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A Model Interpolating Between Regular And 
Scale Free Network With Tunable Exponent 
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Abstract: - The purpose of this paper is to investigate a simple network model whereby a new node is either attached to the youngest of the 
existing node with probability p or it is attached with probability (1 - p) to any of the existing node following the preferential attachment rule. For 

the model exhibits power law degree distribution  with The model thus nicely interpolates between the 

regular graph at p = 1 with and the Barabási-Albert model at p = 0 with . 

 

Index Terms: - nodes, links, hubs, preferential attachment rule, power-law degree distribution, fat tail, cumulative distribution. 
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1 INTRODUCTION 
Nodes and links are the basic constituents of a network and 
the rules that specify how exactly the nodes and links are to 
be added determine the topology of the network. Networks are 
ubiquitous in the world we live in and thanks to the flexibility in 
the definition of nodes and links. The brains of all living 
systems can be considered as a large network of nervous 
systems whose nodes are the nerves linked by axons [1]. At a 
different organizational level, cells of living systems are 
networks of molecules linked by chemical interactions 
between them [2]. There are social networks where nodes are 
individuals and links are various kinds of interactions 
depending on the nature of network. For instance, scientists, 
movie actors, societies etc. are networks of people linked by 
co-authorships, scientific collaboration, co-starring the same 
movie, friendships, and professional ties [3]. Networks in 
technology are also plentiful. Examples include the World-
Wide Web, the Internet, power grids, express highway in 
transportations systems etc. to name just a few [4–6]. The 
history of networks began with the seminal work of Paul Erdős 
and Albert Renyi in 1959 with the name graph theory that has 
developed into one of the mainstays of modern discrete 
mathematics [3]. The definition of the Erdős-Renyi (ER) model 
is trivially simple. It assumes that each pair of nodes in the 
network is connected randomly with pre-assigned probability, 
p. The influence of each node in the network is best 
characterized by its degree k defined as the number of nodes 
to whom it is connected. In an ER network if there are N nodes 
and each node is connected to an average of k0 nodes then it 
is trivial to show that p = k0 / (N-1), which for large N is usually 

approximated by, . The probability that a randomly 

selected node has k links is given by, 

 

     (1) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Where, second equality becomes exact in the large N limit. 
The degree distribution P(k) of the ER model is therefore 
Poissonian in character which implies that it is almost 
impossible to find nodes that have significantly higher or fewer 
links than the average. Hence it is statistically homogeneous 
network. Thirty nine years after the ER model, Watts and 
Strogatz proposed a new generalized model, now known as 
the Watts and Strogatz (WS) model, which is in fact 
intermediate between the regular and random graph [3]. It 
starts with a regular graph where each site is connected to its 
k nearest neighbors and then with probability p each edge that 
links a pair of nodes is reconnected to nodes chosen at 
random. Interestingly, even for a very small p the graph 
behaves very differently than the regular as well as the ER 
model. For instance, the degree distribution P(k) still decays 
exponentially in the large k limit like it does in the ER model 
but unlike the ER model it exhibits small average node-to-
node or the mean shortest path distance and a large clustering 
coefficients. These are the basic properties of the phenomena 
popularly known as the ‘small world’. The idea of small-world 
was first conceived by the Hungarian writer Frigyes Karinthy in 
1929 [8]. Later in 1967 it was tested experimentally by Stanley 
Milgram [9]. He found that two arbitrary people are connected 
by only six degrees of separation - a result which is highly 
counter intuitive. It has been found that the WS model can 
capture a certain class of small-world phenomena. The WS 
model was followed by a large number of studies which 
includes exact results of Barrat and Weigt and at the same 
time Dorogovtsev and Mendes played a significant role in its 
further development [10]. In the late 1990s, A. - L. Barabási 
and his co-workers, R. Albert and H. Jeong, first realized that 
the network described by random graphs has severe 
shortcomings as it fails to reproduce the results drawn from 
many real world phenomena [11]. They in fact revolutionized 
the notion of the graph theory by recognizing the two 
mechanisms through which real network, natural or manmade, 
come into being. The main result of the BA model is that this 
new class of networks self-organizes into a power-law degree 
distribution with an extra-ordinarily long tail revealing that a 
few nodes has astonishingly large number of links while most 
of the nodes has the least possible number of links - an extra-
ordinary revelation. The networks that have power law degree 
distribution is classified as scale-free network since a power-
law distribution neither possess an intrinsic scale nor its 
average degree k0 convey much information about the network 
[11]. Since then the scale-free networks have become one of 
the leading paradigms in science thanks to their ability to 
represent real-world networks occurring in a wide range of 
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disparate systems. 
 

2 Literature review of Barabási-Albert Model 
(BA MODEL) 
Barabási and Albert firstly realized that real networks are not 
static rather they constantly grow with time by addition of new 
nodes. Secondly, they realized the fact that not every nodes of 
the existing network competes on equal footing when the 
question of establishing links with the new nodes are 
concerned. Instead, they argued that nodes are chosen with 
probability proportional to the number of links each node 
already has with other nodes to establish links with the 
incoming nodes. This is termed as the preferential attachment 
rule. Barabási and Albert then presented a simple theoretical 
model incorporating both the ingredients and proved that the 
two mechanisms were indeed the real shortcomings of the 
then models [11]. The new idea of Barabási and Albert and the 
new terminology, scale-free growing network, has attracted 
physicists, mathematicians and computer scientists all alike 
resulting in a surge of research in the network theory. The 
primary focus of most of these studies was on the power-law 
degree distribution near the tail and its exponent. The tail may 
have relatively few data points but it contains considerably 
more weight than the complete functional form of the degree 
distribution as they represent the hub which ultimately 
dominates the overall behavior of the network. For instance, 
most natural or manmade scale-free networks show a great 
degree of resilience to random attacks thanks to those scarce 
data points at the tail [12]. Perhaps, it is the property that 
being exploited by the natural selection processes in many 
networks ranging from ecology and epidemiology to 
neuroscience. Indeed, the nodes with astonishingly large 
number of links are the most precious ones in the network that 
need to be protected from random attack in order to remain 
minimally functional at least. This is done by mixing them to 
hide among more than 90% of the nodes which hardly have 
one or two links. The phenomenal success of the BA model lie 
not only in its simplicity but also in the fact that most 
experimental data do exhibit power-law degree distribution 
near the tail and the exponent of the power-law can be easily 
obtained from the log-log plots of experimental data. Networks 
can therefore be divided into two major classes depending on 
the nature of their degree distribution, P(k). One class of 
network has P(k) that peaks at a mean degree k0 and decays 
exponentially on either side of k0 value such as random graph 
of ER model and the small-world phenomenon of WS model. 
Our focus in this article, however, is on the other class of 

network that has power-law degree distribution, of 
the BA model. It has been found that many of the real 
networks have exponent that cover a wide spectrum of values 

which in some occasions may also go outside this 
range [5, 6]. It is therefore extremely important to have 
variants of the BA model suitable for different physical 
conditions which will eventually enable us to understand the 
mechanisms responsible for tuning the value. Although the BA 
model can capture the essential features of scale-free network 
but it is still a minimal model. However, a significant progress 
has already been made in pursuit of finding variants of the BA 
model. For instance, non-linear growth and preferential 
attachment, linear growth with combination of both preferential 
and random attachments, growth of network based on 
popularity and fitness and growth of network by addition, 
rewiring and removal of links etc. are just to name a few [6, 13, 

14]. Importance of developing models to mimic these networks 
can hardly be exaggerated. In this paper, we considered a 
generalized version of the BA model that interpolates between 
regular graph and scale-free (SF) network as far as the degree 
distribution was concerned through a tunable parameter. 
 

3 GENERALIZED BARABÁSI ALBERT MODEL 
The generalized BA model has been defined as follows. The 
model starts with an initiator which is a fully connected 
network containing a few nodes m0 labeled as 1,2,…………,m0 
and assign a probability p with which links will be established 
with the incoming nodes. The network then grow ad infinitum 
by addition of one node with m links, we assumed m=1, at 
each time step. For convenience we label each nodes of the 
network in the following. In the (i-1)th step the node to be 
added is labeled as m0+j while the already existing networks 
have nodes labeled as 1,2,………,m0……….,m0+(j-1) each 
containing number of links respectively 

and assume  

       (2) 

We now take an interval [0, 1] of unit length and subdivide it 
into  and refer 

them to node 1,2,………,m0+(j-1) respectively. The algorithm 
for one time unit of the model at the jth step can be described 
as follows, 
(i) Add a new node and label it as m0+j. 
 
(ii) Generate a random number R1. 
 
(iii) If go to step (iv); Otherwise go to step (vi). 
 
(iv) Establish a link between the new node m0+j with the 
youngest of the existing node m0+(j-1). 
 
(v) Increase the time by one unit and go to step (i). 
 
(vi) Generate another random number R2. 
 
(vii) Find the subinterval that contains R2 and pick the 
corresponding node that it represents. 
 
(viii) Establish link between the new node and the node being 
picked in step (vii). 
 
(ix) Increase time by one unit and go to step (i). 
 
(x) Repeat the steps (i)-(ix) ad infinitum. 
 
Steps (iii)-(iv) of the algorithm ensures that an incoming node 
establish link with the youngest of the existing network with 
probability p and steps (vi) to (viii) ensures that with probability 
(1-p) the incoming node establish link with one of the existing 
node picked following preferential attachment rule. A numerical 
simulation has been performed based on the algorithm (i)-(x). 

 
3.1 DEGREE DISTRIBUTION 
In a network not all nodes carry the same number of links. The 
degree distribution P(k) is the characteristics of a node in the 
existing network which gives the probability that a randomly 
selected node has exactly k links or edges. In most of the 
cases the degree distribution of a network has a power tail, 
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        (3) 
 

where,  is known as the degree exponent [11]. The degree 
distribution curves for all the values of the probability exhibit 
power-law nature. The distribution is so extreme that if the full 
range is shown on the axis, the curve would be a perfect L 
shape. It is interesting to observe all of these degree 
distribution curves that the tail end of the distribution is ‘messy’ 
which means that there are only a few sites with a large 
number of visitors [11]. This tail portion of the curves is 
popularly known as the ‘Fat Tail’. 
 

3.2 FAT TAIL 
A fat tail is a property of some probability distributions which 
exhibits extremely large swelling particularly relative to the 
ubiquitous normal which itself is an example of an 
exceptionally thin tail distribution. The term ‘fat tail’ is a 
reference to the tendency of many financial instrument price 
and return distributions to have more observations in the tails 
and to be thinner in the midrange than a normal distribution. 
Fat tail distribution shows power-law decay. The fat tail may 
exhibits relatively few data points but it contains considerably 
more physical significance than the complete functional form 
of the degree distribution. The tail region represents the hubs 
which ultimately dominates the over-all behavior of the 
network [15]. 
 
3.3 CUMULATIVE DISTRIBUTION 
In probability theory and statistics, the cumulative distribution 
function (CDF) describes the probability distribution of a real-
valued random variable X. Cumulative distribution functions 
are also used to specify the distribution of multivariate random 
variables. For any real number x, the CDF of a real-valued 
random variable X is given by, 
 

      (4) 
 
The right-hand side of this equation represents the probability 
that the random variable X takes on a value less than or equal 
to x. In terms of the probability density function f, the CDF of X 
can be defined as follows, 
 

     (5) 

 
Differentiating the above equation we get the cumulative 
distribution function 
 

     (6) 

 

Now considering  and , the 

above equation becomes 
 

      (7) 
 
Eq. (7) shows that the cumulative distribution follows the 
power law degree distribution and we get the degree exponent 
from Eq. (7) [11]. 
 

4 RESULTS AND DISCUSSION 
An extensive Monte Carlo simulation [16] for network size of 

 was performed for various different assigned 
probabilities p. For instance, a probability p of 0 to 1 was 

assigned and then the program was run to collect the data for 
degree distribution and its behavior. The main goal was to 
investigate how the value of the degree exponent varies with 
the increase of the assigned probability p. 
 
4.1 DEGREE DISTRIBUTION 
The degree distribution curves for various probability p are 
shown in Fig. (1) and it was observed that for any values of 
the assigned probability p, the degree distribution curves 
follow the power law distribution and has a long tail region. 
The tail region represents the hub of the existing network 
which ultimately dominates the overall behavior of the 
network. In Fig. (1), when probability p was assigned as 0.1, 
0.4 and 0.5, it was found that the tail regions were denser [17]. 
So, the hubs of the existing networks for these cases are too 
much larger and if a new node enters into this system it 
connects with one of existing nodes picked following the 
preferential attachment rule as BA model says [11]. Again, 
when p was equal to 0.7, 0.8, 0.9, the tail regions of the 
degree distribution curves were less condensed than the 
previous curves. As there is less number of hubs available, 
there is a very high probability of a new node establishing a 
link with the youngest of the existing network than with hubs 
as regular graph says [18]. All these degree distribution curves 
provide with an L shaped graph from where it is very difficult to 
calculate the slope. To get a proper fit, cumulative distribution 
was carried out. The tail naturally smoothes out in the 
cumulative distribution and no data is ‘obscured’ as in the 
degree distribution curves [19]. 
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  Fig. 1: Degree distribution curves for different values of p. 
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Fig. 2: Cumulative distribution curves to get the value of  for different values of p. 
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4.2 CUMULATIVE DISTRIBUTION 
From the cumulative distribution curves as in Fig. (2), it was 
observed that there was no fat tail region comparing to the 
degree distribution curves. The cumulative distribution curves 
are linear to best fit for finding the value of the exponent  with 
different values of p [4, 20]. Fitting the cumulative distribution, 
we got the value of which are given in Table (1). 
 

TABLE 1 

 VALUE OF  FOR DIFFERENT PROBABILITY p 
 

Assigned probability p 
Simulated value of 

the degree exponent 

 

0.1 3.11076 

0.2 3.26796 

0.3 3.4169 

0.4 3.65521 

0.5 4.08268 

0.55 4.23335 

0.6 4.51746 

0.65 4.83209 

0.7 5.31727 

0.75 6.08441 

0.8 7.03356 

0.9 11.9742 

 
In this work it has been found that the degree distribution 
exhibits power law for all values of p. However, from Fig. (3), it 

was found that the exponent  increases as  increases. The 
effort then was to quantify the extent of growth of  with p. To 
this end we propose an adhoc formula for a function of p and 
then verify it using our numerical data. The proposed formula 

for  is, 
 

       (8) 
 

In Fig. (3), the dots represent the theoretical value of  derived 
from Eq. (8) and the square boxes represent the simulated 

value of  and it is found that the numerical simulated values 
and the theoretical values  from our proposed formula of Eq. 
(8) were nearly close to each other. At p = 0, the value of is 3 
which is same to the Barabási model [6]. At p = 0.1 and p = 
0.4, the maximum nodes of the existing network have a large 
number of links with other nodes in the existing network as we 
saw from the degree distribution curves of Fig. (1). A few of the 
nodes in this case follow the regular graph while most of the 
nodes attach with the hubs of the existing network [21]. When 

p increases, the value of successively increases from the 
value of the BA model and tried to go towards infinity as we 
saw from Fig. (3) i.e., the probability of the new node to attach 
to the youngest node also increases. At p = 0.8 and p = 0.9, 
the number of hubs in the existing network is very small as 
showed in Fig. (1). Majority of the new nodes which attach to 
the existing nodes have been linked with the youngest nodes. 

From the adhoc formula of Eq. (8), we see that at , 
means that there is a Dirac-Delta function at k = 2, where k is 
the average degree of a node in a network [6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
Fig. 3: Degree exponent  vs probability p curve.  

 
When all the nodes in the network have only two links they 
completely form as a linear lattice and no preferential rule is 
followed here. Fig. (3) shows a good agreement of the 
analytical results with the numerical values obtained from Eq. 
(8). Consequently, a phase transition occurs between scale 

free network and regular network if the value of  is tuned [22]. 

Incoming nodes establish link to the youngest of the existing 
nodes with probability p and with probability (1-p) they link to 
any of the existing nodes following the preferential attachment 
rule [6]. 
 

5 CONCLUSION 
In this paper, a model has been analyzed that interpolates 
between regular graph and scale free network. A network 
system was considered that has power-law degree distribution 

of the BA model. The values of in most of the real 
networks cover a wide spectrum of values 2 to 4 which in 
some occasions may also go outside of this range [5, 6]. It is 
quite natural that in some cases network may grow not 
following the preferential attachment rule alone; rather, it may 
prefer to enjoy some degree of flexibility. We considered a 
generalized version of the BA model in which the new node is 
either attached to the youngest of the existing node with 
probability p or it is attached to any of all the existing nodes 
following the preferential attachment rule with probability (1-p). 
Our model thus nicely interpolates between the regular graph 

with degree distribution at p = 1 and the BA 
model at p = 0 [6]. We found that exponent  of the power-
degree distribution fits the relation which clearly 
implies that we can recover the exponent of the BA model 

if we set p = 0 and the exponent increases continuously 

as p increases and in the limit we obtain the regular 
graph with  
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