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Abstract:- This is a project aimed at predicting the chances of diabetes in a person, that whether or not is he/she prone to it. We have used certain 
parameters namely: number of pregnancies, glucose, BP, skin fold, insulin, body mass index, pedigree and age. The database of 768 patients with 
these parameters each was taken from National Institute of Diabetes and Digestive and Kidney Diseases. Using neural network feed forward prediction 

model in conjunction with back propagation algorithm, and given training data set, we predicted whether a subject was likely to have diabetes. 
 
Index Terms:- Artifical Neural Network,Transfer Function,Body Mass Index 

 
 

1. Introduction 
The aim of our project was to use certain key parameters to 
predict whether a person was suffering or likely to suffer 
from diabetes. These parameters are: 

 Number of pregnancies 

 Blood Glucose Level 

 BP (Systolic) 

 Skin Fold 

 Insulin 

 Body Mass Index 

 Pedigree 

 Age 
 
We used a 3 layer neural network with one hidden layer 
and customizable number of hidden layer neurons with a 
customization option for the prediction function used. We 
tried out approximating using 3 functions: 

 Binary Sigmoidal  
f(x)=1/(1+e

-x
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The more the number of hidden layer neurons the more 
accurate was the result, but it took more computation time. 
So, a decent trade off value of 20 was chosen. 
Experimental results showed that binary sigmoidal function 
was the most accurate of all. 
 

2. Previous Works 
Neural network simulations appear to be a recent 
development. However, this field was established before 
the advent of computers, and has survived at least one 
major setback and several eras. Many important advances 
have been boosted by the use of inexpensive computer 
emulations. Following an initial period of enthusiasm, the 
field survived a period of frustration and disrepute. During 
this period when funding and professional support was 
minimal, important advances were made by relatively few 
researchers. These pioneers were able to develop 
convincing technology which surpassed the limitations 
identified by Minsky and Papert. Minsky and Papert, 
published a book (in 1969) in which they summed up a 
general feeling of frustration (against neural networks) 
among researchers, and was thus accepted by most 
without further analysis [7]. Currently, the neural network 
field enjoys a resurgence of interest and a corresponding 

increase in funding. The first artificial neuron was produced 
in 1943 by the neurophysiologist Warren McCulloch and the 
logician Walter Pits. But the technology available at that 
time did not allow them to do too much [2]. 
 

3.1 ANN (Artificial Neural Network) using 
back–propagation algorithm 
In order to train a neural network to perform some task, we 
must adjust the weights of each unit in such a way that the 
error between the desired output and the actual output is 
reduced. This process requires that the neural network 
compute the error derivative of the weights (EW). In other 
words, it must calculate how the error changes as each 
weight is increased or decreased slightly. The back 
propagation algorithm is the most widely used method for 
determining the EW. The back-propagation algorithm is 
easiest to understand if all the units in the network are 
linear. The algorithm computes each EW by first computing 
the EA, the rate at which the error changes as the activity 
level of a unit is changed. For output units, the EA is simply 
the difference between the actual and the desired output. 
To compute the EA for a hidden unit in the layer just before 
the output layer, we first identify all the weights between 
that hidden unit and the output units to which it is 
connected. We then multiply those weights by the EAs of 
those output units and add the products. This sum equals 
the EA for the chosen hidden unit. After calculating all 
the EAs in the hidden layer just before the output layer, we 
can compute in like fashion the EAs for other layers, 
moving from layer to layer in a direction opposite to the way 
activities propagate through the network. This is what gives 
back propagation its name. Once the EA has been 
computed for a unit, it is straight forward to compute 
the EW for each incoming connection of the unit. The EW is 
the product of the EA and the activity through the incoming 
connection. Note that for non-linear units, the back-
propagation algorithm includes an extra step. Before back-
propagating, the EA must be converted into the EI, the rate 
at which the error changes as the total input received by a 
unit is changed [8]. 
 

3.2  Pseudo Code 
1. { 

 
2. Initialize nodes and layers to form the neural network. 
 
3. Initialize biases, weights and learning rate. 
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4. Obtain training samples and their expected output 
values. 

 
5. While(terminating condition is not true) 

//it could be a specified no: of iterations or error 
rate to prevent infinite loop. 
 

6. { 
 

7. Initialize each input layer „i‟ node with normalized 
inp_par[i] 

 
8. For each hidden layer node „j‟ 
 
9. { 
 
10. Calculate input to node as value of “sum” given by: 

Sum=∑wt[i][j]*inp_val[i], where wt[i][j] is the weight 
associated with the link (i,j). Here, „i‟ is input layer node 
and „j‟ is the current hidden layer node.  

 
11. Calculate output from node „j‟ according to the 

prediction function used + the „bias‟ value for the layer. 
 
12. } 
 
13. For each output layer node „j‟ 
 
14. { 
 
15. Calculate input to node as value of “sum” given by: 

Sum=∑wt[i][j]*val[i], where wt[i][j] is the weight 
associated with the link (i,j). Here, „i‟ is hidden layer 
node and „j‟ is the current output layer node. 

 
16. Calculate output from node „j‟ according to the 

prediction function used + the „bias‟ value for the layer. 
 
17. } 
 
18. Calculate error for each node „j‟ of output layer as: 

Err_out[j]=(Expected output – Obtained 
output)*Obtained output*(1 – Obtained output).  

 
19. Calculate error for each node „j‟ of hidden layer as: 

a. Calculate “sum” as: 
Sum=∑Err_out[i]*wt[i][j], where wt[i][j] is 
the weight associated with the link (i,j) 
between hidden layer node „j‟ and output 
layer node „i‟. 

b. Err_hid[j]=(Obtained output)*(1 – Obtained 
output)*sum 

 
20. // Adjust weights and biases according to the errors 

calculated by back propagation. 
 

21. For each weight wt[i][j] between input and hidden layer 
a. Wt[i][j]=wt[i][j]+lr*Err_hid[j]*(Obtained output at 

j), where „lr‟ is the learning rate 
 
22. For each weight wt[i][j] between hidden and output 

layer 

a. Wt[i][j]=wt[i][j]+lr*Err_out[j]*(Obtained output at 
j), where „lr‟ is the learning rate 

 
23. Bias_hid=bias_hid+lr*RMS(Err_hid[j]), where Err_hid[j] 

is the error of a hidden layer node j. 
24. Bias_out=bias_out+lr*RMS(Err_out[j]), where Err_out[j] 

is the error of a output layer node j. 
 
25. } 
 
26. //Training is complete, display results in user console. 

Start predicting new samples. 
 
27. Accept inp_par[] from the user and perform steps 7 – 

16.  
 
28. The resulting pattern obtained from the output of all the 

output layer nodes is compared with a pattern 
sequence to detect a match and the respective class of 
final output is displayed to the user. The accuracy of 
prediction will largely depend on the data set given and 
the parameters entered. It will largely depend on the 
statistical correlation of the values of the parameters 
and the respective final output class. 

 
29. } 
 

4. Result Obtained 
We trained our neural network with 200 samples from the 
database and tested it with 50 samples. We obtained 
specificity of 82.14% & sensitivity of 88.8%. We obtained 
RMS error rate of 0.019% for the 50 samples tested. (Here 
we calculated error in terms of percentage error of output 
from output expected i.e. 0 or 1.) On an average it took 
about 1275 iterations to converge to the result with learning 
rate of 0.1 and momentum of 0.9, which was found out to 
be an optimal value for binary sigmoidal function. 
 

5. Conclusion 
This project was aimed at modeling neural network for a 
prediction scenario – diabetes and its type prediction here 
and to analyse the prediction results and compare the 
network efficiency upon changing the network parameters 
like the number of hidden layer nodes, type of normalization 
function used, prediction function used, learning rate and 
the initial biases for each layer. The correlation between 
training samples, their expected outputs and the number of 
iterations required to predict with RMS error below a 
threshold of 0.02% was also analysed. It took an average 
1250 iterations to achieve the output. The maximum 
number of iterations was kept to 10000 so that the 
algorithm doesn‟t get stuck into an infinite loop if the 
prediction is not very accurate and quick. In general, we 
took 8 basic parameters to predict diabetes and its type in a 
person. The number of samples taken was not too many 
and so the algorithm took more than expected iterations to 
achieve optimum result. Initially we had assumed that 500 
iterations would be more than enough for the task. Also on 
comparing the different prediction functions, it was found 
that sigmoidal function was the best and quickest to predict 
the result. Sigmoidal functions of two types namely: Binary 
and Bipolar were compared. Binary sigmoidal function gave 
results faster in less number of iterations. Bipolar sigmoidal 
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gave results which were more accurate, but, in general it 
took about 250-300 iterations more than its counterpart. So, 
we have a trade-off between accuracy and the number of 
iterations, and in fact if we multiply both the functions and 
an optimization constant together and perform an 
optimization based on some criteria function we can 
improve the overall time-efficiency & accuracy of the 
algorithm by atleast a factor of 2. The implementation of this 
optimization was also left as an extension to the basic 
version of the project. Hyperbolic tangential function was 
also accurate but it took too many iterations to converge to 
the final result. In fact, it more often than not took more than 
7000 iterations to obtain the final result, and so we had to 
set the threshold number of iterations to 10000. Otherwise, 
a threshold of about 3000 was sufficient. This is mainly due 
to the geometrical nature of the hyperbolic curve in 
consideration. The rate of change of the slope of tangent to 
the curve was slow, and so it took long to converge to a 
constant stable value.  
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