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Intersection Matrices Associated With Non Trivial 
Suborbit Corresponding To The Action Of Rank 3 

Groups On The Set Of Unordered Pairs 
 

BettyChepkorir, John K. Rotich, Benard C. Tonui, ReubenC. Langat 
 

Abstract: In this paper we find intersection numbers and intersection matrices associated with each non trivial sub orbit corresponding to the action of 
rank 3 groups; The symmetric group S5,alternating group A5 and The dihedral group D5 on the set of unordered pairs. We showed that the column sum 

of the intersection matrices associated with 
i  is equal the length of the suborbit

i . They are also square matrices and of order 3x3. 

 
Index Terms: Intersection Matrices,Non Trivial Suborbit, Action of Rank 3 Groups,Set of Unordered Pairs 

———————————————————— 

 

1 INTRODUCTION 
In 1964, Higman introduced the rank of a group when he 
worked on finite permutation groups of rank 3.  He showed 
that if G is a group acting transitively on a set X, where

X n and if G is a rank 3 group of degree n=k
2
+1, where k 

is the length of a Gx–orbit, x X  then n = 5,10, 50 or 3250 

.In 1970 , Higman calculated the rank and subdegrees of the 
symmetric group  Sn acting on a 2 element subsets from the 
set X={1,2,…,n} .He showed that the rank is 3 and the 

subdegrees are  
2

1,2 2 ,
2

n
n

 
  

 
. In 1972, Cameron 

worked on suborbits of multiply   permutation groups and later 
in 1974, he studied suborbits of primitive groups. In 1978, he 
dealt with the orbits of permutation groups of unordered pairs. 
In 1977, Neuman extended the work of Higman and Sims to 
finite permutation groups, edge coloured graphs and also 
matrices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2INTERSECTION MATRICES ASSOCIATED WITH THE 

ACTION OF 
5.G S  ON 

 2
.X  

2.1 Intersection matrix corresponding to  1 1,2 .  

Taking a ={1,2} in X
(2)

 and G{1,2} - orbits arranged as follows  

   0 1,2 1,2   

              1 1,2 1,3 , 1,4 , 1,5 , 2,3 , 2,4 , 2,5   

        2 1,2 3,4 , 3,5 , 4,5   

We therefore arrange bG - orbits as follows 

   0 1,3 1,3   

              1 1,3 1,2 , 1,4 , 1,5 , 3,2 , 3,4 , 3,5   

        2 1,3 2,4 , 2,5 , 4,5   

   0 3,4 3,4   

              1 3,4 3,1 , 3,2 , 3,5 , 4,1 , 4,2 , 4,5   

        2 3,4 2,1 , 2,5 , 1,5   

From definition 6, the intersection numbers relative to the 

suborbit  1 1,2 are defined by 

       1,2 , 1,2
l

ij l i jb b    I , 

Hence we find the intersection numbers relative to  1 1,2 as 
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follows  

       1

00 1 01,2 1,2 0    I  

       1

10 1 11,2 1,2 6    I  

       1

20 1 21,2 1,2 0    I  

       1

01 1 01,3 1,2 1    I  

       1

11 1 11,3 1,2 3    I  

       1

21 1 21,3 1,2 2    I  

       1

02 1 03,4 1,2 0    I  

       1

12 1 13,4 1,2 4    I  

       1

22 1 23,4 1,2 2    I  

By definition 7 the intersection matrix
  1

1
,

ij
i j

M  , 

associated with  1 1,2  where 
 1

ij  are the intersection 

numbers relative to  1 1,2  is obtained as follows; 

 

     

     

     

1 1 1

00 01 02

1 1 1

1 10 11 12

1 1 1

20 21 22

M

  

  

  

 
 

  
 
  

 

0 1 0

6 3 4

0 2 2

 
 


 
    

 

2.2Intersection matrix corresponding to 
 2 1,2

 
From definition 6, the intersection numbers relative to the 

suborbit  2 1,2 are defined by 

       2

2 1,2 , 1,2ij i jb b    I , 

We therefore find the intersection numbers relative to 

 2 1,2 as follows  

       2

00 2 01,2 1,2 0    I  

       2

10 2 11,2 1,2 0    I  

       2

20 2 21,2 1,2 3    I  

       2

01 2 01,3 1,2 0    I  

       2

11 2 11,3 1,2 2    I  

       2

21 2 21,3 1,2 1    I  

       2

02 2 03,4 1,2 1    I  

       2

12 2 13,4 1,2 2    I  

       2

22 2 23,4 1,2 0    I  

By definition 7 the intersection matrix
  2

2
,

ij
i j

M  , 

associated with  2 1,2  where 
 2

ij  are the intersection 

numbers relative to  2 1,2  is obtained as follows; 

     

     

     

2 2 2

00 01 02

2 2 2

2 10 11 12

2 2 2

20 21 22

M

  

  

  

 
 

  
 
  

 

0 0 1

0 2 2

3 1 0

 
 


 
  

 

 
2.3 Properties of the intersection matrices 

associated with  1 1,2  and  2 1,2  

The column sum of the intersection matrix associated with i  

is equal to the length of the suborbit i .We can see that the 

column sum of M1 is 6 also the column sum of M2 is 3 . 1M and

2M are square matrices of order 3 
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3 INTERSECTION MATRICES ASSOCIATED WITH THE 

ACTION OF 
5G A  ON 

 2
X  

3.1 Intersection matrix corresponding to  1 1,2  

we take  a ={1,2} in X
(2)

 and G{1,2} - orbits arranged as follows  

   0 1,2 1,2   

              1 1,2 1,3 , 1,4 , 1,5 , 2,3 , 2,4 , 2,5   

        2 1,2 3,4 , 3,5 , 4,5   

We therefore arrange 
bG - orbits as follows 

   0 1,3 1,3   

              1 1,3 1,2 , 1,4 , 1,5 , 3,2 , 3,4 , 3,5   

        2 1,3 2,4 , 2,5 , 4,5   

   0 3,4 3,4   

              1 3,4 3,1 , 3,2 , 3,5 , 4,1 , 4,2 , 4,5   

        2 3,4 2,1 , 2,5 , 1,5   

From definition 1.1.6.1, the intersection numbers relative to the 

suborbit  1 1,2 are defined by 

       1,2 , 1,2
l

ij l i jb b    I , 

Hence we find the intersection numbers relative to  1 1,2 as 

follows  

       1

00 1 01,2 1,2 0    I  

       1

10 1 11,2 1,2 6    I  

       1

20 1 21,2 1,2 0    I  

       1

01 1 01,3 1,2 1    I  

       1

11 1 11,3 1,2 3    I  

       1

21 1 21,3 1,2 2    I  

       1

02 1 03,4 1,2 0    I  

       1

12 1 13,4 1,2 4    I  

       1

22 1 23,4 1,2 2    I  

By definition 1.1.6.2 the intersection matrix
  1

1
,

ij
i j

M  , 

associated with  1 1,2  where 
 1

ij  are the intersection 

numbers relative to  1 1,2  is obtained as follows; 

     

     

     

1 1 1

00 01 02

1 1 1

1 10 11 12

1 1 1

20 21 22

M

  

  

  

 
 

  
 
  

 

0 1 0

6 3 4

0 2 2

 
 


 
  

 

 

3.2 Intersection matrix corresponding to  2 1,2  

From definition 1.1.6.1, the intersection numbers relative to the 

suborbit  2 1,2 are defined by 

       2

2 1,2 , 1,2ij i jb b    I , 

We therefore find the intersection numbers relative to 

 2 1,2 as follows  

       2

00 2 01,2 1,2 0    I  

       2

10 2 11,2 1,2 0    I  

       2

20 2 21,2 1,2 3    I  

       2

01 2 01,3 1,2 0    I  

       2

11 2 11,3 1,2 2    I  

       2

21 2 21,3 1,2 1    I  
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       2

02 2 03,4 1,2 1    I  

       2

12 2 13,4 1,2 2    I  

       2

22 2 23,4 1,2 0    I  

By definition 1.1.6.2 the intersection matrix
  2

2
,

ij
i j

M  , 

associated with  2 1,2  where 
 2

ij  are the intersection 

numbers relative to  2 1,2  is obtained as follows; 

     

     

     

2 2 2

00 01 02

2 2 2

2 10 11 12

2 2 2

20 21 22

M

  

  

  

 
 

  
 
  

 

0 0 1

0 2 2

3 1 0

 
 


 
  

 

 
3.3 Properties of the intersection matrices 

associated with  1 1,2 ,  and  2 1,2 .  

The column sum of the intersection matrix associated with 
i  

is equal to the length of the suborbit
i .We can see that the 

column sum of M1 is 6 also the column sum of M2 is 3 . 1M and

2M are square matrices of order 3 

4INTERSECTION MATRICES ASSOCIATED WITH THE 

ACTION OF G=D5 ON X 
By Definition 6, given an arrangement of the Ga-orbits , the 

Gb–orbits are arranged such that if bX and g(a) = b then, 

       l i lg a g b b      

4.1 Intersection matrix corresponding to  1 1 .  

Taking a = 1 in X and G1-orbits arranged as follows,   

   0 1 1  . 

   1 1 2,5  , 

   2 1 3,4  ,  

We arrange the Gb- orbits as follows: 

   0 2 2  . 

   1 2 1,3  , 

   2 2 4,5  ,  

   0 3 3  . 

   1 3 1,5  , 

   2 3 2,4  ,  

From definition 6, the intersection numbers relative to the 

suborbit  1 1 are defined by 

       1 , 1
l

ij l i jb b    I , 

Hence we find the intersection numbers relative to  1 1 as 

follows  

     1

00 1 01 1 0    I  

     1

10 1 11 1 2    I  

     1

20 1 21 1 0    I  

     1

01 1 02 1 1    I  

     1

11 1 12 1 0    I  

     1

21 1 22 1 1    I  

     1

02 1 03 1 1    I  

     1

12 1 13 1 1    I  

     1

22 1 23 1 0    I  

By definition 7 the intersection matrix
  1

1
,

ij
i j

M  , 
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associated with  1 1,2  where 
 1

ij  are the intersection 

numbers relative to  1 1  is obtained as follows; 

     

     

     

1 1 1

00 01 02

1 1 1

1 10 11 12

1 1 1

20 21 22

M

  

  

  

 
 

  
 
  

 

0 1 1

2 0 1

0 1 0

 
 


 
  

 

 

4.2 Intersection matrix corresponding to 
 2 1

 
From definition 1.1.6.1, the intersection numbers relative to the 

suborbit  2 1 are defined by 

       2

2 1 , 1ij i jb b    I , 

We therefore find the intersection numbers relative to  2 1

as follows  

     2

00 2 01 1 0    I  

     2

10 2 11 1 0    I  

     2

20 2 21 1 2    I  

     2

01 2 02 1 0    I  

     2

11 2 12 1 1    I  

     2

21 2 22 1 1    I  

     2

02 2 03 1 0    I  

     2

12 2 13 1 1    I  

     2

22 2 23 1 1    I  

By definition 6 the intersection matrix 
  2

2
,

ij
i j

M  , 

associated with  2 1  where 
 2

ij  are the intersection 

numbers relative to  2 1  is obtained as follows; 

     

     

     

2 2 2

00 01 02

2 2 2

2 10 11 12

2 2 2

20 21 22

M

  

  

  

 
 

  
 
  

 

0 0 0

0 1 1

2 1 1

 
 


 
  

 

 

4.3 Properties of the intersection matrices 

associated with  2 1 ,  and  2 1 .  

The column sum of the intersection matrix associated with 
i  

is equal to the length of the suborbit
i .We can see that the 

column sum of M1 is 6 also the column sum of M2 is 3 .
1M and

2M are square matrices of order 3 

 

5 CONCLUSION 

We conclude thatIntersection matrices associated with the 

action of rank 3 on 
 2

X  aresquare matrices of order 3x 3  
and that the column sum of the intersection matrices 

associated with 
i  is equal  the length of the suborbit

i . 
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APPENDIX:  
1. NOTATIONS 

i). nS , Symmetric group of degree n and order n!. 

ii). G , The order of a group G. 

iii). 
 2

X , the set of unordered pairs from the set 

 1,2,...,X n  

iv).  ,t q , Unordered pair. 

v). 
i , the i

th
orbit or suborbit. 

vi). 
 l , the intersection number relative to a suborbit

 l a . 

vii). 
lM , intersection matrix of a suborbit  l a . 

 
2. DEFINITION AND PRELIMINARY RESULTS 
 
Definition 1 
The alternating group Anis the subgroup of Sncomprising of all 

even permutations.Its order is
!

2

n
. 

Definition 2 

Let Xbe a finite set 1,2, n , then a symmetric group of 

regular n-gon is called a dihedral group denoted by
n . 

Definition 3 
When G act on a set X, X is divided into disjoined equivalence 
classes of the action called orbits.  The orbits containing X is 

called the orbit of x, denoted by 
GOrb ( )x . 

Definition 4 

Let G be transitive on X and let 
xG  be the stabilizer of a point 

x X .  The orbits 
0 1 2 1, , ,... r     of 

xG  on X are the 

suborbits of G. 
Definition 5 
The rank r of G is the number of the suborbits of G while the 
lengths of the suborbits of G are known as the subdgrees of 
G. 
 

Note:  The cardinalities of the suborbits
i  and rare 

independent of the choice of x X . 

 

INTERSECTION NUMBERS AND INTERSECTION 

MATRICES 
 
Definition 6 

Let G be a finite group acting on a finite set X and  l a  be 

the l
th
Ga-orbit for a X  and for a given arrangement of the 

Ga-orbits.  The Gb-orbit, b X , are also arranged such the

 g a b , then        l l lg a g a b     .  The 

intersection numbers relative to a suborbit  l a  are defined 

by  
        ,
l

ij l i jb a b a    I  

 
Definition 7 

If the rank of G is r, then the r r  matrix 
  

,

l

l ij
i j

M   is 
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called the intersection matrix of  l a . 

 
Theorem 1 [Higman, [11]] 

If i in   and 
*

*i i    is the suborbit paired with
i , then 

a) 
 
0

if 

0 if 

l i

i

n i l

i l



 


 

b) 
 

*

0 *

1 if 

0 if 

l

i

j l

j l


 
 


 

c) 
   *ll

j ij i jin n   and 
     
* * *

j l i

i j ll i i j j l
n n n     


