
<head>

Element :
<title>

Text “My
title”

Attribu
te:
“href”

Element
:<h1>

Element :
<body>

Element: <a>

Text “My link” Text “My
header”

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

172
IJSTR©2014
www.ijstr.org

very similar. A set of Web pages dynamically generated
from the same script is an example of a class. The output of
the algorithms are the primary content blocks in the given
class of Web pages. Following functions have been used
for algorithm implementation

a. GetBlockSet():-

 Takes HTML page as input with ordered tag set

 Take a tag from tag set one by one & call
getBlock() routine

 New sub block created by getBlocks are added to
the block set & remove main block

 First() function return first tag of ordered set

 Next() function gives consecutive tag of ordered list

b. GetBlocks():-

 Takes full document or part of document (HTML)
as input

 It partition the document or part of document into
blocks according to input tag

 If particular tag not present in web page (HTML) it
return whole web page as single block

c. Identify Content block and separate it from non-
content block.

d. ContentExtractor ():-

 Calculate Inverse Block Document Frequency
(IDBF)

 Similarity function Sim use to calculate similarity
between blocks

e. Similarity function & threshold

 Input is two blocks it return cosine between their
block future vectors.

 Threshold value used is ε=0.9 i.e. if similarity
measure value greater than 0.9 then two blocks
are identical

2.3.2.1 GetBlockSet
The GetBlockSet routine takes an HTML page as input with
the ordered tag-set. GetBlockSet takes a tag from the tag-
set one by one and calls the GetBlocks routine for each
block belonging to the set of blocks, already generated.
New sub blocks created by GetBlocks are added to the
block set and the generating main block (which was just
partitioned) is removed from the set. The First function
gives the first element (tag) of an ordered set, and the Next
function gives the consecutive elements (tags) of an
ordered set. Feature identification is a very important step
in machine learning approach.The different usage patterns
must be extracted by considering the appearance of the
tables as expressed by the table tags and from the content
instance type of each cell. The appropriate features are
considered for distinguishing meaningful tables from
decorative tables [1].These are classified into two
categories such as“appearance features” and “consistency
features”.

2.3.2.2 GetBlocks
GetBlocks takes a full document or a part of a document,
written in HTML, and a tag as its input. It partitions the
document into blocks according to the input tag. For
example, in case of the <TABLE> tag given as input, it will
produce the DOM tree with all the table blocks. It does a
breadth-first search of the DOM tree (if any) of the HTML
page. If the input tag is <TABLE> and there is no table
structure available in the HTML page, it does not partition
the page. In that case, the whole input page comes back as
a single block. In case of other tags such as <P>, it
partitions the page/block into blocks/subblocks separated
by those tags. Fig. 2 shows the structure of two HTML
pages. It also shows the blocks that our blocking algorithm
identifies for each of these pages (under the dotted line).

Fig. 2.3 Two Web pages‟ block structures as seen by
GetBlockSet. The output from them is shown under the

dotted line.

2.3.3 DeSeA Process
DeSeA is implemented in 2 steps. A web page is divided
into coherent blocks first. Then relevant blocks are detected
from them.

2.3.3.1Block Extraction
The block extraction process is divided into splitting and
merging. In splitting process, a web page is segmented into
blocks using level-1 delimiters first, and the hierarchical
structure is recorded into a block tree. For all leaf nodes in
the block tree, same process is carried out using higher-
level delimiters until all leaf nodes all in block tree satisfy
the granularity requirement controlled by an integer value α
called window size. The experiments lead up to the fact that
the accuracy reaches the highest when α is 300. For each
segmentation round, the EDT is segmented using specific
level delimiters. It is started from the root node of the EDT.
The whole web page is put into the block tree as the root
node first. From top to bottom, each node in the block tree
is checked whether it forms a single block in order to be
processed using rule set described below. If it forms a
single block, it is put into the block tree directly as a leaf
node and needn‟t to be segmented any more. Otherwise,
it‟s segmented into smaller blocks based on delimiters and
the EDT. Smaller blocks after segmentation are put into the
block tree as leaf nodes of current round. Following
predicates are defined before introducing rule set for page
splitting:

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

173
IJSTR©2014
www.ijstr.org

Larger (n, s): Character number of node n in block tree is
larger than s;

CVD (n): Node n in block tree has a different page visual
attribute value compared with other child nodes of it;

CSD (n): Node n in block tree has a page structural
delimiter;

CDD (n): Node n in block tree has a domain-specific
delimiter;

Single (n): Node n in block tree forms a single block;

DVN (n): Divide node n according to delimiter, making

nodes with the same visual attribute value in a single block;

DSN (n): Divide node n according to page structural
delimiter and the EDT;

DDN (n): Divide node n according to domain-specific
delimiter in the same way as the structural delimiter.

Using above predicates, we define rule set as follows:
(CSD(n)||CDD(n)) && Larger(n,s)) Single(n)
Larger(n,s) && CVD(n) DVN(n)
Larger(n,s) && CSD(n)  DSN(n)
Larger(n,s) && CDD(n)  DDN(n)

This splitting process is demonstrated in following code.

After splitting, a block tree is constructed. Sibling nodes in
the block tree are processed to determine whether they
should be merged based on the next-to relationship among
blocks. Among above delimiters, „;‟, „.‟ and <Hx> with the
same x value where x is a numerical character like „1‟, ‟2‟
have next-to type. Figure2.4 shows an example of this
merging process, where two leaf nodes in block tree which
is divided by “.” are merged. Take the above page
paragraph for example, whole page paragraph is processed
by level-1 delimiters <head> and

Figure2.4 An Example of Merging process

 first, splitting it into 3 corser sub-blocks with <head>,
 and <P+Strong> as the block‟s root. Its splitting result
is shown in Figure2.5 (a). Then each leaf block in block tree
is checked whether it meet the granularity requirement. If
not, the block tree is processed using higher-level delimiters
similarly. Finally, extraction result is shown in Figure 2.5 (b).

Figure2.5 .An example of Block Tree

2.3.3.2 Relevant Block Detection

Relevant block means a block that contains a faculty‟s
research interests. Each type of block has an anchor text.
Take “” block for example, its anchor text is
defined to be 80 character before the start of block. Degree
of relevant is calculated by the DoR value assigned to each
block based on cue phrases appeared in the anchor text.
The DoR value is calculated based on following
considerations: 1) If an anchor text contains no cue phrase,
its DoR value is zero; 2) If an anchor text contains one cue
phrase, its DoR value is proportional to the cue phrase‟s
priority; 3) If it contains more than one cue phrase, its DoR
value is proportional to the highest cue phrase priority; 4)
When block A and block B is merged together, its DoR
value is the higher one between DoR of A and B. Blocks
with non-zero DoR value are put into the candidate block
list and sorted in descending order of DoR. The top ȕ
blocks from the candidate block list are selected and put
into the relevant block set. Through experiments, ȕ is
assigned to 10.

3 IMPLEMENTATION
In this chapter the details of the classes used for the
development of modules are described. It also focuses on
the processing of a web page containing a web blocks. The
proposed system shown in figure1.1 illustrates the flow of
implementation. In the Segmenting web page into blocks
process, HTML documents are collected from the web and
their XML conversion is carried out. The DOM tree is
generated for the respective pages. The operations block
recognitionis performed to obtain the web blocks, which are
shown in figure 3.1.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

174
IJSTR©2014
www.ijstr.org

Figure 3.1 DFD for selecting web block

Aweb page without web blocks is generated by applying
ContentExtractor process. Figure 3.2 shows the procedure
of extraction of web blocks from web page using
ContentExtractor algorithm.

Figure 3.2 DFD for extraction of web blocks from web
pages using ContentExtractor

A web page without web blocks also generated using
DeSeA process. Figure 3.3 shows procedure of extraction
of web blocks from web pages using DeSeA algorithm.

Figure 3.3 DFD for extraction of web blocks from web
pages using DeSeA

3.1 Content Extraction Algorithm
Five classes are used under the package name kit. Name
of the classes and there functionality is as follows.

1) ContentExtractor class :
It takes input as two web pages belonging to class of web
page and gives output like

a) Page 1 Total no. of Blocks
b) Page 2 Total no. of Blocks
c) Total redundant Blocks

2) Match class :

This class is used to check the matching of tags
between two web pages, which is given as input in
ContentExtractor class.

3) GetBlocks class :
This class works as GetBlocks() routine present in
ContentExtractor algorithm. Input is 2 html pages
which is given in Main class and output is blocks
retrieved from page1 & page2 in the form of ArrayList.

4) FindRedundant class :
This class performs comparison of blocks retrieved by
getblocks class. Input is Files containing Blocks
retrieved from web page in the form of ArrayList and
output is list of Redundant blocks .Similarity function in
ContentExtarctor algorithm is also implemented in this
class.

5) RemoveRedundant class :
This class Arranges the page2 without redundant
blocks. Input is Page2 and ArrayList of
RedundantBlocks given by class FindRedundant.
Output is Page2 without Redundant blocks.

3.2 DeSeA Algorithm
Following classes are used in implementation of DeSeA
algorithm. Name of the classes and there functionality is as
follows.
1) ParserBlogFile: main function, give requested two html

file name and two resulted file names total 4 input
strings.

2) ParseBlogElement: parser's object is created. two
methods are there

a. parseElement: returns NodeList object. Here

whole file get parsed n stored into NodeList as

well it is having html object where nodes get

stored

b. getHTMLNode: it returns Node object.

3) ParseFile: whole file get parsed with respect to their

text, image and link.

3.3 HTML Parser Libraries and classes used
These java libraries provide access to the contents of local
or remote HTML resources in a programmatic way. The
HTML Parser distribution is composed of

 a low level laxer that converts characters from a
HTML page into a linear sequence of nodes

 a high level parser that provides a hierarchical
document model of a HTML page

The different classes used for development of system are
as mention below.

i) NodeList(Node node)
The nodes in the NodeList can be accessed through their
index number (starting from 0).The NodeList keeps itself
up-to-date. If an element is deleted or added, in the node
list or the XML document, the list is automatically updated.

HT

ML

Pag

es

HT

M

L

pa

ge

wit

h

W

eb

blo

ck

XM

L

Con

versi

on

D

O

M
Tr

ee

Web

Block

Recog

nition

We

b

blo

cks

Web

page

witho

ut

web

block

s

Content

Extractor

Web

bloc

ks

Web

page

witho

ut

webb

locks

DeSeA

file:///F:\myPRJ\Copy%20of%20Input\javadoc\org\htmlparser\lexer\Lexer.html
file:///F:\myPRJ\Copy%20of%20Input\javadoc\org\htmlparser\Parser.html
file:///F:\myPRJ\Copy%20of%20Input\javadoc\org\htmlparser\util\NodeList.html%23NodeList%2528org.htmlparser.Node%2529
file:///F:\myPRJ\Copy%20of%20Input\javadoc\org\htmlparser\Node.html

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

175
IJSTR©2014
www.ijstr.org

Table 3.1 Methods of StreamReader Class

ii) Attributes Class
The Attributes class maps Manifest attribute names to
associated string values. Valid attribute names are case-
insensitive, are restricted to the ASCII characters in the set
[0-9a-zA-Z_-], and cannot exceed 70 characters in length.
Attribute values can contain any characters and will be
UTF8-encoded.

Table 3.2 Methods of Attributes Class

Name Description

void clear() Removes all attributes from this Map.

Object clone() Returns a copy of the Attributes.

boolean
containsKey
(Object name)

Returns true if this Map contains the
specified attribute name (key).

boolean
containsValue
(Object value)

Returns true if this Map maps one or
more attribute names (keys) to the
specified value.

boolean equals
(Object o)

Compares the specified Attributes
object with this Map for equality.

Object get
(Object name)

Returns the value of the specified
attribute name, or null if the attribute
name was not found.

StringgetValue
(String name)

Returns the value of the specified
attribute name, specified as a string, or
null if the attribute was not found.

boolean
isEmpty()

Returns true if this Map contains no
attributes.

Object put
(Object name,
Object Value)

Associates the specified value with the
specified attribute name (key) in this
Map.

Object remove
(Object name)

Removes the attribute with the
specified name (key) from this Map.

iii) Parser Class
The Parser provides access to the contents of the page.
Parser class is having following methods.

Table 3.3 Methods of Parser Class

Name Descriptio
n

static ParsercreateParser(String html,
String charset)

Creates the
parser on
an input
string.

 NodeIteratorelements()

Returns an
iterator
(enumeratio
n) over the
html nodes.

 NodeListextractAllNodesThatMatch(NodeFilt
er filter)

Extract all
nodes
matching
the given
filter.

 URLConnectiongetConnection()

Return the
current
connection.

static ConnectionManagergetConnectionMan
ager()

Get the
connection
manager all
Parsers
use.

 StringgetEncoding()

Get the
encoding
for the page
this parser
is reading
from.

 LexergetLexer()

Returns the
lexer
associated
with the
parser.

 NodeFactorygetNodeFactory() Get the
current
node
factory.

 StringgetURL()

 Return the
current URL
being
parsed.

 NodeListparse(NodeFilter filter)

Parse the
given
resource,
using the
filter
provided.

 void reset()

Reset the
parser to

Name Description

int
getLength()

Returns the number of nodes in a
NodeList

Node item
(int index)

Returns the node at the specified
index in a NodeList

http://docs.oracle.com/javase/7/docs/api/java/util/jar/Attributes.html#getValue%28java.lang.String%29
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Parser.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Parser.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Parser.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/util/NodeIterator.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/util/NodeIterator.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/util/NodeIterator.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/util/NodeList.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/util/NodeList.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/util/NodeList.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/NodeFilter.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/NodeFilter.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/NodeFilter.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URLConnection.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URLConnection.html
http://java.sun.com/j2se/1.4.2/docs/api/java/net/URLConnection.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/http/ConnectionManager.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/http/ConnectionManager.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/http/ConnectionManager.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/http/ConnectionManager.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/lexer/Lexer.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/lexer/Lexer.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/lexer/Lexer.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/NodeFactory.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/NodeFactory.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/NodeFactory.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/util/NodeList.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/util/NodeList.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/util/NodeList.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/NodeFilter.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Parser.html#reset%28%29

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

176
IJSTR©2014
www.ijstr.org

start from
the
beginning
again.

 void setEncoding(String encoding)

Set the
encoding
for the page
this parser
is reading
from.

 void setInputHTML(String inputHTML)

Initializes
the parser
with the
given input
HTML
String.

 void setLexer(Lexer lexer)

Set the
lexer for
this parser.

 void setResource(String resource)

Set the
html, a url,
or a file.

 void setURL(String url)

Set the
URL for this
parser.

iv) Tag Interface:-
This interface represents a tag (<xxx yyy="zzz">) in the
HTML document. Adds capabilities to a Node that are
specific to a tag. Tag Interfaceis having following methods.

Table 3.4 Methods of Tag Interface

Name Description

StringgetAttribute(String name)

Returns the value of an
attribute.

 TaggetEndTag()

Get the end tag for this
(composite) tag.

 StringgetTagName()

Return the name of this
tag.

 boolean isEndTag() Predicate to determine if
this tag is an end tag

 voidremoveAttribute(String key) Remove the attribute with
the given key, if it exists.

 voidsetAttribute(String key,
String value)

Set attribute with given
key, value pair.

 voidsetEndTag(Tag tag)

Set the end tag for this
(composite) tag.

 voidsetTagName(String name) Set the name of this tag.

4 EXPERMENTAL RESULTS
This chapter highlights on the experimental results which
are obtained using ContentExtractor algorithm and DeSeA
algorithm.For experiments, different HTML web pages are
collected from different News web sites along with number

of web blocks per web site. Using this data set, experiments
are carried out on: 1) Extraction of web blocks from web
pages using ContentExtractor model and 2) Extraction of
web blocks from web pages using DeSeA model.The
algorithms are evaluated on Precision and recall values of
the web pages.

4.1. Input Dataset
Table 4.1 shows the information about the input dataset
and the experiments which are carried out on this dataset
by using ContentExtractor model and DeSeA model. This
dataset contains in total, 15 different Web sites including
news, shopping, opinion posting Web sites, etc., whose
designs and page-layouts are completely different.

Table 4.1 Details of input data set

4.2.Experimental Results using ContentExtractor
model and DeSeA model
The block level Precision rate (b-Precision), and block level
Recall rate (b-Recall) are used to measure the
performance. Precision is defined as the ratio of the number
of relevant items (actual primary content blocks) r found
and the total number of items (primary content blocks
suggested by an algorithm) t found. Here, we used a block
level precision and so we call it b-Precision:

 b-Precision= r / t

Recall has been defined as the ratio of the number of
relevant items found and the desired number of relevant
items. The desired number of relevant items includes the
number of relevant items found and the missed relevant
items m. In case of blocks, we call it as block level recall or
b-Recall:

b-Recall = r / (r + m)

Table 4.2 shows Block Level Precision and Recall Values
for ContentExtractor Model and Table 4.3 shows Block
Level Precision and Recall Values for DeSeA Model.

http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Parser.html#setEncoding%28java.lang.String%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Parser.html#setInputHTML%28java.lang.String%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Parser.html#setLexer%28org.htmlparser.lexer.Lexer%29
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/lexer/Lexer.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Parser.html#setResource%28java.lang.String%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Parser.html#setURL%28java.lang.String%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Tag.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Tag.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Tag.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Tag.html#isEndTag%28%29
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Tag.html#removeAttribute%28java.lang.String%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Tag.html#setAttribute%28java.lang.String,%20java.lang.String%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Tag.html#setEndTag%28org.htmlparser.Tag%29
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Tag.html
http://htmlparser.sourceforge.net/javadoc/org/htmlparser/Tag.html#setTagName%28java.lang.String%29
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/String.html

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

177
IJSTR©2014
www.ijstr.org

Table 4.2 Experimental results on the input data set by
applying ContentExtractor Model

Table 4.3 Experimental results on the input data set by
applying DeSeA Model

4.2 Result Analysis
Figure 4.7 shows the graph which represents the
performance of the extraction of web blocks from web
pages using ContentExtractor and DeSeA System. X-axis
shows web site names and Y-axis shows percentage of
Precision and Recall.

Figure 4.4 Graph of performance of the extraction of web
blocks by CE and DeSeA

5 CONCLUSION
Unlike information retrieval, the goal of IE is to transform
text into a structured format and thereby reducing the
information in a document to a tabular structure. The
ContentExtractor algorithm detects redundant blocks based
on the occurrence of the same block across multiple Web
pages. The algorithms, thereby, reduce the storage
requirements, make indices smaller, and result in faster and
more effective searches. Though the savings in file size and
the precision and recall values from “DeSeA Algorithm” is
as good as from ContentExtractor, ContentExtractor
outperforms the “DeSeA Algorithm” by a high margin in
runtime. Intend to deploy ContentExtractor algorithm as a
part of a system that crawls Web pages, and extracts
primary content blocks from it. The storage requirement for
indices, the efficiency of the markup algorithms, and the
relevancy measures of documents with respect to keywords
in queries should also improve (as we have shown briefly
by caching size benefit) since now only the relevant parts of
the documents are considered. It‟s obvious that exact
positioning of information is critical to information extraction
and knowledge discovery. DeSeA algorithm divides a web
page into coherent blocks, and separates relevant
information from irrelevant one. The segmentation process
of DeSeA simulates how a user understands the content of
a web page. It is a reconstruction of inner structure of a web
page, transforming an EDT to a block tree, based on pre-
defined page delimiters and domain-specific delimiters.
Compared with existing page segmentation method, DeSeA
divides delimiters into different level based on their content
splitting ability, with higher-level delimiters having higher
priority to segment a web page. After applying
ContentExtractor and DeSeA algorithms for extraction of
web blocks from web pages we can remove redundant web
blocks from web pages hence it will be beneficial for web
page caching and for crawling the web pages. After

Site
b-Precision of

CE
b-Recall of CE

ABC 0.90 0.90

BB 1.0 1.0

BBC 0.58 0.58

CBS 0.55 0.55

CNN 0.88 0.88

FOX 0.83 0.83

FOX23 0.92 0.92

IE 0.61 0.61

IT 0.35 0.35

MSNBC 0.28 0.28

YAHOO 1.0 1.0

Shopping 0.37 0.37

Amazon 1.0 1.0

Barnes and
Noble

1.0 1.0

Epinion 1.0 1.0

Site
b-Precision
of DeSeA

b-Recall of
DeSeA

ABC 1.0 1.0

BB 1.0 1.0

BBC 1.0 1.0

CBS 0.16 0.16

CNN 0.84 0.84

FOX 1.0 1.0

FOX23 0.46 0.46

IE 1.0 1.0

IT 1.0 1.0

MSNBC 0.56 0.56

YAHOO 1.0 1.0

Shopping 1.0 1.0

Amazon 1.0 1.0

Barnes and
Noble

1.0 1.0

Epinion 1.0 1.0

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN 2277-8616

178
IJSTR©2014
www.ijstr.org

extraction of redundant web block web page only contains
meaningful information. It is observed that b-Precision and
b-Recall values for DeSeA algorithm is good compared to
the ContentExtractor algorithm.

6 Further Work
As the proposed system considers only two web pages
from class of web pages , the proposed system can be
further enhanced to process more than two web pages for
web block extraction. In Proposed system DeSeA algorithm
is compared with ContentExtractor further DeSeA algorithm
can be compared with Feature-Extractor and K-Feature-
Extractor algorithm as well as LH algorithm. Further DeSeA
algorithm extract research interests from relevant text using
natural language processing techniques, and extract cue
phrases automatically using those manually extracted
results as training data to make this algorithm scalable.
Artificial Neural Network can be used for finding redundant
web blocks from more than two web pages.

7 REFERENCES
[1]. Sung-Won Jung, and Hyuk-Chul Kwon, “A Scalable

Hybrid Approach for Extracting Head Components
from Web Tables”, IEEE TRANSACTIONS ON
KNOWLEDGE AND DATA ENGINEERING, VOL. 18,
NO. 2, FEBRUARY 2006.

[2]. Jeong-Woo Son, Jae-An-Lee, Seong-Bae Park, Hyun-

Je Song, Song-Jo Lee, Se-Young Park,
“Discriminating Meaningful Web Tables from
Decorative Tables Using a Composite Ker-nel”, 2008
IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology.

[3]. Chen Hong-ye, “Method of Web Information Extraction

Based on Decision Tree”, 2009 International Forum on
Information Technology and Applications.

[4]. H.H. Chen, S.C. Tsai, and J.H. Tsai, “Mining Tables

from Large Scale HTML Texts”, Proc. 18th Int‟l Conf.
Computational Linguistics, July 2000.

[5]. M. Hurst, “Layout and Language: Beyond Simple Text

for Information Interaction—Modeling the Table”, Proc.
Second Int‟l Conf. Multimodal Interfaces, 1999.

[6]. G. Ning, W. Guowen, W. Xiaoyuan, and S. Baile,

“Extracting Web Table Information in Cooperative
Learning Activities Based on Abstract Semantic
Model”, Proc. Sixth Int‟l Conf. Computer Supported
Cooperative Work in Design, pp. 492-497, 2001.

[7]. Y. Wang and J. Hu, “A Machine Learning Based

Approach for Table Detection on the Web”, Proc. 11th
Int‟l World Wide Web Conf. WWW 2002, pp. 7-11,
2002.

[8]. S. Soderland, “Learning to Extract Text-Based

Information from the World Wide Web” ,Proc. Third
Int‟l Conf. Know-ledge Discovery and Data Mining
(KDD), Aug. 1997.

[9]. M. Hurst. Layout and language: Challenges for table
under-standing on the Web. In Proc. 1st WDA at 6th
ICDAR, pp. 27{30, Sept. 2001}.

[10]. A. Tengli, Y. Yang, and N. L: Machine Learning table

extraction from examples. In Proc. 20th COLING, pp.
987-993. COL-ING, Aug. 2004.

[11]. Margaret Dunham, Data Mining Introductory and

Advanced Topics, ISBN: 0130888923, Prentice Hall,
2003

