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Abstract: Urban growth modelling cellular automata has blossomed due to the advancement in geographic information systems (GIS), remote sensing 
and computer technology. Among such urban growth models, our urban growth model (UGM), was modified from SLEUTH (Slope Land-use Transport 
Hill-shade) model. UGM has been integrated in the XULU modeling frame-work (eXtendable Unified Land Use Modelling Platform). In this research we 
evaluated a modified UGM whose transition rules were modified. In order to arrive at urban growth modelling, we used multi-temporal Landsat satellite 
image sets for 1987 and 2010 to map urban land-use in Nyeri. We compared our results with a normal UGM simulation. Thus, we arrived at two urban 
growth simulations for Nyeri in order to get a better glimpse of land-use system dynamics. Both models were calibrated and urban growth simulated until 
the year 2030 when Kenya plans to attain Vision 2030. Observed land-use changes in urban areas were compared to the results of both UGM models 
for the year 2010. The results indicate that the two models resulted in urban growth in different directions and magnitudes. This approach is useful to 
planners as it gives the scenarios of using different transition rules of a cellular automata model in urban growth modelling.  
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1 INTRODUCTION 
Models based on cellular automata (CA) have been applied 
intensively in urban growth modelling [1].CAs are dynamical 
systems in which space and time are discrete and consists of 
an array of cells, each of which can be in one of a finite 
number of possible states, updated synchronously in discrete 
time steps, according to a local, identical interaction rule 
[2].Tobler [3] was the first pioneer who explored urban CA 
simulation and came up with a geographic model. The model 
was dynamic with several land-uses namely residential, 
commercial, industrial, public and agriculture, as cell states 
and enforced neighborhood rules in the model. Wolfram [4] did 
a systematic research on CA and their relationships with 
dynamic systems, and came up with classes of CA behavior. 
White and Engelen developed a constrained CA and this was 
a big step into urban modelling using CA [5]. They integrated 
the CA models in 1960s and Tobler’s geographic model [3]. 
Models based on CA have evolved over the last decades in 
simulating urban development growth and patterns including 
SLEUTH [6]. SLEUTH is an acronym for Slope, Land-cover, 
Exclusion, Urban, Transportation and Hill shade. SLEUTH 
explores complexities of urban cells and incorporates 
biophysical factors namely: urban, road, transportation, slope 
and exclusion layer. The development of the GIS as well as 
the integration of a GIS and transportation with urban 
modelling has facilitated urban modelling with rich data 
sources and new techniques [7].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Our Urban growth model (UGM) was modified from SLEUTH 
and applied for the German federal state of North-Rhine 
Westphalia [8]. Simulation of urban land-use change in North 
Rhine- Westphalia (Germany) with the Java-based modelling 
plat- form XULU. UGM was later applied in two cities in Kenya, 
namely; Nakuru [9] and Nairobi [10]. UGM runs in the user 
friendly modeling frame-work XULU (eXtendable Unified Land 
Use Modelling Platform) which was developed by Schmitz, 
Bode, Thamm, & Cremers [11]. XULU takes over the most 
important functions concerning model control and 
visualization. Cities in Africa have experienced high growth 
rates due to high rural to urban migration [12]. Thus this 
presents a good case to apply our UGM in Nyeri. In this study, 
we evaluated a self-modifying UGM for Nyeri based on XULU 
modelling platform. Urban land-use data for Nyeri was derived 
from annual Landsat image data acquired in 1987 and 2010. 
This was for the first time a self-modifying UGM has been 
applied in Kenya. We came up two models, our normal UGM 
and a modified UGM which were calibrated and validated in 
XULU using 2010 as the reference year. We compared the two 
models based on the simulated urban growth and model 
coefficient values. The models were used to predict future 
urban land-use development in the year 2030. This offers a 
worthwhile approach for the study of future urban land-use 
trends in Nyeri as Kenya plans to achieve Vision 2030, the 
nation’s ambitious economic and social development program 
[13] 
 

2 THE STUDY AREA 
Nyeri municipality lies between latitudes 0° 21′ and 0° 29′ 
South and longitude 36° 52′ and 36° 57′ East in Kenya.  The 
city covers an area of 136 km² and lies at an average altitude 
of 1,750 meters above sea level (Figure 1).  Nyeri is located 
about 150 kilometers north of Kenya's capital Nairobi, in the 
country's densely populated and fertile Central Highlands, 
lying between the eastern base of the Aberdare Range, which 
forms part of the eastern end of the Great Rift Valley, and the 
western slopes of Mount Kenya. Within its administrative 
borders the city includes urban, agriculture, and rangeland 
land-uses as well as open/transitional areas, and remnants of 
evergreen tropical forests. The population was 98,908 in 
Kenya's census of 1999 (Republic of Kenya, 2000) and 
125,357 in 2009 (Republic of Kenya, 2010).  
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Figure 1: Administrative boundary of Nyeri municipality 

(Source: False color composite using bands 4, 3, 2, Landsat 
2010) 

 

3 MODELLING NYERI’S URBAN GROWTH  
Our approach to urban growth modelling of Nyeri utilized 
information derived from multi-temporal Landsat satellite data 
in combination with additional datasets of slope, roads and an 
exclusion layer. Figure 2 illustrates the data processing flow 
applied for urban growth modelling using our normal UGM and 
our modified UGM. Schmitz et al. [11] developed XULU as a 
modelling framework that enables model integration and 
implementation using requisite functions of data storage, 
input/output methods, model runs, editing and visualization. 
XULU was initialed applied in Benin inorder to explore 
scenarios of future land-uses in a watershed based on specific 
boundary conditions [14] 

 

 
 

Figure 2: Flowchart for urban growth modelling 
 

UGM has been implemented in the XULU modelling platform 

as a modification of the SLEUTH approach [8], [9]. UGM 

requires four spatial input parameters: urban land-use, 

transportation, slope and exclusion. The exclusion layer 

identifies those areas within the study site that cannot be 

changed (e.g. water bodies or protected areas) or areas 

which, if not excluded, are to a certain degree resistant to 

urbanization. The transportation layer represents the road 

network in a research area. UGM only needs a map for the 

starting year of the calibration phase and a reference map at 

the end year. The simulated urban area of the end year is 

compared to the reference map using a Multiple Resolution 

Validation (MRV) procedure as described in Pontius, Jr. et al. 

[15]. UGM calibration involves a ―brute-force‖ method which is 

used to determine five calibration parameters. These 

parameters control the transition rules that are implemented in 

the model and include: Dispersion, Breed, Spread, Slope 

Resistance, and Road Gravity. Dispersion controls the number 

of image pixels that are randomly selected for possible 

urbanization and determines the extent of their outward 

distribution. Breed refers to the probability that a newly 

generated settlement initiates its own growth. Spread controls 

the extent to which existing settlements radiate. Slope 

resistance characterizes the likelihood of growth on steep 

slopes. Road gravity influences the creation of new centers 

along roads. Urban growth can be classified in UGM as: 1) 

spontaneous new growth; 2) new urban center establishment 

or spreading urban center growth; 3) edge growth; and, 4) 

road influenced growth [16]. UGM simulates urban growth 

based on Cellular Automata (CA).  CA is a discrete dynamic 

system in which space is divided into regular spatial cells, and 

time progresses in discrete steps [7]. Each cell in the system is 

characterized by one of a finite number of states. The state of 

every cell is updated at each discrete time-step according to a 

set of local rules and the state of a cell at a given time 

depends on its own state and the states of its neighbors at the 

previous time step [4] The self-modifying UGM was done from 

SLEUTH by Goetzke [8]. The original idea of self modifying 

cellular automata was first tested using SLEUTH by Clarke, 

Hoppen, & Gaydos [6] in San Francisco Bay area. The 

argument is that urban growth coefficients change throughout 

the model calibration and validation as shown in 

 

 

Figure 3 using a set of additional rules.  
 

 
 

Figure 3: Self-modification adjustments to the control 
parameters 

(Source: Clarke, Hoppen, & Gaydos [6]) 
 

Thus the model coefficients increase or decrease depending 

on the urban growth rates enabling a self modifying cellular 

automata. Additionally, urban growth depends on either high 

critical growth rate or low critical growth rate. In 
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Figure 3 we can see three urban growth scenarios namely: 
rapid growth, normal growth and little or normal growth. In the 
rapid growth scenario urban growth exceeds a critical value  
and thus the model coefficients diffusion, spread, and breed 
are increased by a multiplier greater than one. However, the 
critcal value is decreased so to avert uncontrolled exponential 
growth. In the normal growth scenario urban growth falls 
below the critical value and thus the model coefficients 
diffusion, spread, and breed are decreased by a multiplier less 
than one. This leads to decrease in urban growth which is 
almost linear or equilibrium. However, the value of road can be 
increased as roads are expanded and thus simulates road 
influenced urban growth. Nevertheless, the slope value can be 
increased to cater for urban growth onto steeper slopes when 
all suitable land is scarce for expansion. Thus the self 
modifying UGM presents a dynamic system for urban growth 
simulation. Initially, our modified UGM (denoted as UGM 2) 
had the following additional rules: road sensitivity =  0.01, 
slope sensitivity =  0.1, critical low value =  0.97, critical high = 
1.03, boom = 1.1, bust = 0.9. Boom represents the value in 
which model coefficients are increased. Bust represents the 
value in which model coefficients are decreased.  In this 
research we performed model calibration of two models, 
namely our normal UGM (denoted as UGM 1) and a modified 
UGM (denoted as UGM 2). We compared the two models 
based on the simulated urban growth and model coefficient 
values.  
 

4. ANALYSIS  
 

4.1 Data  
The land-use data for our UGM was derived from Landsat 
satellite imagery for 1987 and 2010. Nyeri is entirely enclosed 

within Landsat TM path 168, row 60. The Landsat data sets 
used included TM, and ETM+ images in WGS-84 Universal 
Transverse Mercator (UTM), 37-South projection. Reference 
data were developed for each of the separate years and then 
randomly partitioned for classifier training and accuracy 
assessment.  Ground truth data included a topographic map 
which was used as locational reference data for the 1986 
while GPS points served as reference data for the 2010 
classification. Road network data for Nyeri was obtained from 
Survey of Kenya and included all of the roads within the city. 
An exclusion layer was obtained from Survey of Kenya and 
included government buildings and property as well as other 
land areas designated as reserved. 
 

4.2 Land-use Change Analysis  
 

TABLE 1 
Land-use summary for Nyeri 

 

Year 1987 2010 

Land-use class 
Area 
(Km

2
) % 

Area 
(Km

2
) % 

Urban  1.41 1.03 6.77 4.97 

Forest  20.10 14.75 20.14 14.78 

Water 3.37 2.47 2.40 1.76 

Agriculture  77.76 57.05 83.33 61.14 

Open/transition 
areas 33.66 24.70 23.66 17.36 

Total  136 100 136 100 

 

 
TABLE 2 

Error estimates for Nyeri in 1987 
 

  Reference Data   

User's accuracy (%) Classified Data Urban Forest Water Agriculture Open/Transitional areas Total 

Urban 110 0 0 0 0 110 100.00 

Forest 0 325 23 1 0 349 93.12 

Water 0 6 86 0 0 92 93.48 

Agriculture 0 1 2 212 4 219 96.80 

Open/Transitional areas 13 0 0 0 135 148 91.22 

Total 123 332 111 213 139     

Producer's accuracy (%) 89.43 97.89 77.48 99.53 97.12     

Overall accuracy (%) 94.55 
 
  

Kappa Coefficient 
0.9278 
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TABLE 3 
Error estimates for Nyeri in 2010 

 

  Reference Data   

User's accuracy (%) 

Classified Data Urban Forest Water Agriculture Open/Transitional areas Total 

Urban 188 0 0 1 0 189 99.47 

Forest 0 383 1 12 0 396 96.72 

Water 0 0 79 0 0 79 100.00 

Agriculture 14 1 3 163 21 202 80.69 

Open/Transitional areas 4 0 0 12 87 103 84.47 

Total 206 384 83 188 108 969   

Producer's accuracy (%) 91.26 99.74 95.18 86.70 80.56     

Overall accuracy (%) 92.88% 
  
  

Kappa Coefficient 0.9034 
  
  

 
 

 
 

Figure 4: Land-use map of Nyeri derived from Landsat TM 1987 

 



INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 12, DECEMBER 2014      ISSN 2277-8616 

181 
IJSTR©2014 
www.ijstr.org 

 
 

Figure 5: Land-use map of Nyeri derived from Landsat ETM + 2010 
 

Modeling of Nyeri utilized as inputs urban extents extracted 

from classified land-use maps for 1987 and 2010. Other layers 

used included slope, areas excluded from development and 

the Nyeri road network. Calibration was performed using the 

2010 land-use map as a reference grid. The best model 

parameters for UGM were also evaluated based on the 

weighted average calculated with the MRV using 2010 land-

use as a reference grid. We denoted our normal UGM as UGM 

1 and our modified UGM as UGM 2.  

Figure 6 shows the best model coefficients obtained following 
successful calibration of UGM 1 and UGM 2. These coefficient 
values are for UGM 1: slope = 1, spread = 3, dispersion = 1, 
breed = 89, road = 44, and UGM 2: slope = 5, spread = 5, 
dispersion = 1, breed = 90, road = 10. These coefficients were 
obtained at a weighted value of 0.961350 and 0.961625 
respectively for UGM 1 and UGM 2. 

 

 
 

Figure 6: Best Model Parameters for Nyeri UGM 

Hence the calibration of UGM 1 and UGM 2 resulted in an 

agreement of approximately 96 % for the built-up / non-built-up 

categories between the 2010 reference map and the 2010 

map fitted with the model. Thus in order for an urban growth 

model to be of use to policy makers and urban planners, 

simulation of urban growth must be performed after 

calibration. We used both our UGM 1 and UGM 2 to predict 

Nyeri land-use for the year 2030.  We started by using 2010 

land-use as reference data during the UGM calibration, and 

proceeded under the assumption that current urban planning 

policies would remain constant. Urban growth (built-up areas) 

was modelled using the UGM 1 and UGM 2 best model 

parameters in  

Figure 6. The prediction of new settlements or built-up areas in 

Nyeri was derived at a weighted value of 96 % using both 

UGM’s. Similarly, both UGM predicted that new urban growth 

in Nyeri is most likely to be caused by breed, that is, the 

probability that a newly generated settlement initiates its own 

growth. Road parameter is was the second likely factor 

influencing urban growth especially in UGM 1 at 44 compated 

to UGM 2 at 10. The other model parameters namely slope, 

spread and dispersion influenced urban growth least. 

Furthermore, the value for dispersion was at 1 for both UGM 1 

and UGM 2. Accordingly, the simulated urban growth in Nyeri 

using UGM 1 was 4.67 km
2
 in 2010 and 6.9 km

2
 in 2030 while 

using UGM 2 urban growth was 4.25 km
2 
in 2010 and 6.76 km

2
 

in 2030. 

 

 

Figure 7 and Figure 8 illustrate the simulated urban land-use 

for Nyeri in 2030 using the two UGM respectively.  From 
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Figure 7, we can see that UGM 1 yielded moderate urban 
growth was over the research areas compared to the 
explosive growth using UGM 1 in Figure 8. 
 

 
 

Figure 7: Simulated urban growth for Nyeri in 2010 – 2030 
using UGM 1 

 

 
 

Figure 8: Simulated urban growth for Nyeri in 2010 – 2030 
using UGM 2 

 

Since breed was the major factor influencing urban growth in 
Nyeri, we can conclude that urban growth in Nyeri is random. 
This indicates that urban growth occurs in a haphazard 
manner without regard for proper land-use policies. 
Possibilities for such urban growth can be viewed as new built-

up areas replace agricultural areas due to failure of some cash 
crops and raising demand for housing in the city. There has 
been high rural urban migration attributed to search for 
employment, education, and social amenities. There has been 
a growth in education facilities with new universities opening 
branches in Nyeri such as University of Nairobi, Kenyatta 
University, Kenya Methodist University (KEMU), Moi University 
and Dedan Kimathi University of Technology. These results 
can help regional and urban planners to understand the 
implications of using different urban growth models. This can 
allow planners to simulate differing future urban growth 
scenarios using different models.  
 

6 CONCLUSION 
We modelled urban growth in Nyeri using two UGM models. 
UGM uses cellular automata in urban growth modelling and 
simulation. Calibration and validation of both models ended up 
in similar model parameter values. However, each model 
simulated urban growth in different directions and magnitude. 
By the year 2030, the nation of Kenya plans to achieve Vision 
2030, an ambitious economic and social development 
program. Effective urban and regional planning is a critical 
component of the Vision 2030 program. By simulating various 
urban growth scenarios, policy makers can analyze the effects 
of establishing new housing and road infrastructure in 
undeveloped areas rather than in existing settlements. The 
UGM can provide an accurate and useful guide to the growth 
of Nyeri, as well as identify and illustrate areas in which 
expansion can best take place.  The UGM can even serve as 
a master planning tool. Cellular automata modelling is an 
effective approach for regional modelling of African cities such 
as Nyeri, and can be adapted to provide effective opportunities 
to study other African cities  using UGM. 
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