
INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 12, December 2014 ISSN 2277-8616

118
 IJSTR©2014

www.ijstr.org

Design And Implementation Of Morphology Based
Spell Checker

Gaddisa Olani Ganfure, Dr. Dida Midekso

Abstract: Introducing texts to word processing tools may result in spelling errors. Hence, text processing application software‘s has spell checkers.
Integrating spell checker into word processors reduces the amount of time and energy spent to find and correct the misspelled word. However, these
tools are not available for Afaan Oromo, Cushitic language family spoken in Ethiopia. In this paper, we describe the design and implementation of a
non-word Afaan Oromo spell checker. The system is designed based on a dictionary look-up with morphological analysis (i.e. morphology based spell
checker). To develop morphology based spell checker, the knowledge of the language morphology is necessarily required. Accordingly, the
morphological properties of Afaan Oromo have been studied. To the best of our knowledge, this work is the first of its kind for Afaan Oromo. The
methodology delineated in the paper can be replicated for other languages showing similar morphology with Afaan Oromo.

Index Terms: Spell checker, non-word error, Error detection, Error correction, Morphology, Morphological Analyzer, Morphological generator, Afaan
Oromo, typographic errors, cognitive errors

————————————————————

1 INTRODUCTION
A spell checker is a tool that enables us to check the
spellings of the words in a text file, validates them i.e.
checks whether they are rightly or wrongly spelled and in
case the spell checker has doubts about the spelling of the
word, suggests possible alternatives. The two core
functionalities provided by a spell checkers are: spelling
error detection and spelling error correction. ‗Error
Detection‘ is to verify the validity of a word in the language
while ‗Error Correction‘ is to suggest corrections for the
misspelled word. Spell checker may be stand-alone
capable of operating on a block of text, or as part of a larger
application, such as a word processor, email client,
electronic dictionary, or search engine [1]. Several
researches have been done for the languages like English,
Arabic, Chinese and few researches have been done for
Amharic language, but none for Afaan Oromo. Afaan
Oromo (when translated it means Oromo Language) is one
of the major African languages that is widely spoken and
used in most parts of Ethiopia and some parts of other
neighbor countries like Kenya and Somalia. Afaan Oromo
belongs to the Lowland East Cushitic sub-family of the Afro-
asiatic super-phylum. Among the Cushitic language families
to which it belongs, Afaan Oromo ranks first by the number
of its speakers [2]. Currently, it is an official language of
Oromiya regional state. Despite of its popularity and its
status as a regional language, Afaan Oromo language
processing is still in its infancy. According to Damerau [3]
and Peterson [4] spelling errors are generally divided into
two types, typographic errors and cognitive errors.

Typographic errors occur when writer knows the correct
spelling of the word but mistypes the word by mistake.
Cognitive errors occur when a writer does not know or has
forgotten the correct spelling of a word. A study by
Damerau reports that 80% of the misspelled words in
English are non-word errors and caused by single error
misspellings [3]. We did a simple study to analyze spelling
error pattern of Afaan Oromo before implementation. For
this purpose, module prepared for teaching Afaan Oromo
courses was selected. We used text analysis data gathering
technique for this purpose. The finding of study depicts the
existence of spelling errors. When analyzed, it was found
that 1,342 words were misspelled. Out of this 1,287 words
were in the category of non-word errors. Though a
comprehensive study is required to come to a clear opinion,
it was enough to realize that non-word error detection is the
first step towards a truly professional spellchecker. The
paper is organized in to the following sections. Section 2
discusses the challenges in building a spell checker for
Afaan Oromo and the work done so far. Section 3
discusses the design of the system. Discussion and results
are discussed in Section 4. Finally the paper ends with
some concluding remarks.

2 Challenges and Related work
As stated in [5] like a number of other African languages,
Afaan Oromo has a very rich morphology. In agglutinative
languages most of the grammatical information is conveyed
through affixes and other structures. Therefore, the
grammatical information of the language is described in
relation to its morphology. As Afaan Oromo is an
agglutinative and morphologically rich language, each root
word can combine with multiple morphemes to generate
huge number of word forms. For the purpose of supporting
such inflectionally rich languages, the structure of each
word has to be identified. Afaan Oromo has compound,
derived and simple nouns, verbs, and adjectives. It also has
first person, second person, and derived pronouns. Nouns
get inflected for number. Gender, number, tense, voice,
aspect and mood cause inflections to verbs. Many times it
is context which decides whether a word is a noun or
adjective or adverb or post position. This increases the
complexity of parsing Afaan Oromo. Because of all these
reasons development of a spell checker for Afaan Oromo is
a challenging task.

 Gaddisa Olani Ganfure is a lecturer of Computer
Science Department, Dire Dawa University, Ethiopia.
Email: gaddisaolex@gmail.com

 Dr. Dida Midekso is an Associate Professor of
Computer Science Department, Addis Ababa
University, Ethiopia. Email: mideksod@yahoo.com

mailto:gaddisaolex@gmail.com
mailto:mideksod@yahoo.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 12, December 2014 ISSN 2277-8616

119
 IJSTR©2014

www.ijstr.org

3 Design
Taking what we obtained from the review of the literatures
and the morphological complexity and resource scarceness
of Afaan Oromo language, we proposed a morphology
based spell checker (i.e. a dictionary look-up with
morphological rules). A morphology based spell checker
has advantages such as its ability to reduce the dictionary
size drastically and the ability to recognize new words that
are not included in the dictionary. Morphological rules

address word categories and their possible inflections,
derivation and compounding. Further, the approach can be
drawn upon in building grammar checkers. A morphological
rule developed for the spell checker is also a stepping-
stone for other NLP applications. The architecture of the
system is shown in the Figure 1. The architecture has eight
components: Tokenizer, Knowledge base, Error detection,
Morphological analyzer, Error correction, Morphological
generator, Suggestion ranker and Word assembler.

a. Tokenizer component
This component split a block of text into individual words,
digits and punctuation marks. In Afaan Oromo, like in
English languages, the blank space shows the end of one
word. Moreover, parenthesis, brackets, quotes, etc are
being used to show a word boundary. Furthermore,
sentence boundaries and punctuations are almost similar to
English language (i.e. a sentence may end with a period (.),
line break, a question mark (?), or an exclamation point).
Thus, space marks are used as the explicit delimiters or
token separator. Every time a space is encountered, the
word after the space becomes a token. The output of this
component (i.e. list of tokens) becomes an input to error
detection module.

b. Knowledge base component
Knowledge of the language plays an important role in order
to design a morphology based spell checker. Such

knowledge can be obtained in various ways. In this study,
the knowledge for morphological rule and lexicon design
was obtained from the analysis of Afaan Oromo text books,
published papers, and discussion with Language
professionals. In order to build a spell checker for Afaan
Oromo, one would require a powerful dictionary for
reference in the word error detection and suggestions
prediction phases. Creating a dictionary having all the
words of the language is a laborious task and infeasible
considering the large variation of affix combinations in
Afaan Oromo. To handle this problem, we used a
morphological analyzer and a dictionary of root word. For
instance, in Afaan Oromo for a single verb root word ―beek-
‖ ‗go‘, over 800 valid word forms can be formed. We adopt
the Hunspell dictionary and affix file format to design a
lexicon (i.e. the knowledge base component). Hunspell is
an open source spell checker [6]. It has been designed
especially for languages with rich morphology and complex

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 12, December 2014 ISSN 2277-8616

120
 IJSTR©2014

www.ijstr.org

system of word compounding, originally for Hungarian [6].
Even though our spell checker is a standalone application,
storing both the root words and affix in this format will help
us to directly integrate our system into Apache OpenOffice.
All information (or rules) required for spelling error
detection, morphological analysis and error correction are
stored in this module. It contains a root word and affixes for
different word classes.

c. Error Detection component
Error detection component is responsible for checking
whether the input word is misspelled or not. The error
detection component works first by looking the input word in
the root word dictionary. If the input word exists in the root
word dictionary, the spell checker does nothing. Otherwise
(i.e. if this component returns ‗not exist‘), the input word will
be sent to the morphological analyzer component for further
processing. The morphological analyzer component
decomposes the input word into the possible roots and
affixes (based on their signature) and then passes them to
the error detection component. Then, the error detection
component once again lookups the knowledge base to
check whether the returned root word and affix exists in the
knowledge base or not. If they do not exist, the error
detection component will recognize that it‘s a misspelled
word and then passes them into the error correction
component. If both the root word and affix are found in the

knowledge base, the system cannot automatically say this
word is valid, for the root word may not be inflected or
derivated for this affix. Finally, to determine if this word is an
acceptable word, the class of this root word is checked in
the root word dictionary. If it has this affix flag, the system
will recognize it as a valid word (i.e. no further processing is
needed), otherwise the error detection component will
recognize it as misspelled word. We adopt the Hunspell [7]
hashing algorithm for lookup. Hashing is a well-known and
efficient lookup strategy. If the word stored at the hash
address is the same as the input string, there is a match.
However, if the input word and the retrieved word are not
the same or the word stored at the hash address is null, the
input word is indicated as a misspelling. The random-
access nature of hash tables eliminates the large number of
comparisons required for lookups.

d. Morphological Analyzer component
The task of this component is to accept a list of words from
error detection component and then decompose each word
into root words and affixes and then pass them to the error
detection component. Since we are using a dictionary
lookup with morphological rules to develop the system, we
develop knowledge based morphological analyzer
algorithm. The proposed morphological analyzer algorithm
is depicted in Figure 2.

Fig 2: Algorithm for Morphological Analysis

This algorithm (Figure 2) makes use of rules stored in the
knowledge base to strip a given word into its root words and
affix. In this process, each individual word is scanned from
right to left (and right to left) in the affix file and root word
dictionary. Upon finding a valid affix, it is stripped from the
word. However, the exact affix stripping is possible only for
a correctly spelled word. In the case of misspelled word, as
there is an ambiguity as to whether the error exists in the
root or affix, only probable affix stripping can be done. To
illustrate how the error detection and morphological
analyzer works, consider the unknown word ―bishaaniin”
‗by water‘. The error detection module will first check if
bishaaniin is found in the root word dictionary. Since it is
not found in the dictionary, the system cannot automatically
say that it is misspelled, for it may be inflected, derivated or
compounded. Then the error detection component will call

the morphological analyzer. To determine if this word is
acceptable, morphological analysis will be done. The
morphological analysis algorithm will first scan from the
right to left and left to right to search for a valid suffix and
prefix. Since /-iin/ is a valid suffix in Afaan Oromo, the
morphological analyzer component will strip /-iin/ from
bishaaniin and returns suffix /-iin/ and unknown morpheme
/bishaan-/. Now the error detection component checks the
unknown morpheme bishaan for its presence in the root
word dictionary. Since it is found in the root word dictionary,
the system cannot automatically say bishaaniin is a valid
word, for the root bishaan may not be inflected or derivated
for the suffix /-iin/. Finally, to determine if the unknown word
bishaaniin is an acceptable word, all the rules required to
append suffix /-iin/ will be checked in the affix file (e.g. any
nouns ending with consonant ‗n‘ can append suffix /-iin/).

Input: word I_Word from Error detection component

Output: list of affix and root words

Start

1. Scan input word from right to left and left to right to look for valid suffix and prefix

For each valid suffix in I_Word strip them and store result in a buffer

For each valid prefix in I_Word strip them and store result in a buffer

//pass list of affix and stems to the error detection module

Return root and affix

//If there is no valid suffix and prefix

2. Scan input word from left to right and right to left and then look for a possible roots

For each valid roots in I_Word strip the root and store result in a buffer

//pass list of possible roots to the error detection module

Return root and affix //valid roots and invalid affix

END

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 12, December 2014 ISSN 2277-8616

121
 IJSTR©2014

www.ijstr.org

Now the error detection component will recognize
bishaaniin as a valid word, and no further processing is
needed. The same process will be done for a misspelled
word.

e. Error Correction component
This component performs two tasks. First it accepts the
pairs obtained after affix stripping in morphological analyzer
from error detection component to classify the errors into
one of the following classes:

 Valid prefix, invalid root, and invalid suffix
 Valid prefix, invalid root, and valid suffix
 Valid prefix, valid root, and invalid suffix
 Invalid prefix, valid root, and valid suffix
 Invalid prefix, valid root, and invalid suffix
 Invalid prefix, invalid root, and valid suffix
 Invalid prefix, invalid root, and invalid suffix
 Valid prefix, valid root, and valid suffix // incorrect

combination

After classification, this component will make a probable
correction to the misspelled morphemes based on their
error classes. A single erroneous word may be classified
under two or more classes and each of the error is handled
separately. For instance, in the case of a valid affixes
(prefix and suffix) and invalid root, the valid affix will give us
the specific category of the possible root words. Similarly on
finding that the suffix is invalid and root is valid, valid root
will give us the specific category of the possible words.
Then using the replacement rule and Levenshtein Edit
Distance (LED) possible correction will be done. Rules in
the knowledge base and Levenshtein Edit Distance
techniques have been used for error correction. Edit
distance is the number of simple edit operations required to
transform one string to another [8]. The different operations
allowed are substitution of a letter, deletion of a letter,
insertion of a letter, and transposition of two adjacent
letters. The less the edit distance between two strings is,
the more similar are the strings to each other.

f. Morphological Generator component
This component will be called to put together the corrected
parts (i.e. morphemes) from the error correction component
to re-build the complete word form. In addition, based on
the rules in the knowledge base it determines the various
words that can be generated from a given valid
morphemes. This component is again used to correct and
generate suggestion for those errors resulted from valid
root and valid affix (invalid combination of roots and
affixes). If no candidates can be found after error correction
and morphological generator, no candidates will be
generated. The input to our morphological generator
component can be a suffix, a prefix, a root word or
combination of them. Taking this into account, we proposed
knowledge based morphological generator algorithm for
Afaan Oromo, which takes any combination of morpheme
(s) as the input. This word form generation algorithm takes
root (or stem) or affix as an input, then it identifies the class
of each root words and retrieves corresponding affixes to
generate a valid word form.

g. Providing and Ranking Suggestions
Once the process of error correction and morphological
generation was done, the next step is to provide and rank
suggestions for the detected error. Hence upon detecting
the error, the user will be provided with a list of probable
correct words which the user can select to update the
misspelled word. It may also be possible that the correct
word expected by the user may not be listed in the
suggestions; if there is no possible root word and affix.
Keyboard layout (i.e. character distance), replacement rule
in the affix file, and Levenshtein Edit Distance has been
used to rank the suggestion. The character distance
method uses a Pythagorean-type metric to measure the
distance between a misspelled word and a possible
correction, based on the QWERTY keyboard layout [9]. The
QWERTY keyboard is represented as two-dimensional
arrays as shown in Figure 3. The suggested word with the
shortest distance to the misspelled word is considered as
the best suggestion.

i/j 0 1 2 3 4 5 6 7 8 9 10 11 12

0 Q W E R T Y U I O P [] \

1 A S D F G H J K L ; ‗

2 Z X C V B N M , . /

Fig 3: Two-dimensional representation of QWERTY Keyboard

According to the Euclidean distance formula, the distance
between two points in the plane with coordinates (x, y) and
(a, b) is given by:

dist ((x, y), (a, b)) = (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 (1)

For example, based on the character distance chart in
Figure 3, the distance between w located at (0, 1) and n
located at (2, 5) is 4.47 and the distance between n located
at (2, 5) and m located at (2, 6) is 1. This indicates that
there is highest probability to mistype n as m than w. If the

erroneous word is corrected by rules in the replacement
table, word formed by this rule will take the top rank in the
suggestion list. If two or more possible words are generated
using the replacement rule, the top rank would be given to
the one with the smaller LED. Character distance is
considered only if there are words having the same LED.
To illustrate how this component works, consider the
misspelled word ―hindeemi”. This word can be analyzed
into the following pairs: valid prefix /hin-/ ‗don‘t‘ and valid
root /deem-/ ‗go‘ and valid suffix /-i/. We have the following
rules in our knowledge base:

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 12, December 2014 ISSN 2277-8616

122
 IJSTR©2014

www.ijstr.org

1. Any verb stem ending with consonant m can
append suffixes /–e/, /-a/, /-i/, /-u/, /-ti/ and the like
without any criteria. This indicates that ―deemi‖ is a
correct word form.

2. After appending suffix like /–e/, /-a/, /-u/, /-ti/ etc,
any verb stem ending with consonant m can also
append prefix /hin-/. This indicates that ―hindeemi”
is incorrect combination.

In this case, the morphological generator will generate too
many suggestions. By considering the error is because of

prefix, words like deemi, deeme, deema, deemte,
deemteetti and the like may be generated for suggestion.
Again by considering the error is because of suffix /-i/,
words like hindeeme, hindeemti, hindeeme, hindeemu
and the like may be generated for suggestion. The same
process is done for the root word. Listing and displaying all
the possible suggestions to a user makes confusion, hence
ranking and trimming of suggestion is needed. Table 1
shows the number of edit operation required to convert
misspelled word hindeemi to candidate word.

Table 1

LED required for converting “hindeemi” to candidate words

Candidate word Insertion Deletion Substitution Transposition Total

deemi 3 3

deeme 3 1 4

deemte 1 3 1 5

hindeeme 1 1

hindeemti 1 1

hindeema 1 1

hindeemu 1 1

As shown in Table 1, the LED of the first three words is
higher, thus they are trimmed and the last four candidates
will be selected for ranking. Since all of them have the
same LED, another criterion is needed to rank them. As
observed from Afaan Oromo spelling error pattern analysis,
the probability of making insertion and omission errors are
higher than the other types. Thus, if two or more words
have the same LED we give the top rank for insertion and
omission errors, for this reason candidate word hindeemti
will rank number 1. Now it‘s time to consider keyboard

layout to rank the three words left. They differ from the
erroneous word by one character, so we need to find the
distance between the last characters of misspelled word
hindeemi ‗-i‘ and the last character of all the other three
words. Based on their score in Table 2, the one with the
smallest character distance will be ranked first. Finally for
the misspelled word hindeemi, suggestion provider and
ranker will return hindeemti, hindeemu, hindeeme and
hindeema as the top four suggestions.

Table 2

Ranking suggestion for hindeemi with their character edit distance

Candidate
word

Last
character

Distance from i (0,
7)

Rank

hindeeme e (0, 2) 5 2

hindeema a (1, 0) 7.07 3

hindeemu u (0, 6) 1 1

h. Word Assembler component
The task of this component is to combine correct word with
the one flagged as misspelled word.

4 RESULTS AND DISCUSSION
The prototype of Afaan Oromo spell checker is developed
using Microsoft Visual C# 2010. The snapshots of AOSC
are depicted in Figure 4. The input for the prototype is a text

file. The text file can be browsed or typed directly into the
textbox. The system will check the spelling automatically
after the space bar is pressed or automatically after the
saved text file was exported. A word that the system
believes to be misspelled is flagged with a wavy red
underline and suggested corrections are available in a pop-
up menu after right clicking on the erroneous word.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 12, December 2014 ISSN 2277-8616

123
 IJSTR©2014

www.ijstr.org

Fig 4: Snapshot of Afaan Oromo Spell checker

Besides our main objectives, we have also integrated our
system (i.e. the knowledge base) into Apache OpenOffice
3.4.1 windows version for demonstration purpose. Figure 5

shows screen shots taken from OpenOffice word after
integrating our system; while spell checking a sample text.

Fig 5: Screen shot of OpenOffice

The designed system must be evaluated to test its
effectiveness. In the literature, several methods for
evaluating spell checker system have been proposed. A
work done by Kukich [8] proposed lexicon size, test set
size, correction accuracy for single and multi error
misspellings, and type of errors as evaluation criteria for a
spell checker tool. A research work by Paggio et al. [10]
recommend error recall, precision recall, interface and
suggestion adequacy for the evaluation of a spell checker
algorithm. Some of the measurements are subjective and
difficult to evaluate. In this research work, more directly
measurable parameters such as lexical recall, error recall,
and precision are used to evaluate the developed system.
We will follow Paggio et al. [10] In their definitions of the
metrics. Valid words are words that are part of the

language, or which are sanctioned by the language system,
in contrast to invalid words, which are not part of the lexicon
or language system. When the spelling checker claims a
word is invalid, it is flagging that word, while accepting a
word means treating it as valid. Accordingly, a flag is an
indication that a word has been tagged as invalid.
Suggestions are alternative valid words that are offered to
the user to replace a flagged word with. With this
information, it becomes intuitively clear what the metrics
actually measure. Lexical recall indicates the percentage of
valid words correctly accepted by the spelling checker,
Error recall gives the percentage of invalid words correctly
flagged and Precision gives the percentage of correct flags
(correctly found invalid words) over all flags by the spelling

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 12, December 2014 ISSN 2277-8616

124
 IJSTR©2014

www.ijstr.org

checker. Description about how these measurements are
calculated is given in Table 3.

Table 3
Evaluation metrics

Metric Measurement Method

Lexical
Recall

of valid words accepted / # of valid words

Error
Recall

#of invalid words flagged / # of invalid
words

Precision
#of correctly flagged invalid words / # of
words flagged

It should be noted that the evaluation methods presented in
Table 3 works best in a controlled environment (i.e. where
the test data and the knowledge base are from the same or
a similar source), but this work was evaluated on the
dataset that was randomly taken from different sources.
The test dataset was prepared to evaluate the number of
valid words correctly accepted by the system and the
number of invalid words correctly flagged by the system.
Initially, we randomly selected sentences (and paragraphs)
from stories and papers belonging to several domains
which produced 6521 words. To trim repeated words and
select derivated, inflected and compounded words
Alchemist 2.0 has been used. This reduced the 6521 to
1464 unique words including compound words, words with
derivational morphemes, inflected words, and functional
words. The word lists are printed out and then manually
spell checked by three postgraduate linguistic students. We
found that, the data set consists of 1385 correctly spelled
words and 79 misspelled words. In addition, we manually
generated and added some inflection and derivation
variants for the root word deem- ‗go‘, qab-‗hold‘ and beek-
‗know‘, a total of 347 unique words to the test data; making
the total words 1811. In this sample, out of 1,732 valid
Afaan Oromo words, 1,535 were accepted as a valid word;
197 words were flagged as misspelled words by the
system. Out of the 197 incorrectly flagged words 186 words
are due to the absence of root word in the lexicon, whereas
the remaining 11 words have root words in the lexicon, but
the spelling checker did not recognize the inflection,
derivation and compounding rules. On the other hand, all
the 79 misspelled words were flagged. The result of the test
data set is shown in Table 4.

Table 4
Evaluation result

Description Value

Lexical recall
(1,535/1,732)*100 =
88.62%

Error recall (79/79)*100 = 100%

Precision (79/276)*100 = 28.62%

In addition to the three metrics discussed in Table 3, we
could also test how the spell checker generates a preferred
suggestion. Ideally, the spell checker should only suggest
the preferred suggestions. However, in practice it is

sometimes unclear what the preferred suggestion really is.
For example, what should be the suggestion for the invalid
word: ―deem‖? It could be ―deemi‖, ―deeme‖, or ―deemu‖,
among possible others. It depends on the context.
However, we only looked at each misspelled word and then
check whether a right suggestion is generated or not based
on our algorithm (i.e. without considering the context). The
test shows that for all the flagged words a possible
suggestion was generated. Generally, from the result and
the feedbacks and suggestion of the linguists who
evaluated the system, we observed that enhancement in
the knowledge base will improve the accuracy of the
system. Considering our knowledge base lexicon size, the
obtained result is satisfactory. Moreover, we have observed
that morphology in Afaan Oromo is complex, so it needs to
be studied linguistically to promote the computational
aspect.

5 Conclusion
Since most computers work in English and other few
languages, people who do not speak such languages are
either forced to access computers in those languages or will
not use them at all. This has its own impact on the socio-
economic development of that country. In order to increase
the usability of computer devices and let people express
their ideas using their native languages, these devices need
to be localized into native languages. Hence, it is necessary
to do research to alleviate these problems. Spell checker is
one potential candidate to this. Use of computers for
document preparation is one of those many tasks
undertaken by different organizations. Introducing texts to
word processing tools may result in spelling errors. Hence,
text processing application software has spell checkers.
Integrating spell checker into word processors reduces the
amount of time and energy spent to find and correct the
misspelled word. This study is the first work for Afaan
Oromo, and we hope that this research paves a way for a
full fledged Afaan Oromo spell checker for those who want
to pursue conducting research in natural language
processing for Afaan Oromo language.

Reference
[1] Rajashekara Murthy, Vadiraj Madi , Sachin D,

Ramakanth Kumar, ―A NON-WORD Kannada Spell
Checker Using Morphological Analyzer And
Dictionary Lookup Method‖, IJESET, 2(2), 43-52,
2012

[2] Tesfaye Tolessa, ―Early History of Written Oromo

Language up to 1900‖, Star Journal, 1(2):76-80,
2012

[3] F.J. Damerau, ―A technique for computer detection

and correction of spelling errors‖, Communication
of ACM, 7(3), 171-176, 1964.

[4] Peterson, L.J, A Note on Undetected Typing

Errors. In Communications of ACM, 29(7): 633-
637, 1986

[5] G. Q. A. Oromoo, ―Caasluga Afaan Oromo Jildi I,

Komishinii Aadaaf Turizmii Oromiyaa‖, Finfinnee,
Ethiopia, Pp: 105-220, 1995.

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 12, December 2014 ISSN 2277-8616

125
 IJSTR©2014

www.ijstr.org

[6] Peter Halacsy, ―Open language resources for

Hungarian‖, in proceedings of LREC, European
Language Resources Association, 2004.

[7] Hsuan Liang. ―Spell checker correctors: A unified

Treatment.‖ Master‘s Thesis University of Pretoria,
South Africa, 2008.

[8] Karen Kukich, ―Techniques for Automatically

Correcting Words in Text‖, ACM Computing
Survey, 24(4), 377–439, 1992

[9] Min, K., Wilson, W., and Moon. Y, ―Syntactic and

Semantic Disambiguation of Numeral strings using
an n-gram Method‖, Advances in Artificial
Intelligence, Springer, Berlin. Pp: 82-91, 2005.

[10] Paggio P., Music B., ―Evaluation in the SCARRIE

project‖, In the proceedings of the first International
conference on language resources and evaluation,
1998.

