
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 1, JANUARY 2013 ISSN 2277-8616

9
IJSTR©2012

www.ijstr.org

Diabetes Detection Using Artificial Neural
Networks & Back-Propagation Algorithm

Ms. Divya(Assistant Professor(MSIT)), Raman Chhabra, Sumit Kaur, Swagata Ghosh

Abstract:- This is a project aimed at predicting the chances of diabetes in a person, that whether or not is he/she prone to it. We have used certain
parameters namely: number of pregnancies, glucose, BP, skin fold, insulin, body mass index, pedigree and age. The database of 768 patients with
these parameters each was taken from National Institute of Diabetes and Digestive and Kidney Diseases. Using neural network feed forward prediction

model in conjunction with back propagation algorithm, and given training data set, we predicted whether a subject was likely to have diabetes.

Index Terms:- Artifical Neural Network,Transfer Function,Body Mass Index

1. Introduction
The aim of our project was to use certain key parameters to
predict whether a person was suffering or likely to suffer
from diabetes. These parameters are:

 Number of pregnancies

 Blood Glucose Level

 BP (Systolic)

 Skin Fold

 Insulin

 Body Mass Index

 Pedigree

 Age

We used a 3 layer neural network with one hidden layer
and customizable number of hidden layer neurons with a
customization option for the prediction function used. We
tried out approximating using 3 functions:

 Binary Sigmoidal
f(x)=1/(1+e

-x
)

 Bipolar Sigmoidal
f(x)=2/(1+e

-x
) – 1

 Hyperbolic Tangential
f(x)=(e

x
 – e

-x
)/ (e

x
 + e

-x
)

The more the number of hidden layer neurons the more
accurate was the result, but it took more computation time.
So, a decent trade off value of 20 was chosen.
Experimental results showed that binary sigmoidal function
was the most accurate of all.

2. Previous Works
Neural network simulations appear to be a recent
development. However, this field was established before
the advent of computers, and has survived at least one
major setback and several eras. Many important advances
have been boosted by the use of inexpensive computer
emulations. Following an initial period of enthusiasm, the
field survived a period of frustration and disrepute. During
this period when funding and professional support was
minimal, important advances were made by relatively few
researchers. These pioneers were able to develop
convincing technology which surpassed the limitations
identified by Minsky and Papert. Minsky and Papert,
published a book (in 1969) in which they summed up a
general feeling of frustration (against neural networks)
among researchers, and was thus accepted by most
without further analysis [7]. Currently, the neural network
field enjoys a resurgence of interest and a corresponding

increase in funding. The first artificial neuron was produced
in 1943 by the neurophysiologist Warren McCulloch and the
logician Walter Pits. But the technology available at that
time did not allow them to do too much [2].

3.1 ANN (Artificial Neural Network) using
back–propagation algorithm
In order to train a neural network to perform some task, we
must adjust the weights of each unit in such a way that the
error between the desired output and the actual output is
reduced. This process requires that the neural network
compute the error derivative of the weights (EW). In other
words, it must calculate how the error changes as each
weight is increased or decreased slightly. The back
propagation algorithm is the most widely used method for
determining the EW. The back-propagation algorithm is
easiest to understand if all the units in the network are
linear. The algorithm computes each EW by first computing
the EA, the rate at which the error changes as the activity
level of a unit is changed. For output units, the EA is simply
the difference between the actual and the desired output.
To compute the EA for a hidden unit in the layer just before
the output layer, we first identify all the weights between
that hidden unit and the output units to which it is
connected. We then multiply those weights by the EAs of
those output units and add the products. This sum equals
the EA for the chosen hidden unit. After calculating all
the EAs in the hidden layer just before the output layer, we
can compute in like fashion the EAs for other layers,
moving from layer to layer in a direction opposite to the way
activities propagate through the network. This is what gives
back propagation its name. Once the EA has been
computed for a unit, it is straight forward to compute
the EW for each incoming connection of the unit. The EW is
the product of the EA and the activity through the incoming
connection. Note that for non-linear units, the back-
propagation algorithm includes an extra step. Before back-
propagating, the EA must be converted into the EI, the rate
at which the error changes as the total input received by a
unit is changed [8].

3.2 Pseudo Code
1. {

2. Initialize nodes and layers to form the neural network.

3. Initialize biases, weights and learning rate.

http://www.ijstr.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 1, JANUARY 2013 ISSN 2277-8616

10
IJSTR©2012

www.ijstr.org

4. Obtain training samples and their expected output
values.

5. While(terminating condition is not true)

//it could be a specified no: of iterations or error
rate to prevent infinite loop.

6. {

7. Initialize each input layer „i‟ node with normalized
inp_par[i]

8. For each hidden layer node „j‟

9. {

10. Calculate input to node as value of “sum” given by:

Sum=∑wt[i][j]*inp_val[i], where wt[i][j] is the weight
associated with the link (i,j). Here, „i‟ is input layer node
and „j‟ is the current hidden layer node.

11. Calculate output from node „j‟ according to the

prediction function used + the „bias‟ value for the layer.

12. }

13. For each output layer node „j‟

14. {

15. Calculate input to node as value of “sum” given by:

Sum=∑wt[i][j]*val[i], where wt[i][j] is the weight
associated with the link (i,j). Here, „i‟ is hidden layer
node and „j‟ is the current output layer node.

16. Calculate output from node „j‟ according to the

prediction function used + the „bias‟ value for the layer.

17. }

18. Calculate error for each node „j‟ of output layer as:

Err_out[j]=(Expected output – Obtained
output)*Obtained output*(1 – Obtained output).

19. Calculate error for each node „j‟ of hidden layer as:

a. Calculate “sum” as:
Sum=∑Err_out[i]*wt[i][j], where wt[i][j] is
the weight associated with the link (i,j)
between hidden layer node „j‟ and output
layer node „i‟.

b. Err_hid[j]=(Obtained output)*(1 – Obtained
output)*sum

20. // Adjust weights and biases according to the errors

calculated by back propagation.

21. For each weight wt[i][j] between input and hidden layer
a. Wt[i][j]=wt[i][j]+lr*Err_hid[j]*(Obtained output at

j), where „lr‟ is the learning rate

22. For each weight wt[i][j] between hidden and output

layer

a. Wt[i][j]=wt[i][j]+lr*Err_out[j]*(Obtained output at
j), where „lr‟ is the learning rate

23. Bias_hid=bias_hid+lr*RMS(Err_hid[j]), where Err_hid[j]

is the error of a hidden layer node j.
24. Bias_out=bias_out+lr*RMS(Err_out[j]), where Err_out[j]

is the error of a output layer node j.

25. }

26. //Training is complete, display results in user console.

Start predicting new samples.

27. Accept inp_par[] from the user and perform steps 7 –

16.

28. The resulting pattern obtained from the output of all the

output layer nodes is compared with a pattern
sequence to detect a match and the respective class of
final output is displayed to the user. The accuracy of
prediction will largely depend on the data set given and
the parameters entered. It will largely depend on the
statistical correlation of the values of the parameters
and the respective final output class.

29. }

4. Result Obtained
We trained our neural network with 200 samples from the
database and tested it with 50 samples. We obtained
specificity of 82.14% & sensitivity of 88.8%. We obtained
RMS error rate of 0.019% for the 50 samples tested. (Here
we calculated error in terms of percentage error of output
from output expected i.e. 0 or 1.) On an average it took
about 1275 iterations to converge to the result with learning
rate of 0.1 and momentum of 0.9, which was found out to
be an optimal value for binary sigmoidal function.

5. Conclusion
This project was aimed at modeling neural network for a
prediction scenario – diabetes and its type prediction here
and to analyse the prediction results and compare the
network efficiency upon changing the network parameters
like the number of hidden layer nodes, type of normalization
function used, prediction function used, learning rate and
the initial biases for each layer. The correlation between
training samples, their expected outputs and the number of
iterations required to predict with RMS error below a
threshold of 0.02% was also analysed. It took an average
1250 iterations to achieve the output. The maximum
number of iterations was kept to 10000 so that the
algorithm doesn‟t get stuck into an infinite loop if the
prediction is not very accurate and quick. In general, we
took 8 basic parameters to predict diabetes and its type in a
person. The number of samples taken was not too many
and so the algorithm took more than expected iterations to
achieve optimum result. Initially we had assumed that 500
iterations would be more than enough for the task. Also on
comparing the different prediction functions, it was found
that sigmoidal function was the best and quickest to predict
the result. Sigmoidal functions of two types namely: Binary
and Bipolar were compared. Binary sigmoidal function gave
results faster in less number of iterations. Bipolar sigmoidal

http://www.ijstr.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 2, ISSUE 1, JANUARY 2013 ISSN 2277-8616

11
IJSTR©2012

www.ijstr.org

gave results which were more accurate, but, in general it
took about 250-300 iterations more than its counterpart. So,
we have a trade-off between accuracy and the number of
iterations, and in fact if we multiply both the functions and
an optimization constant together and perform an
optimization based on some criteria function we can
improve the overall time-efficiency & accuracy of the
algorithm by atleast a factor of 2. The implementation of this
optimization was also left as an extension to the basic
version of the project. Hyperbolic tangential function was
also accurate but it took too many iterations to converge to
the final result. In fact, it more often than not took more than
7000 iterations to obtain the final result, and so we had to
set the threshold number of iterations to 10000. Otherwise,
a threshold of about 3000 was sufficient. This is mainly due
to the geometrical nature of the hyperbolic curve in
consideration. The rate of change of the slope of tangent to
the curve was slow, and so it took long to converge to a
constant stable value.

6. Refrences
[1] An introduction to neural computing. Aleksander, I.

and Morton, H. 2nd edition

[2] Neural Networks at Pacific Northwest National
Laboratory
http://www.emsl.pnl.gov:2080/docs/cie/neural/neur
al.homepage.html

[3] Artificial Neural Networks in Medicine

http://www.emsl.pnl.gov:2080/docs/cie/techbrief/N
N.techbrief.ht

[4] Industrial Applications of Neural Networks

(research reports Esprit, I.F.Croall, J.P.Mason)

[5] A Novel Approach to Modelling and Diagnosing the
Cardiovascular System
http://www.emsl.pnl.gov:2080/docs/cie/neural/pape
rs2/keller.wcnn95.abs.html

[6] Electronic Noses for Telemedicine

http://www.emsl.pnl.gov:2080/docs/cie/neural/pape
rs2/keller.ccc95.abs.html
An Introduction to Computing with Neural Nets
(Richard P. Lipmann, IEEE ASSP Magazine, April
1987)

[7] Pattern Recognition of Pathology Images

http://kopernik-
eth.npac.syr.edu:1200/Task4/pattern.html

[8] Developments in autonomous vehicle navigation.

Stefan Neuber, Jos Nijhuis, Lambert Spaanenburg.
Institut fur Mikroelektronik Stuttgart, Allmandring
30A, 7000 Stuttgart-80

[9] Klimasauskas, CC. (1989). The 1989 Neuro

Computing Bibliography. Hammerstrom, D. (1986).
A Connectionist/Neural Network Bibliography.

[10] DARPA Neural Network Study (October, 1987-

February, 1989). MIT Lincoln Lab.

[11] Neural Networks, Eric Davalo and Patrick Naim.

[12] Assimov, I (1984, 1950), Robot, Ballatine, New

York.

[13] Learning internal representations by error
propagation by Rumelhart, Hinton and Williams
(1986).

[14] Alkon, D.L 1989, Memory Storage and Neural

Systems, Scientific American, July, 42-50

[15] Minsky and Papert (1969) Perceptrons, An
introduction to computational geometry, MIT press,
expanded edition.

[16] Neural computers, NATO ASI series, Editors: Rolf

Eckmiller Christoph v. d. Malsburg

http://www.ijstr.org/
http://www.emsl.pnl.gov:2080/docs/cie/neural/neural.homepage.html
http://www.emsl.pnl.gov:2080/docs/cie/neural/neural.homepage.html
http://www.emsl.pnl.gov:2080/docs/cie/techbrief/NN.techbrief.html
http://www.emsl.pnl.gov:2080/docs/cie/techbrief/NN.techbrief.html
http://www.emsl.pnl.gov:2080/docs/cie/neural/papers2/keller.wcnn95.abs.html
http://www.emsl.pnl.gov:2080/docs/cie/neural/papers2/keller.wcnn95.abs.html
http://www.emsl.pnl.gov:2080/docs/cie/neural/papers2/keller.ccc95.abs.html
http://www.emsl.pnl.gov:2080/docs/cie/neural/papers2/keller.ccc95.abs.html
http://www.emsl.pnl.gov:2080/docs/cie/neural/papers2/keller.ccc95.abs.html
http://kopernik-eth.npac.syr.edu:1200/Task4/pattern.html
http://kopernik-eth.npac.syr.edu:1200/Task4/pattern.html

